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Abstract. This paper address a relevant business analytics need of a
chemical company, which is adopting an Industry 4.0 transformation. In
this company, quality tests are executed at the Analytical Laboratories
(AL), which receive production samples and execute several instrumen-
tal analyses. In order to improve the AL stock warehouse management,
a Machine Learning (ML) project was developed, aiming to estimate
the AL materials consumption based on week plans of sample analy-
ses. Following the CRoss-Industry Standard Process for Data Mining
(CRISP-DM) methodology, several iterations were executed, in which
three input variable selection strategies and two sets of AL materials
(top 10 and all consumed materials) were tested. To reduce the mod-
eling effort, an Automated Machine Learning (AutoML) was adopted,
allowing to automatically set the best ML model among six distinct re-
gression algorithms. Using real data from the chemical company and a
realistic rolling window evaluation, several ML train and test iterations
were executed. The AutoML results were compared with two time series
forecasting methods, the ARIMA methodology and a deep learning Long
Short-Term Memory (LSTM) model. Overall, competitive results were
achieved by the best AutoML models, particularly for the top 10 set of
materials.

Keywords: Industry 4.0 · Automated Machine Learning · Regression ·
Time Series Forecasting · Deep Learning.

1 Introduction

With the emergence of the Industry 4.0 concept, there is an increase of digital
transformation, where industrial physical processes generate data that can be
analyzed by Machine Learning (ML) algorithms to provide valuable Business
Analytics (BA) [19]. These analyses can impact several production aspects, in-
cluding stock management. However, in the Chemical industry the usage of ML
and BA is still scarce.

In this work, we address a BA need of a chemical organization that is adopt-
ing an Industry 4.0 transformation in their Analytical Laboratories (AL). During
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the production process, selected samples are sent to be tested at the AL, which
is responsible for assuring that the products are compliant with quality stan-
dards. The analysis of a sample at the AL requires diverse instrumental analyses,
each consuming one or more materials (e.g., Acetone, Dichloromethane, Ethanol,
Methanol). Under this context, predicting the amount of materials needed for
the quality tests is crucial to support a AL stock management, preventing quality
inspection delays which would prejudice production. In previous work [20], we
have adopted a ML approach to successfully predict the arrival times of samples
at the AL. By using this predictive approach, the chemical organization can now
perform weekly plans of the expected instrumental AL usage. Under this con-
text, this paper describes a ML approach to predict the weekly consumption of
AL materials based on the expected instrument usage. The approach was devel-
oped using the CRoss-Industry Standard Process for Data Mining (CRISP-DM)
methodology [26]. Similarly to the work conducted in [20], to better focus on
feature engineering (data preparation phase of CRISP-DM), we adopt an Auto-
mated Machine Learning (AutoML) [8], which is executed during the modeling
CRISP-DM phase and that allows to automatically select and tune the hyper-
parameters of the predictive ML models. Using real-word data, collected from
a chemical company, we executed several CRISP-DM iterations, exploring three
main input variable selection strategies and two sets of AL materials (top 10
and all consumed materials). The experimentation adopts a realistic rolling win-
dow evaluation scheme, which simulates several train and test modeling updates
through time. For benchmark purposes, the proposed ML approach is compared
with two time series forecasting methods: the known ARIMA methodology [1]
and a deep learning Long Short-Term Memory (LSTM) [17].

The paper is structured as follows. Section 2 describes the related work. The
problem contextualization is presented in Section 3. Next, the analyzed data and
prediction methods are presented in Section 4. Then, the obtained results are
shown and discussed in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

The Industry 4.0 concept [19] is impacting diverse industrial sectors. With the in-
creased usage of interconnected sensors (e.g., Internet-of-Things), factories gen-
erate more digital data that reflect their production processes. All these data can
be analyzed by AI and ML algorithms, providing valuable BA. In some cases,
real-world ML project fail due to to a misalignment between business needs
and ML analyses [7]. The CRISP-DM methodology was precisely developed to
solve this issue, increasing the success of ML projects [26]. The methodology
involves both business and ML experts and includes six main phases: business
understanding, data understanding, data preparation, modeling, evaluation and
deployment. In previous works, we have employed CRISP-DM to successfully
model the business needs of textile [18] and chemical [20] companies.

