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Abstract. Data availability is important when researchers want to apply artifi-

cial intelligence algorithms to extract biomarkers and generate predictive mod-

els for disease diagnosis, response to treatment and prognosis. For cutaneous 

melanoma clinical, biological and imaging data are scattered through the web. 

ebioMelDB is the first database to integrate the widest collections of RNA-Seq 

gene expression and clinical data with clinical and dermoscopy images, all 

manually curated and organized in categories. ebioMelDB aspires also to host 

our under development predictive models in cutaneous melanoma diagnosis, re-

sponse to treatment and prognosis based on combinations of the different data 

types hosted. As a first step towards this direction, we apply an ensemble di-

mensionality reduction technique employing a multi-objective optimization 

heuristic algorithm that finds the best feature subset, the best classifier among 

linear SVM, Radial Basis Function Kernel SVM and random forest and their 

optimal parameters to predict the vital status of patients in different time win-

dows based on a large cohort of patients’ gene expression data. The results are 

very encouraging in performance metrics compared with state-of-the-art algo-

rithms. The database is available at http://www.med.upatras.gr/ebioMelDB. 

Keywords: Cutaneous Melanoma, Database, Prognosis, Machine learning. 

1 Introduction 

Cutaneous melanoma (CM), commonly developed from malignant transformation 

of melanocytes cells that produce melanin in the skin, constitutes ~5% of all skin 

cancers [1]. However, >75% of skin cancer deaths originate from melanoma, which 

has a 5-year survival rate of 23% in patients with late stage of the disease [1]. Early 

detection is the most important determinant of the associated mortality reduction and 

towards this direction, in 1985, the ABCD rule [2] was devised by Kopf et al. as a 

simple framework that physicians, novice dermatologists and non-physicians can use 

to detect melanocytic lesions with atypical features. Based on the above rule, atypical 

melanocytic nevi are characterized by A (Asymmetry), B (Border irregularities), C 

(Colors variety) and D (Diameter > 6mm) [2]. 
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The introduction and application of dermoscopy in clinical practice has provided a 

new dimension in the evaluation of pigmented skin lesions. With this non-invasive 

technique and the pattern analysis method, melanocytic lesions are distinguished from 

non-melanocytic lesions. However, dermoscopy as a method has its limitations, as it 

depends on the examiner's experience. Traditional radiomics practice uses machine 

learning methods towards the development of computer-aided diagnosis (CAD) tools 

that can be used by dermatologists to overcome the aforementioned issues [3]. These 

systems follow a pipeline: i) image preprocessing, ii) lesion segmentation, iii) feature 

extraction, iv) feature selection (optional), and v) classification. Recently, a vast num-

ber of deep learning methods have been employed in CM research, but these as well 

have challenges and limitations [4].  

CM is considered a multifactorial disease, the result of genetic predisposition and 

environmental factors [5] and survival outcomes and response to treatment can vary 

widely among patients due to the biological heterogeneity of melanoma [6]. Thus, in 

the effort to better understand the disease mechanisms and apply individualized 

treatment protocols to CM patients, omics data have been explored for the identifica-

tion of diagnostic and prognostic biomarkers. Four subtypes of cancer, which include 

mutant BRAF, mutant RAS, mutant NF1, triple WT (wild-type) based on mutant 

genes have been widely reported [7] and a recent review on the genomic features 

characterizing the development of CM can be found in [8]. Apart from genomics, 

studies have demonstrated that CM arises from the anomalies in transcriptomic and 

epigenetic factors such as expression of mRNAs, miRNAs, the aberration in methyla-

tion patterns of CpG islands of genes and histone modifications [9]. In an attempt to 

find melanoma subtypes based on transcriptomics data, four major signatures have 

been found: immune, keratin, melanocyte inducing transcription factor (MITF)-low 

and MITF-high [10]. In the last decade, an extraordinary leap forward in the treatment 

of melanoma occurred, taking advantage of the advent of targeted therapies and im-

munotherapies [11]. At present, the methods commonly used in the treatment of mel-

anoma include surgical resection, chemotherapy and immunotherapy. Interestingly, 

13 FDA-approved treatments are presented in a review by Donelly et al [12] for dif-

ferent molecular subtypes of the disease, most originating from CM omics bi-

omarkers. But again, because of the molecular heterogeneity, not all patients respond 

well to treatments and some present drug resistance. Therefore, it is imperative to 

develop prognostic biomarkers for risk stratification and treatment optimization [13].  

