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Abstract. The process of surface coating is widely applied in the manufacturing 
industry. The accuracy of coating strongly affects the mechanical properties of 
the coated components. This work suggests the use of Self-Organizing Maps 
(Kohonen neural networks) for an optimal robotic beam trajectory planning for 
surface coating applications. The trajectory is defined by the one-dimensional 
sequence of neurons around a triangulated substrate and the neuron weights are 
defined as the position, beam vector and node velocity. During the training phase, 
random triangles are selected according to local curvature and the weights of the 
neurons whose beam coats the selected triangles are gradually adapted. This is 
achieved using a complicated coating thickness model as a function of stand-off 
distance, spray impact angle and beam surface spot speed. Initial results are pre-
sented from three objects widely used in manufacturing. The accuracy of this 
method is validated by comparing the simulated coating resulting from the SOM-
planned trajectory to the coating performed for the same objects by an expert. 

Keywords: Surface coating, Self-Organizing Maps, Robotic beam trajectory, 
Triangulated substrate, Coating thickness. 

1 Introduction 

High value manufacturing sectors are continually seeking new ways to improve the 
performance and durability of critical components such as those used in aerospace, de-
fense and automotive sectors. Great variations in the application method of coating ma-
terials, the deposition kinematic effects, the new complex substrate (component to be 
coated) designs adopted by the original equipment manufacturers (OEM) and the lack 
of information related to the mode of operation of the coated components are common 
problems in the coating sector. As a result, multiple design iterations of thermal or cold 
spray are required in an effort to converge to a coating plan for any given substrate, 
which come at high cost for both the OEM’s and the supply chain. 
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Given the industry’s transition away from hard chromium plating to more environ-
mentally friendly alternatives, such as spray processes, the need for accurate and flexi-
ble coating planning tools comes at an opportune time. Within the context of thermal 
and cold spraying, a pre-spray optimization strategy has to satisfy several requirements. 
The central requirement is minimizing the coating thickness variation, achieve uniform 
or tailored coating properties using a model which cannot be expected to be analytically 
available. The ability to predict, evaluate and visualize the coating properties on diffi-
cult to reach areas of intricate components is of paramount importance and an issue that 
industrialists come across regularly at the qualification stage of a coating application. 
A further important requirement is the optimization of the kinematic quality of the ro-
botic spray path, with respect for example to the surface curvature, shadowing and ve-
locity. 

Among numerous neural network architectures that could be used to address the ro-
botic gun trajectory planning challenges, one is of particular interest and was introduced 
by Teuvo Kohonen in the 1980s [1]. Self-organizing map (SOM), sometimes also called 
Kohonen map, is a single layer neural network with units arranged along an n-dimen-
sional grid. Most applications use two-dimensional, rectangular or hexagonal grids. 
SOMs use unsupervised, competitive learning to produce low-dimensional projections 
of high-dimensional data, preserving the similarity and topology relations between the 
data items. These characteristics are very desirable for our application, since smooth 
trajectories that follow the object’s local curvature without sharp changes of consecu-
tive positions and beam vectors are required, without the need for generating training 
datasets. SOMs have been used in various applications, despite their simplicity, includ-
ing visualizations, generation of feature maps, pattern recognition and classification. 
Some applications focus on control of robotic arm, learning motion maps, collision 
avoidance for multi-vehicle systems including navigation and robotics [2-4]. Other ap-
plications can be found in chemistry [5], disease recognition in medical images, psy-
cholinguistic studies [6], similarity of music recordings [7], maritime applications for 
the analysis of passive sonar recordings and for planning ship trajectories [8], classifi-
cation of satellite images [9] and many other.   

In this work, we propose the use of a SOM, arranged in 1D with appropriate weight 
vectors, in order to derive a smooth robotic gun trajectory that performs surface coating 
within required specifications. The training algorithm has been redesigned to generate 
optimized coating thickness along the substrate’s surface. Results are presented for 
three different objects, typical in manufacturing, which compare favorably with the 
ones achieved by an expert. 

 
 



3 

2 Methodology 

2.1 An overview of the proposed algorithm 

The proposed SOM is defined as an ordered sequence of 256 nodes (or neurons). The 
nodes represent the consecutive positions of the spraying gun as it moves along its tra-
jectory with variable speed, pointing at a coating beam direction at each position. Thus, 
each node i contains its position pi, the speed magnitude si with direction from the cur-
rent node to the next one and the beam direction gi. A triangle is considered visible by 
a node if it lies within a cylindrical beam of a predetermined radius (r0) and it is not 
shadowed by another triangle. 