Turning to the specific chemical sector, in several organizations the Industry
4.0 concept is not yet fully embraced. For instance, while quality tests are rigor-
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ously stored in digital databases, the same does not occur with the AL processes
[21, 13]. Also, it is common to have information silos (e.g., production, AL) and
thus this lack of database interoperability diminishes the full potential to use
ML to extract valuable BA from the data [20]. Thus, most predictive analytics
studies for the chemical sector involve the production processes, rather than AL
(such as executed in this paper). For instance, Roe et al. [25] used a Fuzzy Neu-
ral Network model to perform a predictive control on a solar-thermal chemical
processing. Moreover, Longone et al. [14] used a Logistic Regression to predict
production anomalies in a chemical plant that adopted the Industry 4.0 concept.
It should be highlighted that most predictive ML studies in industry are focused
on non chemical sectors and target the predictive maintenance task. Examples
of ML algorithms that were proposed for such task include: Random Forest (RF)
[3], Neural Networks (NN) [22], Gradient Boosting Machines (GBM) [15] and
Support Vector Machines (SVM) [23]. In all these ML predictive studies, expert
knowledge and trial-error experiments were used to select and tune the predictive
ML algorithms, which is a common ML practice. However, there is a recent ML
trend that assumes the usage of AutoML [8]. The main advantage of AutoML
is that it alleviates the ML analyst effort, allowing to focus on other aspects
of the ML pipeline process (e.g., data engineering). In [20], we have adopted
an AutoML approach to predict the arrival of production samples at the AL,
allowing to support the allocation of human resources and analytical equipment.
In this paper, we adopt a similar AutoML approach but focusing on a different
business need from the same chemical company: to predict the week AL material
consumption based on quality instrumental usage estimates.

3 Problem Formulation

Figure 1 presents the flow of main transactions that occur between three main
sections of the analyzed chemical company: Warehouse, Production and Analyt-
ical Laboratories (AL). The Warehouse is responsible for storing and managing
the different materials that are provided by the suppliers and that are needed
by the company. (e.g., raw production materials). In this work, we focus on an-
alytical materials, which are used in the AL. The Production line is where the
production process is performed. A production of a certain product starts when
there is a production order for that product on that specific date. A production
order contains the several informational elements: the product to be produced,
the quantity in batches to be produced, the raw materials to be used and the
start and end dates. The dates are added to the database when the production
ordered ends. During the production period, several production samples, called
In Production (IP), are sent to the AL for quality assessment. If quality is below
the client requirements, then the production line will have to perform adjust-
ments, in order improve the expected quality of the product. Thus, the AL are
a critical element of the production process, with delays in AL testing resulting
in production stops and delays in the execution of new production orders.
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Fig. 1. Workflow of materials and production transactions.

At the AL, the quality tests use several instrumental analyses that require
analytical materials, in order to guarantee the feasibility of the tests. When
there is an AL shortage of materials, they are ordered from the Warehouse,
using the Enterprise Resource Planning (ERP) production system. In some cases,
there is a low stock of the analytical materials in the Warehouse, which needs
to produce supplier orders that take time, thus producing AL quality testing
delays. In previous work [20], we have adopted an AutoML approach to predict
the arrival of IP production samples at the AL. Using such predictions, the
company information system is capable of producing accurate week plans of AL
instrumental needs. In this paper, the ML goal is to use the AL tests (or plans)
as the inputs of a regression model, aiming to predict a particular analytical
material consumption. Let X denote a data matrix N × Q with the elements
xi,j , each representing the number of quality tests of type j that were executed
(or are planned) for a particular week i, where N is the total number of weeks
and Q is the total number of distinct quality tests. Let Y denote a matrix N×M
with the elements yi,m, each representing the quantity of consumed material of
type m ∈ M for the week i, where M = {1, 2, ...,M} denotes a selection set
with M distinct analytical materials. Another relevant business concept is the
AL total weekly consumption quantity (TM), computed as TM =

∑M
m=1 yi,m.

The total consumption quantity is useful for resizing the AL warehouse.