However, analyzing only a single type of omics measurement poses limitations, 

because it cannot comprehensively and accurately describe the biological processes 

underlying the disease and may lead to partial and uninformative biomarkers. Thus, 

multidimensional studies which profile multiple types of omics changes on the same 

subjects have emerged [14]. A representative example is TCGA (The Cancer Genome 

Atlas) which is organized by NIH. TCGA is one of the most prominent and inclusive 

repositories containing genomic, transcriptomic, epigenetic, proteomics and clinical 

information of 33 types of cancer [15], among which CM with its TCGA-SKCM 

project [7].  

Several studies have been conducted to identify prognostic biomarkers based on 

various TCGA-SKCM omics data with most of them including expression data. Jiang 
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et al. [14] focused on a multi-omics analysis by integration of mutation, copy number 

variation, methylation, and messenger RNA expression data to achieve this objective, 

while the authors in [16] identified molecular subtypes associated with differences in 

CM prognosis by integrating epigenomic and genomic data. The authors in [17] sup-

port that integrating gene expression regulators when analyzing gene expression data 

can more accurately identify biomarkers. A number of studies have generated im-

mune related prognostic gene signatures (a 239-gene signature in [18], a 33-gene 

signature in [19], a 25-gene signature in [20], a 7-gene signature in [21] and a 6-gene 

signature in [22]). In [23] the authors generated a 121 metastasis-associated prognos-

tic signature and the authors in [9] are trying to distinguish metastatic melanoma from 

primary tumors based on the mRNA, miRNA and methylation data of TCGA provid-

ing their prediction models through the webserver, CancerSPP. The STATegra 

framework is presented in [24] as a multi-omics integrative pipeline used on mRNA 

and miRNA expression and methylation data. Several studies present web-servers 

which provide survival analysis based on gene expression [13]. However, these tools 

analyze statistically the association between single genes and survival prognosis in 

TCGA cancers.  

 Integrating omics and clinical data with imaging data is promising [25]. In mela-

noma, there is limited relevant research. In [26], the authors studied melanoma prog-

nosis in terms of recurrence-free survival, based on clinical data, gene expression, and 

whole slide image features. Their best performing model included 20 automatically 

generated whole slide image features, 3 clinicopathologic variables, and mutation 

status of 2 genes. Maglogiannis et al [27] propose a platform able to integrate omics, 

histological images and clinical data for skin cancer patients and construct a synthetic 

dataset with mutated genes and images in order to discriminate melanoma from dys-

plastic nevi. 

In the present paper we introduce ebioMelDB, a multi-modal database for cutane-

ous melanoma aspiring to enable researchers perform studies for extraction of bi-

omarkers combining different types of data, including clinical, biological and imaging 

data. In its current version, ebioMelDB incorporates publicly available RNA-Seq 

gene expression data from GEO and TCGA, manually curated and organized in cate-

gories. It also includes the widest collection of clinical and dermoscopy images orga-

nized in 3 benign and 2 malignant categories, including Nevus, Benign Non-Nevus, 

Benign but Suspicious for malignancy, Melanoma and Non-Melanocytic Carcinomas, 

respectively. In its future versions, ebioMelDB will host our predictive models in CM 

diagnosis, response to treatment and prognosis based on combinations of the different 

data types hosted. As a first step towards this vision, we apply a machine learning 

classifier to predict the vital status of CM patients in different time windows based on 

gene expression data from TCGA. 

2 Database 

2.1 Image data collection 

The image data is a collection of diverse public datasets and include: 
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 The dataset provided from Kawara et al. [28] (referred herein as 7-PT), which has 

been used for 7-point melanoma checklist criteria classification and skin lesion 

diagnosis, including 2022 dermoscopic and clinical images of the lesions. 

 27962 images from ISIC 2019 [29-31] Challenge dataset for dermoscopic image 

classification among nine different diagnostic categories. 

 33126 images from ISIC 2020 [32] Challenge for dermoscopic image classifica-

tion tasks of benign and malignant skin lesions. 

 170 non-dermoscopic image dataset from Giotis et al. [33] on the computer-

assisted diagnostic system MED-NODE. 

 The PH2 [34] dermoscopic image dataset which contains 200 images for com-

mon/atypical nevi and melanoma. 

The different datasets include different naming conventions and different skin dis-

ease categories. Due to this high diversity, it was necessary to merge the diagnostic 

classes under broader categories. The broader categories we selected are 3 benign 

categories including Nevus (NV), Benign Non-Nevus (NNV), Benign but Suspicious 

for malignancy (SUS) and 2 malignant categories including Melanoma (MEL) and 

Non-Melanocytic Carcinomas (NMC). The grouping of the naming conventions of 

the different datasets is presented in Table 1. 

