
HAL Id: hal-03287663
https://inria.hal.science/hal-03287663

Submitted on 15 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Artificial Intelligence in Music Composition
Mincer Alaeddine, Anthony Tannoury

To cite this version:
Mincer Alaeddine, Anthony Tannoury. Artificial Intelligence in Music Composition. 17th IFIP In-
ternational Conference on Artificial Intelligence Applications and Innovations (AIAI), Jun 2021, Her-
sonissos, Crete, Greece. pp.387-397, �10.1007/978-3-030-79150-6_31�. �hal-03287663�

https://inria.hal.science/hal-03287663
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Artificial Intelligence in Music Composition

Mincer Alaeddine1[0000−0003−1951−4581] and Anthony
Tannoury2,3[0000−0002−0792−6434]

Antonine University, Baabda, Beirut, Lebanon anthony.tannoury@ua.edu.lb

https://ua.edu.lb/

Abstract. Technology has had a remarkable influence on music. As so-
ciety advances technologically, the music industry does as well. An exam-
ple that illustrates the use of technology in music is the use of artificial
intelligence (AI) as a creative and inspiring tool. Music helps shape emo-
tional responses, creates a rhythm, and comments on the action. It is
often a very crucial element to any experience. However, music, like any
form of art, is an extremely challenging field to tackle using AI. The
amount of information in a musical structure can be overwhelmingly
large. If we factor in the different and unpredictable nuances invoked by
human imperfection and emotion, it becomes clear why, even though AI
excels at handling large amounts of data, generating good music can be
very challenging, especially when it comes to Jazz and similarly complex
genres.

Keywords: Technology · Advancement · Music · Artificial Intelligence
· Generation · Emotion · Imperfection · Genre · Training · Challenge ·
Prediction · Rhythm · Tempo · MIDI · Instruments · Patterns · Harmony
· Melody · Caching

1 Introduction

In the past few years, AI has proven to be useful in the technical aspect of music.
However, AI still lacks in the creative process, like music composition. The reason
behind that becomes more evident as we start experimenting. The most common
course of action for building AI applications is to train a model using a large
dataset with enough data. That is known as batch training. That might be a
good idea if music consisted of only a couple of genres, but that is not the case.
Out of every genre, hundreds of subgenres emerge, and some pieces do not belong
to any genre at all. Another challenge that music composition presents is the
long-term interdependent structures [1]. Naturally, a music composition consists
of repetition, and every note is somehow related to one or multiple musical notes
in the same sequence. That makes it much harder for neural networks to learn
without short-term memory [2]. The added value of this project is combining
both online training and batch training to provide cross-genre predictions while
maintaining accuracy. The focus will be on the online training as it will have the
most impact on the output. While online training is very useful when working
with flexible predictions and learning over time, it also comes at the cost of

https://ua.edu.lb/

2 M. Alaeddine A. Tannoury

speed and responsiveness, especially when it has to be done on the spot. Training
models on the spot can be very resource-demanding, and this quickly becomes a
problem the richer the input is, and from a UX perspective, for an application to
be useable, it has to be highly responsive [3]. In the first chapter of this paper,
we will go through the state of the art, shedding the light on other great projects
in the field of AI for music composition, especially MIDI. Chapter 2 explains the
added value of this project in detail by going over all the challenges imposed by
music composition one by one, how we managed to solve those challenges, which
challenges are still unsolved, and why.

2 Literature Review

2.1 Introduction

Music is, more often than not, classified by genres, which refers to the overall
structure and character of particular musical composition. To create a track of
a specific genre, we must meet some requirements like rhythm, tempo, key, and
structure, to name a few. For example, when we hear an electronic dance music
track or a disco track, we notice the kick on every beat [4]. While this might be
an easy task to accomplish for humans, it is considered fairly complicated for
AI. The purpose of this project is to provide an AI tool that takes a MIDI file
from a user and generate multiple structurally similar pieces of music based on
the data learned from said file.

2.2 Related Works

Google Magenta [5]The Google Magenta team has been working on blending
AI with Music for a long time. Their projects Magenta and NSynth are great
examples of how powerful AI can be when mixed with human creativity. The Ma-
genta library contributed considerably to the execution of this project. Magenta
Studio Allows:

– Generating drum beats for an existing melody
– Generating melodies from scratch
– Complete an already existing melody
– Interpolate between two samples

NSynth is still in beta. However, the main idea behind it is to synthesize
a new sound using the acoustic properties of another sound, which tackles a
different field in the world of music.

MuseNet [6] MuseNet is a general-purpose deep neural network (DNN) that
can generate musical compositions with up to 10 instruments, combining styles
from different epochs, artists, or bands. MuseNet, unlike other projects, was not
trained through music knowledge, but instead discovered patterns of harmony,
rhythm, and style by learning from hundreds of thousands of MIDI files.