The business goal is to estimate the w weekly quantity ŷw,m based on the
quality tests that use the m material:

ŷw,m = f(xw,k1 , ..., xw,kK
) (1)

where {k1, ..., kK} denotes the set of laboratory tests that are used as inputs and
f is the data-driven function that will be learned using the AutoML approach.
In this work, each m material consumption prediction requires the training of a
different ML model. Moreover, the {k1, ..., kK} input tests are dependent of the
adopted feature selection strategy (Section 4.2). Once the distinct ML predictive
models are built, the AL total weekly consumption quantity for selectionM can
be computed as: T̂M =

∑M
m=1 ŷw,m.
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4 Materials and Methods

4.1 Data

The data used in this study was retrieved by executing an Extract, Transform &
Load (ETL) process, which extracted data records from two main databases
related with the production and AL units. The resulting dataset includes a
total of N = 177 weeks of data, from January 2016 to May 2019. In total,
the input X matrix includes a total of Q = 30 distinct quality tests, thus with
177 × 30 elements. Some of the analyzed input tests have a strong correlation,
while other variables often include a large portion of zero values. In Section 4.2,
we will use these properties to design feature selection strategies. As for the
target Y matrix, it includes a total of M = 26 analytical materials (e.g., Acetone,
Ethanol, Methanol) After consulting the company experts, we explore two main
sets of prediction targets: top 10 - with the M = 10 highest consumed materials
(M = {1, ..., 10}); and all – with all M = 26 materials (M = {1, ..., 26}). Due
to commercial privacy concerns, we do not disclose further details about the
specific analyzed variables.

4.2 Prediction Methods

We adopted the R computational tool and its rminer package [6] for data ma-
nipulation and computation of the ML regression metrics. The AutoML is based
on the H2O open-source tool (https://www.h2o.ai/products/h2o-automl/) [5].
The auto.arima from the forecast Rpackage was used to automate and fit the
ARIMA models [1, 11, 12]. Finally, the LSTM model was implemented using the
PyTorch Python module [17].

The AutoML models were configured to select the best regression model and
its hyperparameters for each targeted m material. The selection is based on the
best Root Mean Squared Error (RMSE) computed using a validation set that is
obtained by applying an internal 10-fold cross-validation method over the train-
ing data. All computational experiments were executed on the same personal
computer and each individual ML model was trained up to a maximum running
time of 3,600 seconds. Once a ML model is selected, the model was retrained
with all training data. As in [8], the AutoML was configured to include a total
of 6 distinct regression algorithms: RF, Extremely Randomized Trees (XRT),
Generalized Linear Model (GLM), GBM, XGBoost (XG) and a Stacked Ensem-
ble (SE). The RF is a popular ensemble method that combines a large number
of decision trees based on bagging and random selection of input features [10].
The XRT algorithm extends the RF approach by randomly selecting the decision
thresholds of the tree nodes [9]. GLM estimates regression models for exponen-
tial distributions (e.g., Gaussian, Poisson, gamma) [10]. The GBM algorithm
is a based on a generalization of tree boosting, sequentially building regression
trees for all data features [10]. XG is another ensemble tree method that uses
boosting to enhance the prediction results [4]. The SE method, also known as
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stacked regression [2], combines the predictions of different base learners by us-
ing a second-level ML algorithm. The H2O implementation [5] uses the following
AutoML setup: RF and XRT – set with the default hyperparameters; GLM -
grid search used to set one hyperparameter (alpha, a regularization parameter);
GBM and XG – grid search used to tune nine and ten hyperparameters (e.g.,
number of trees, maximum depth, minimum rows); SE – all five algorithms (RF,
XRT, GLM, GBM, XG) are used as base learners and the individual predictions
are weighted by using a second-level GLM learner.

The input matrix X includes several variables that are either correlated with
other variables or contain a large number of zero values. In order to improve the
AutoML results, we explore three main input Feature Selection (FS) strategies,
that were applied to the training data: ALL - with all Q = 30 inputs, executed
during the first CRISP-DM iteration; FS1 – all variables with a correlation higher
than 60% or with more than 90% of zeros are removed (resulting in Q = 15),
executed during the second CRISP-DM iteration; and FS2 - all variables with a
correlation higher than 90% or with more than 90% of zeros are removed (leading
to Q = 19), executed during the first CRISP-DM iteration.