Table 1. Naming conventions as presented in the original datasets and the respective grouping 

in ebioMelDB categories: Nevus (NV), Benign Non-Nevus (NNV), Benign but Suspicious for 

malignancy (SUS), Melanoma (MEL) and Non-Melanocytic Carcinomas (NMC) 

Categories NV NNV SUS MEL NMC 

7-PT 

blue, clark, 
combined, 
congenital, 
dermal, recur-
rent, reed or 
spitz nevus 

dermatofibroma, 
lentigo, melanosis, 
miscellaneous, 
seborrheic kerato-
sis, vascular le-
sion,  

- 
melanoma, 
melanoma 
metastasis 

basal cell 
carcinoma 

ISIC2019 NV BKL, DF, VASC AK MEL 
BCC, 
SCC 

ISIC2020 nevus, unknown 
cafe-au-lait mac-
ule, lentigo NOS, 
lichenoid keratosis 

atypical 
melanocytic 
proliferation 

melanoma - 

MED-NODE naevus - - melanoma - 

PH2 Common Nevus - 
Atypical 
Nevus 

Melanoma - 

 

Figure 1 presents the counts of images originating from each dataset when assigned 

to ebioMelDB categories. 

Information like image, image type and diagnosis exist for images of all datasets. 

The next most frequent fields are the anatomical site (88.6%), sex (96.7%) and age 

(93.5%). The counts of dermoscopic and clinical images are 62308 and 1172, respec-

tively. 
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Fig. 1. Image distribution along datasets and ebioMelDB categories. 

 

2.2 Biological data collection 

Biological data were collected from the NCBI Gene Expression Omnibus (GEO) [35]. 

GEO (http://www.ncbi.nlm.nih.gov/geo/) is a public repository for high-throughput 

microarray and next-generation sequencing functional genomic data sets submitted by 

the research community including raw data, processed data and metadata and orga-

nized in series (GSE) of datasets. To download the data and their related metadata, the 

R package GEOmetadb [36] was used. The keyword “melanoma” was searched 

against all the GSE titles, summaries and overall designs, selecting only Expression 

profiling by high throughput sequencing as experiment type and Homo sapiens as 

organism. This resulted in 291 series, which were subsequently manually curated to 

keep only series that actually included melanoma datasets, ending up with 178 series 

that consist of 4490 samples.  

In order to better organize the data, we characterized them as belonging or not to a 

number of categories. The first group of categories is related to the origin of the bio-

logical samples and includes patients’ specimens, cell lines, xenograft models and 

other cells. Another category is the presence or not of healthy control, non-melanoma 

samples to facilitate users aspiring to perform diagnostic studies. For the same reason, 

the category other disease indicates whether samples of another disease exist in a 

series. The category treatment shows that some samples of the series were treated 

with a specific drug or other kind of treatment to facilitate users interested in treat-

ment studies. The category variation includes various types of perturbations in the 

samples, such as the overexpression or knockdown of a gene (which could be used as 

drug targets or help us better understand the disease mechanism), or resistance to a 

therapy. Finally, the category clinical information indicates whether accompanying 

clinical information, such as age, sex, disease state, vital status, etc. is available for 
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the samples. For each category assigned to a series, there is also a respective field 

with a brief description of why the category is assigned. Summary statistics of the 

database series of datasets are presented in Fig. 2. 

 

Fig. 2. Number of series of RNA-Seq gene expression datasets belonging to the defined catego-

ries. 

 

2.3 Database infrastructure 

All the collected images and biological data are organized in a web accessible data-

base at http://www.med.upatras.gr/ebioMelDB. One page presents the images and 

another one the biological data. Both are organized in datatables which are searchable 

and sortable. Moreover, filtering based on user defined criteria on the data categories 

and characteristics is available enabling the user to access in a more targeted way data 

of interest. For example, for the biological data, if a user is interested in series with a) 

patients’ specimen, that also have b) clinical info, c) control samples and d) the sam-

ples count of each series is 20 or more, he applies the relevant filters and only 3 out of 

the 178 series are presented. Each biological series or image can be viewed in more 

detail in a dedicated view page. The database is developed based on the Django Web 

Framework, with the usage of python3.8, html5, JavaScript and SQLite and is running 

on a Linux server. 