For each repetition up to a total number Nrep, a nested loop of bs iterations (referred 
to as batch size) is performed, in a manner similar to batch stochastic optimization of 
feedforward neural networks. The triangles visible from at least one node are stored in 
table A. This calculation takes place once for each repetition, in order to reduce the 
computational complexity.  

For each iteration, a random triangle is selected from A and the winner node and its 
neighbors are determined. The correction of the weights δp, δs and δg (position, speed 
and direction of the beam) of these nodes are appropriately calculated, according to the 
learning algorithm. During the iterations of the same batch, the corrections δp, δs and 
δg are accumulated into Δp, Δs and Δg respectively and the node weights (p,s,g) are 
updated at the end of the batch. These steps are encoded in the pseudocode below: 

Initialize neuron weights, calculate barycenter and nor-
mal vector for each triangle of the substrate 
For rep=1: Nrep                     // Repetition Loop 
 Calculate table A 
 Initialize Δp =0, Δs=0 and Δg=0 
For t=1: bs                         // Iteration Loop 
 Select random triangle r from A 
 Find winner node w and its neighbors Γw 

 Calculate δgw, δgi, δsw, δsi, δpw, δpi where 
wi    

  Δgw= Δgw+ δgw, Δgi= Δgi+ δgi 
  Δsw= Δsw+ δsw, Δsi= Δsi+ δsi 
  Δpw= Δpw+ δpw, Δpi= Δpi+ δpi 
 Update direction gw= gw+ Δgw, gi= gi+ Δgi 
 Update speed sw= sw+ Δsw, si= si+ Δsi 
 Update position pw= pw+ Δpw, pi= pi+ Δpi  

2.2 SOM initialization 

A substrate with arbitrary geometry in a triangulated form is inserted in the algorithm, 
in STL format. The object is placed with its center of mass at the origin of the frame of 
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reference (0,0,0). The normal vectors n and the position of the barycenter B for each 
triangle of the object is calculated. 

For a given substrate, the SOM is initialized with the position of the nodes equally 
spaced in a full circle, clockwise, around the center of mass of the object on a plane 
vertical to z axis. For each node, the beam’s direction is initialized towards the center 
of the axis system. The initial value of the speed is set to 0.05 m/s for all nodes. The 
ideal stand-off distance (SoD) and coating thickness are set. 

Substrate curvature pre-processing. During the training phase, triangles of the sub-
strate are randomly selected and presented to the SOM. Substrate areas of high curva-
ture require more precise neuron weight adaptation, thus they should be sampled more 
densely. To this end a quantity c that represents the local curvature of the object at each 
triangle is calculated.  

First, a matrix Τ is created, whose ith row Ti, contains the neighbor triangles of tri-
angle i. Two triangles are considered to be neighbors if they have at least one common 
edge. For each triangle i the dot product of its normal vector and the normal vectors of 
all neighbor triangles are calculated and the one with the smallest value is selected for 
the calculation of the local curvature (see Fig. 1a). 

 0 1 min( ) , i i j ic j   n n Τ  (1) 

 
(a) 

 
(b) 

Fig. 1. a) Initial object curvature in color scale. b) Object curvature in color after the diffusion. 

Then an iterative diffusion method is applied to those curvature values (see algo-
rithm below) to achieve a smoother curvature distribution over the substrate (see Fig. 
1b). This process takes place once for every new substrate and is not to be confused 
with the iterative training of the SOM: 

For each iteration m 
 For each triangle i 

    1 1 1

1

im m m
i i j i ij

k c b c c


  


     

 t c k  

where b is a constant in [0,1], β is the number of neighbors for each triangle. 
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2.3 Learning algorithm 

In the beginning of each repetition, matrix A is constructed. The barycenter of the tri-
angle that is closest to the beam of node (p) and the speed of the beam’s projection on 
this triangle vspot are also calculated [10]. 

Random triangle selection -Winner determination. For each iteration, a random tri-
angle r from matrix A is selected, with probability proportional to substrate’s diffused 
curvature (c), as follows. Triangles with curvature ck=0 will have zero probability to be 
randomly selected in the aforementioned method. To alleviate this problem the curva-
ture of each triangle is increased by a constant quantity empirically set equal to 0.1. The 
curvature value of each triangle is converted to probability by dividing it by the sum of 
all curvatures and the cumulative curvature is computed. 

 
1

1

1 i

i kN
k

m
m

C c

c 



 


 (2) 

A random number ξ is selected according to the uniform distribution between 0 and 
1. The triangle r satisfies the following condition: 

 1r rC C    (3) 

The triangles that belong to a part of the object with larger curvature are more likely 
to be selected than the ones that are on a flatter surface. This results in greater object 
sampling and thus enhanced accuracy in areas with more complex shape. 