For comparison purposes, we also consider two main time series forecasting
methods, each using only the yi,m past observations (i ∈ {1, ...,m−1}) to predict
ŷw,m at week w: ARIMA and LSTM. The ARIMA is automatically build using
the forecast R package, while the LSTM assumes a default parametrization
with one input node (first time lag, yt−1, where t is the current time), one
hidden layer with 100 hidden nodes and hyperbolic tangent activation function,
one output node (current observation, yt), the Adam optimizer, Mean Squared
Error (MSE) loss function and 150 training epochs.

4.3 Evaluation

We adopted a Rolling Window (RW) evaluation scheme [24, 16], which simulates
a realistic execution of the AutoML models by performing several training and
test updates through time (Figure 2). With this scheme, the initial training set
with a fixed size of W time periods is used to generate the training models and
execute a one week ahead prediction (T = 1). Then, the W data is updated
by discarding the oldest week observations and adding one subsequent week of
data. A new prediction model is built, allowing to issue a new prediction, and
so on. In total, the RW results in U = N −W training and testing updates. In
this work, we have set W = 147, which allows to obtain U = 30 RW iterations.
In order to reduce the computational effort, since we conduct a large number of
ML experiments (e.g., we target M = 26 distinct outputs), the AutoML model
and hyperparameter selection is only executed once for each m material, using
the training data from the first RW iteration. Once the ML is selected, it is
retrained for each RW iteration.

As for the regression metrics, using the U = 30 test predictions, we compute
five measures [10, 16]: Mean Absolute Error (MAE), Normalized MAE (NMAE),
RMSE, Relative Squared Error (RSE), and the coefficient of determination (R2).
The lower the MAE, NMAE and RMSE values the better are the predictions. The
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Fig. 2. Schematic of the Rolling Window (RW) evaluation.

NMAE measure is computed as MAE
max(yi,m)−min(yi,m) , where yi,m denotes the target

variable for material m. When compared with MAE, the NMAE metric presents
two main advantages [16]: it is more easy to interpret, since it expresses the error
as a percentage of the full target scale (y); it is scale independent, which is useful
for the analytical consumption data given that we handle different materials and
thus distinct consumption scales. The RMSE measure is particularly important
in this domain, since it is more sensitive to extreme values when compared with
MAE. Thus, a lower RMSE should be aligned with a better upper or lower peak
prediction, which is more useful to assist the stock management of the consumed

AL materials. The RSE is computed as
SSEŷi,m

SSEyi,m
, where SSE denotes the sum of

squared errors and yi,m the average of the target variable on the test data. The
RSE is similar to the RMSE measure in the sense that it is also more sensitive to
extreme errors. The advantage is that RSE is scale independent. While the RSE
values can be also presented as percentages (such as NMAE), the RSE values
are more difficult to interpret by end users, since it only expresses how good
are the predictions when compared with the average target values. As for R2,
it measures the goodness of fit. The higher value, the better is the alignment
between consecutive changes in the predicted and real values, with the perfect
regression model producing a maximum of R2=1.

Since we target a large number of individual models (up to M = 26), the value
of each forecasting approach is globally measured by considering the predictive
measures applied to total quantity consumption target for a particularM selec-
tion. For instance, the RW MAE is computed as MAE =

∑U
u1
|TM − T̂M|/U ,

where u is a RW iteration and T̂M is the predicted total quantity consumption.

5 Results and Discussion

Table 1 summarizes the obtained RW predictive results for the total quantity
consumption and M selection of materials. For instance, the upper left value
of 193.0 corresponds to the MAE average when considering all m ∈ M,M =
{1, 2, ..., 10} highest consumed analytical materials of the top 10 selection set.
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The results from Table 1 confirm that different CRISP-DM iterations produced
improved predictions, with the FS2 feature selection strategy obtaining the best
AutoML results for all regression metrics. As for the time series forecasting
baselines, the ARIMA methodology outperformed the LSTM neural network
approach. Overall, the AutoML FS2 method produces the best predictions for
the top 10 selection (for all regression measures) and the best RMSE, RSE and
R2 values for the all selection (M = 26). As explained in Section 4.3, for the
improving stock management of the analytical materials, the squared error mea-
sures (RMSE and RSE) are more important than absolute error ones (MAE and
NMAE). Regarding the optimized ML models, the AutoML procedure selected
only three of the six considered regression algorithms: GLM, GBM and RF.