3 Estimating Melanoma Prognosis 

3.1 Data Collection and Preprocessing 

Gene expression quantification data were downloaded from the GDC Data Portal [37] 

of NIH. GDC hosts among others TCGA (https://www.cancer.gov/tcga) data, that has 

molecularly characterized over 20,000 primary cancer and matched normal samples 
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spanning 33 cancer types. For each cancer type, a combination of molecular biology 

(mRNA, protein and miRNA expression, copy number, DNA, DNA methylation), 

clinical and whole slide images data for the same patients are provided. The TCGA-

SKCM [7] project has 470 cases of patients and data ranging the following categories: 

simple nucleotide variation, copy number variation, transcriptome profiling, biospec-

imen, sequencing reads, DNA methylation and clinical. For the estimation of mela-

noma prognosis, we downloaded the RNA-Seq gene expression quantification files 

(HTSeq-Counts) with a total of 472 files for 468 cases. The respective clinical data 

were also downloaded. 247 of them had vital status alive, 224 dead and 1 case with 

not reported vital status was excluded from the analysis. Custom python scripts were 

created to process the single count files and merge them in one file with 471 samples 

(expression files) and 60488 features (genes). The vital status was also mined from 

the clinical data and matched to the samples as labels with python scripts. 

Genes with count less than 5 reads per sample were excluded from further analysis 

narrowing the number of genes down to 11339. Count data normalization and statisti-

cal analysis was performed with InSyBio Biomarkers tool 

(https://www.insybio.com/biomarkers.html). For the statistical analysis, the wilcoxon 

ranked sum test was employed and correction of p-values for multiple testing was 

performed using the Benjamini-Hochberg FDR adjustment method. Setting the ad-

justed p value threshold to 0.01, we identified 611 statistically significant differential-

ly expressed genes. 

 

3.2 Machine Learning Algorithm Description 

In order to predict the patients’ vital status from the gene expression data, we applied 

the machine learning method incorporated in the InSyBio Biomarkers tool. This 

method is an extension of the one presented in [38,39] and is an ensemble dimension-

ality reduction technique employing a multi-objective optimization heuristic algo-

rithm that finds the best feature subset, the best classifier among linear SVM, Radial 

Basis Function Kernel SVM and random forest and their optimal parameters. In this 

extended version, multiple models performing equally well on the user-defined goals 

are the final outcome. And the final prediction is the one made by the majority of the 

classifiers. The weights used for the goals were Selected Features Number Minimiza-

tion 1, Accuracy 10, F1 score 10, F2 score 1, Precision 1, Recall 1, ROC_AUC 1, 

Number of SVs or Trees Minimization 1. 

 

3.3 Results 

The experiments for the prediction of the patients’ vital status were performed with 5-

fold cross validation and for 100 generations. The cross-validation accuracy achieved 

was 68.84% with specificity 70.61% and sensitivity 67.22%. The selected features 

were 414 and the predictions were based on 25 Random Forest models, each with 

different number of trees ranging from 10 to 471. 

 The vital status is defined by TCGA as the survival state of the person and can 

have values dead or alive. The time period it refers to is up to almost 30 years after 

the diagnosis (10863 days). Thus, we wanted to examine the vital status of the pa-

https://www.insybio.com/biomarkers.html
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tients in a 5-year, 3-year and 1-year period. From the clinical TCGA data and the 

Days to death field we computed the respective labels treating again each problem as 

a two-class classification problem. The respective 5-fold cross validation metrics 

(accuracy, specificity and sensitivity), the number of selected features, the number of 

classification models and their characteristics are presented in Table 2. The perfor-

mance metrics get better as the examined time slot gets shorter. 

Table 2. 5-fold cross validation metrics (accuracy -ACC, specificity-SP and sensitivity-SEN), 

number of selected features, number of classification models and their characteristics in the 

prediction of total, 5-,3- and 1-year vital status. 

 vital status (in a 

~30-year follow-up) 

5-year vital 

status 

3-year vital 

status 

1-year vital 

status 

Cross validation ACC 68.84 % 92.46 % 97.80 % 100.00 % 

Cross validation SP 70.61 % 99.69 % 99.73 % 100.00 % 

Cross validation SEN 67.22 % 85.23 % 95.88 % 100.00 % 

# Selected features 414 13 163 7 

# Classification models 
25 
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4 

 

# RF models 
25 with 10-471 trees 1 with 38 trees 7 with 333-352 

trees 

- 

# SVM models - 

10 rbf SVM 

with 435-471 

SVs 

9 rbf SVM 

with 471 SVs 

4 rbf SVM with 

282-459 SVs 

 