Subsequently, using the matrix A, a winner node is selected, as following.  For every 
node i for which the particular triangle r with barycenter Br is visible, the parameter bi 
is calculated as shown below: 

      , 0 0 ,/ 1 sin 2i r i r r i rb c d d d c       , (4) 

where 
,i r r id B p   is the Euclidean distance between pi and Br, referred to as Stand-

of-Distance (SoD). Thus, quantity bi is dominated by the percentage difference of the 
current and the ideal SoD do at object areas with high curvature, whereas at areas with 
low curvature, the second term that quantifies the deviation of the impact angle from 
the ideal value of π/2 becomes dominant. The node with the smallest value of b is de-
clared as the winner node w. 

  arg min iw b  (5) 

Definition of neighborhood. After the determination of winner node w, a set of neigh-

bor nodes wi is defined, with
bw i n   . Thus, nb nodes before and after the current 

winner are considered to be winner’s neighbors. In case the geometric setup of nodes 
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is not a closed loop the number of neighbors affected is smaller, if the winner node is 
on the edges. The learning rate of each node in the neighborhood is adjusted by a weight 
calculated using a Gaussian function of node index with respect to the winner node and 
standard deviation that decreases linearly from σ0 to σ1 with the number of epochs nep: 

  
    2 2

,

exp 2 ,

0                                   , otherwise

n b

w w i

w i i w n
a i a

    
  



 (6) 

The standard deviation is obtained as following: 

 1 0
0n b

ep

n k
n

 
 

 
   

 
 (7) 

The variables of these nodes are affected in the same way to the winner node, but to a 
lesser degree, depending on their distance from the winner (see Fig.2). 

 

Fig. 2. Change of weight factors with repetitions 

Coating thickness calculation. The coating thickness h for a random triangle r that is 
being coated by neuron i, is calculated as a function of the following variables: stand-
off distance (SoD) d, impact angle θ and the speed of beam’s spot on the triangle r (spot 
speed) vspot. For node i positioned at pi with beam vector gi, that coats triangle r with 
normal vector nr, (visible by node i), the vspot is calculated according to [10] and the 
SoD and the impact angle θi, r are calculated as follows: 

 ,i r i rd p B 
 (8) 
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  1
, cosi r i r  g n  (9) 

For the calculation of coating thickness h, we derive the thickness ho for the given SoD 
and impact angle θi, r using bilinear interpolation, according to [10] as follows: 

 
1 , 2 , 3 , ,o i r i r i r i rh a d a a d     (10) 

where a1, a2 and a3 are parameters calculated from experimental results [10],[11]. 
The calculated thickness h0 corresponds to spot speed of 502 m/s. In order to convert 
the thickness to the current spot speed we apply the following: 

 
 

 502

h spot

o

h spot

f v
h h

f v



 (11) 

where fh is the hyperbolic interpolation of thickness versus spot speed is performed 
according to 

   1
h spot

spot

f v
bv c




 (12) 

The parameters b, c are calculated using experimental results [11]. 

Updating the neuron weights. The first variable that is updated during SOM learning 
is the direction of the beam. Aiming at an impact angle between the winner node and 
triangle close to π/2, the beam direction of the winner w and the neighbor nodes i, is 
updated as shown below: 

 ,( )
i

t
r w v w i rsign a  g n g n  (13) 

where δgi
t is the change of the beam node vector during iteration t, gw is the beam vector 

of the winner node, nr is the normal vector of random triangle r and 0.1v  . It follows 

that the update for the winner becomes ( )t
w r w v rsign  g n g n  , since , 1w wa   accord-

ing to Eq.(6), whereas for neurons outside the winner’s neighborhood ( bw n n  ),

, 0w ia  . 

Subsequently, the node speed s, which represents the speed of the gun as it passes 
through the positions of the nodes in reference, is updated. The initial value of the speed 
is set to 0.05 m/s with direction from the current node to next one clockwisely. The 
speed changes in order for an ideal thickness to be achieved in the spraying process. 
The formula for the node speed update δsi

t during iteration t is: 

 
 

2
,

,

ˆ( )  ,  

     ,  i

t i s w i w

w i s w i

h h a s i w
s

s s a i w






  
 

 
, (14) 
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where h is the calculated thickness for triangles visible by the winner node beam, if the 
spraying gun was placed in the position of the winner node, hi is an ideal thickness, 

0.1s  , sw is the speed of the winner node and si the neighbor’s speed. The value of 

speed for neighbor nodes is updated differently. The change is defined in reference to 
the speed difference between the winner’s and each neighbor’s speed. 