Table 1. Summary of the RW predictive results (best values in bold).

Top 10 (M = 10) All (M = 26)

Method MAE NMAE RMSE RSE R2 MAE NMAE RMSE RSE R2

AutoML ALL 193.0 6.30 338.0 51.9 0.49 80.58 2.63 205.6 42.4 0.58
AutoML FS1 203.7 6.66 347.4 54.9 0.46 83.86 2.74 209.6 44.1 0.56
AutoML FS2 187.7 6.13 330.2 49.5 0.51 78.89 2.58 200.8 40.5 0.60
ARIMA 189.1 6.18 349.0 55.3 0.47 76.92 2.51 210.4 44.5 0.57
LSTM 230.0 7.52 367.7 61.4 0.41 90.67 2.96 219.1 48.2 0.53

For demonstration purposes, Figure 3 shows the RW predictions for the se-
lected AutoML FS2 method, which provided the lowest squared errors and high-
est coefficient of determination values. Due to business privacy issues, the scale
values of the y-axis are omitted from the plots. In the plots, we also present in
brackets the NMAE errors, since these are more easy to be interpreted by the
chemical experts. The top two graphs show the results when predicting the total
consumption (top 10 or all), while the middle and bottom graphs denote the
prediction results for four individual materials (m ∈ {2, 10, 13, 17}). Overall, the
real and predictive curves are very close and the prediction models are capable
of correctly identifying several high and low consumption peaks, thus confirming
that high quality predictions were obtained by the AutoML FS2 method.

The obtained results were shown to the chemical company experts, which
highlighted the total quantity results, which can be used to resize the AL ware-
house. Moreover, the chemical experts considered that individual material pre-
dictions are interesting, such as for m = 2 and m = 17 from Figure 3, which
have a strong potential to improve the stock management of these materials.

6 Conclusions

This study addresses a relevant business goal of a chemical company that is
being transformed under the Industry 4.0. In particular, a Machine Learning
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Fig. 3. RW predictive results for AutoML FS2 method (x-axis denotes the considered
week, from March 2019 to May 2019; y-axis shows the analytical material consump-
tion).
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(ML) approach was conducted, aiming to predict the needs of materials (e.g.,
Acetone, Ethanol) used in their Analytical Laboratories (AL). The ML project
was conducted using the CRoss-Industry Standard Process for Data Mining
(CRISP-DM) methodology. At the data understanding CRISP-DM stage, we
collected 177 weeks of data, from January 2016 to May 2019, involving a total of
30 quality tests and up to 26 consumed AL materials. It should be noted that the
chemical company is currently capable of producing weekly quality test usage
plans with a good accuracy. Thus, the regression goal is to model AL material
consumption as a function of the conducted quality tests. Using the collected
data, we have developed large set of regression models (total of M =26 models),
which were analyzed in terms of two major sets of material selections: top 10
most consumed materials (M=10) and all materials (M=26). To reduce the ML
analyst effort, we have employed an Automated Machine Learning (AutoML)
procedure during the CRISP-DM modeling stage, which allows to automatically
select the best among six different regression algorithms. A total of three CRISP-
DM iterations were executed, each exploring a different Feature Selection (FS)
method. For comparison purposes, we also considered two time series forecasting
methods: ARIMA and a Long Short-Term Memory (LSTM) neural network.

Several computational experiments were executed, by considering a realistic
Rolling Window (RW) procedure that simulated 30 training and testing itera-
tions through time. The best overall results were achieved by the AutoML FS2
method (corresponding to the third CRISP-DM iteration), which obtained a
total quantity Normalized Mean Absolute Error (NMAE) of 6.1% (top 10 se-
lection) and 2.6% (all materials). The predictive results were shown to the AL
managers, which provided a positive feedback. Indeed, in future work, we intend
to focus on the development stage of CRISP-DM, deploying the studied pre-
diction models in the chemical company information system. This will allow to
measure the business value of using these predictions to improve the warehouse
stock management of analytical materials.
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