Table 3. Comparison of the proposed method in terms of accuracy -ACC, specificity-SP and 

sensitivity-SEN in the prediction of total, 5-,3- and 1-year vital status. 

  vital status (in a ~30-year follow-up) 5-year vital status 

metrics ACC SP SEN ACC SP SEN 

WEKA 
SVM 

54.14% 59.50% 48.20% 60.08% 72.10% 33.80% 

WEKA RF 59.45% 63.20% 55.40% 67.94% 98.50% 1.40% 

proposed 

method 
68.84% 70.61% 67.22% 92.46% 99.69% 85.23% 

  3-year vital status 1-year vital status 

metrics ACC SP SEN ACC SP SEN 

WEKA 
SVM 

65.45% 79.20% 24.50% 91.08% 96.20% 4.80% 

WEKA RF 76.43% 99.70% 0.00% 94.48% 100.00% 0.00% 

proposed 

method 
97.80% 99.73% 95.88% 100.00% 100.00% 100.00% 
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Next, we wanted to compare with other methods, so we employed the SVM and Ran-

dom Forest implementations of WEKA with default parameters and with 5-fold cross 

validation and the results are shown in Table 3. The proposed method clearly outper-

forms the other two methods in all cases, and the fact that the proposed method han-

dles better imbalanced datasets is even more clear in the 5-, 3- and 1-year prediction 

problems where the samples of the minority class are 148, 110 and 27, respectively. 

4 Discussion 

CM is a skin cancer with high mortality and although diagnosis and treatment meth-

ods have made progress, its survival rate is still poor. Many studies, taking advantage 

of multi-omics data available in repositories like TCGA, have identified several prog-

nostic biomarkers for CM. Identifying prognostic omics markers leads to a better 

understanding of the biological mechanisms underlying prognosis and also assists 

patient stratification, treatment selection, and prediction of prognosis paths.  

 In the present paper, we applied a machine learning method, that has been previ-

ously shown to perform better than other state-of-the-art algorithms, on CM patients’ 

vital status prediction based on RNA-Seq gene expression data. The accuracy 

achieved was 68.84% for the whole follow up period, significantly increasing with 

smaller time windows: 92.46% for 5-year vital status, 97.80% for 3-year and 100.00% 

for 1-year and significantly outperforming in all cases other implementation of Sup-

port Vector Machines and Random Forests.  

Jiang et al [14] in their effort to predict survival time, thus treating the problem as a 

regression problem and not a classification one, achieved a C-statistic of 0.665 using 

the same data and 5-fold cross validation and similarly Sheng et al [22] achieved an 

AUC of 0.70, 0.69 and 0.68 for predicting 2, 3 and 5-year survival in their training set 

and Zeng et al [21] an AUC of 0.701 for 1 year, 0.726 for 3 years, and 0.745 for 5 

years. We also plan to apply the regression version of the proposed method to get 

comparative results with these studies. 

Another limitation of the proposed analysis is that for the calculation of the per-

formance metrics, we have only relied on cross validation and have not used an exter-

nal test set. Testing the generated prediction models in independent RNA-Seq gene 

expression data is also one of our immediate plans and the data collected in 

ebioMelDB will be useful for this task. Additionally, the gene signatures identified 

include 414, 13, 163 and 7 genes for the four prediction problems, respectively. We 

strongly believe that by experimenting with the goals (i.e increasing the significance 

of selected features minimization) of the employed machine learning method, we will 

manage to generate smaller gene signatures without having a classification perfor-

mance drop.  

Single omics may not be enough for estimating CM patient prognosis and an anal-

ysis based on multi-omics data or even better multi-modal data is necessary. This was 

essentially the vision before conceptualizing ebioMelDB. However, gene expression 

is the downstream product of other omics changes and “closest” to clinical outcomes 

as suggested in a number of studies and this is why it was chosen as our starting point. 
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Ultimately, integrating omics and clinical data with imaging data is promising and we 

aspire that ebioMelDB will assist the research community to make the limited rele-

vant research wider. 

Data availability is important when researchers want to apply machine learning 

methods for disease diagnosis, response to treatment and prognosis and for CM, clini-

cal, biological and imaging data are scattered through the web. ebioMelDB is the first 

database to integrate the widest collections of RNA-Seq gene expression and clinical 

data with clinical and dermoscopy images, all manually curated and labelled with 

categories. In its future versions, ebioMelDB will host our under development predic-

tive models in CM diagnosis, response to treatment and prognosis based on combina-

tions of the different data types hosted. 
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