Then, the position of the nodes is updated. The vector δpi that defines this change is 
calculated using the following formula: 

 
  ,

max ,i

t i o
p w i i

o

D d
p a

D d
 


 g , (15) 

where  1

i

t
r iD B p p     and 0.2p  . Fig.3 below depicts schematically the up-

date of the position and beam direction of a winner node and a neighbor node for a 
randomly selected triangle r of the object during one iteration: 

 

Fig. 3. Position and beam direction correction of a winner and a neighbor node for one iteration 

As mentioned in the overview of the proposed system, the evolution of the proposed 
SOM is performed in Nrep repetitions of batches with bs iterations. Thus, the updates for 
each neuron are accumulated during each batch: 

 
1 1 1

,   ,   
s s s

i i i

b b b
t t t

i i i
t t t

s s p p  
  

       g g  (16) 

and are used to update the neuron weights at the end of each batch: 

 1 1 1,   ,
i i i i i i i i i

rep rep t rep rep t rep rep ts s s p p p        g g g  (17) 
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3 Results 

A billet mold, a component with epitrochoid cross section and a mud-rotor are typi-
cal objects used as substrates for coating, thus they were selected for our test objects. 
Fig. 4 summarizes the training of the SOM for 500 repetitions and batch size equal to 
10 (thus 5000 iterations in total), for the three test objects. The node position, beam 
vector and speed are depicted for the initial repetition, every 100 intermediate repeti-
tions and the final one (blue, green and red color respectively). The length of the vectors 
is analogous to the gun speed.  

 

   

(a) (b) (c) 

Fig. 4. Initial, every 100 intermediate repetitions and final repetition node positions and beam 
vectors (blue, green and red color respectively) for a) the billet mold, b) epitrochoid and c) the 
mud-rotor. SOM evolution was performed for 500 repetitions and batch size equal to 10 for all 

three objects. The length of the vectors is analogous to the gun speed. 

The coating achieved by the proposed algorithm is shown in Fig. 5 in comparison to 
the manual, expert-based coating for the billet mold (left column) and the epitrochoid 
(right column). The triangulated substrates are shown in the 1st row, with the coating 
plane indicated in yellow color. The coating thickness at the indicated plane achieved 
by the SOM-based method and by the expert is shown in the 2nd and 3rd raw respec-
tively. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Fig. 5. Coating plane of the triangulated substrates: a) billet mold and b) epitrochoid. Coating 
thickness of the billet mold using c) proposed method and e) manual method and of the epitro-

choid substrate using d) proposed method and f) manual method. 

The coating achieved by the proposed algorithm for the mud rotor is shown in Fig. 6 at 
the plane indicated in Fig.6a. The coating thickness along the object intersection 
marked in yellow is plotted for the SOM based method and for the expert in Fig.6b and 
Fig.6c respectively. It can be visually observed that the thickness achieved by the SOM 
method is more uniform than the one achieved by the expert. 

   

(a) (b) (c) 

Fig. 6. a) Coating plane of the triangulated mud rotor. Coating thickness of the mud rotor at the 
selected plane using the b) proposed method and c) manual method 

The coating thickness distribution is summarized using boxplots for the three test 
objects, for the proposed SOM-based and the expert-based coating. It can be observed 
in Fig.7 that the thickness achieved by the SOM-based coating is better distributed 
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round the required value, with both the 1st, 3rd quartile and the minimum and maximum 
thickness being closer to the ideal value, compared to the expert-based result.  

 

Fig. 7. Distribution of thickness values of proposed method for triangles of the coat-
ing plane of the object in comparison with the ones derived from a manual process for 
the three test objects.  

 
The convergence of the SOM is assessed by calculating the following quantities: 

        1
1 2 3

1 1 1

,  ,  
i i

N N N
rep rep rep rep
i i

i i i

C rep N C rep s C rep p

  

        g g  (18) 

Typical results of the evolution of the quantities C1, C2 and C3 for the coating of the 
billet mold object are shown in Fig. 8.   

 

   
(a) (b) (c) 

Fig. 8. The evolution of quantities C1, C2 and C3 for the SOM-based coating of the billet mold.  

4 Conclusions and further work 

A SOM-based method for planning robotic arm trajectories for the optimization of 
surface coating processes has been presented. The proposed approach adapts the robotic 
gun kinematics utilizing a complicated coating thickness model to generate coating 
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thickness within strict specifications for several surfaces. Three different objects, typi-
cal in the manufacturing industry have been tested, in comparison to an expert. Results 
show that the distribution of SOM-coating thickness is superior to the one achieved by 
an expert. The coating planning is performed within few minutes for an object with 105 
triangles, using Matlab in a MW-Windows laptop (Intel i7@2.6GHz, 16GB RAM). 

Further work incudes the extension of SOM on a 2D mesh of neurons that will cover 
arbitrarily complicated object geometries.  
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