Artificial Intelligence in Music Composition 3

Captain Plugins by Mixed In Key Mixed in Key is a digital music software
company that has developed multiple products aiming to make the life of mu-
sicians easier. They are most recognized for creating Mixed in Key, a software
that detects the key, BPM, and the energy of given songs. The company recently
created a plugin suite called Captain Plugins. The suite focuses on generating
melodies, and basslines, and drum patterns to a given chord progression.

This time with feeling: learning expressive musical performance [7] The
authors of this journal discuss training a machine to generate music, focusing on
the time and feel of the generated pieces. In simpler terms, the goal of their model
is to produce human-like performances. Said model demonstrates generating
music in the form of MIDI that successfully recreates the timing and velocity
of a professional pianist. The music felt like an authentic performance by a
musician. While this is great, it comes at the cost of the long-term structure,
one of the problems tackled in this paper.

3 Problem Definition and Proposed Solutions

3.1 Introduction

Music composition, as we mentioned before, is a very complex field to tackle
through AI because of the numerous challenges and problems that it presents.
This chapter will go over the contribution of this paper to AI music composition,
the challenges that we faced and how we tackled them.

3.2 Challenges and Solutions

Human Imperfection While computers excel at being perfect, humans tend
to make mistakes sometimes. These unintentional mistakes are the soul of music
and art in general. Without human imperfection, music will sound too generic
and will lack emotion. In electronic music, artists tend to deliberately reproduce
those imperfections to give the otherwise perfect song a bit of a human feel. For
example, after drawing notes on a computer, artists tend to nudge the notes
of the perfect tempo grid intentionally to reproduce the groovy feel of a real
musician playing. The same goes for how hard musicians play the notes. Human
imperfection remains one of the complex challenges of artificially generating
music and is yet to be solved because imperfections are not the result of specific
patterns and rules, but rather invoked through human emotion.

Cross-Genre Compatibility and Future Proofing Music is made of count-
less genres, and each genre of countless sub-genres, and every day, new genres
and sub-genres are being created. When it comes to AI, this means one thing:
Learning to generate music by associating an input with a specific genre is not
the optimal solution as it requires thousands of hours of batch learning using

4 M. Alaeddine A. Tannoury

structured datasets, and all that training is rendered useless when the model en-
counters a new genre. Our model has been trained with an unstructured dataset
of more than 13000 melodies from various genres. That, however, does not make
our model future-proof, so in addition to that, we must integrate online training
that will be done on-the-spot to learn the essence of the user’s sample. That
frees us of the genre issue and guarantees that the generated samples are always
in the same style, tempo, and rhythm as the presented sample, nevertheless, this
solution creates another problem, which is the amount of time and resources it
takes to perform an online training on-the-spot.

Training On-The-Spot Training on the spot is both resource-dependent and
time-consuming, thus, there is only so much that can be done to improve the
responsiveness of such a resource-dependent process. The solution adopted in this
project consists of using the cloud to perform all the heavy lifting, then rendering
the result to the user using Server-Side Rendering or SSR for short. That helps
us run our heavy processing on a platform that can adapt and scale accordingly,
thus ridding us of the user’s limited resources barrier. After multiple tests, I
discovered that with the ability to retraining the model using the generated
samples, the user will most likely try to retrain using a very similar sample,
therefore, using very similar training data to generate new samples, thus, caching
has been introduced to temporarily store the trained data, reducing the time it
takes to perform a follow-up training by more than 50%.

Long-Term Structure in Music One of the core elements of a musical piece is
structure. Songs are built of short sections, and every section includes patterns.
For humans, it is natural to pick up on these patterns, thanks to our memory,
and this is one of the main factors that make a song catchy and delightful to hear.
However, when it comes to AI, this poses a challenge that requires a hierarchical
decoder to solve. A hierarchical decoder is based on Long Short Term Memory
networks or LSTM for short. LSTM is a type of RNN (recurrent neural network)
that can learn order dependence in a given sequence [9], making it the perfect
solution to the long-term structural problem.

Polyphonic Samples In most cases, creators will stumble upon a song that
they like, search for the midi file for that song on the internet, and use it for
online training. MIDI files on the internet often contain multiple instruments
at once. This is called polyphonic music. However, generating a monophonic
melody (a melody that consists of a single instrument) will not produce an
accurate result if the data that is was processed is polyphonic especially if the
notation of the instruments overlap. Therefore, it is necessary to extract the
melody from the sample before proceeding with the training phase. This topic
is still being researched and big music companies like Ableton are to this day
struggling to get an accurate result by automatically extracting a monophonic
melody from a polyphonic sample. For the sake of not re-inventing the wheel,
we have used the Google Melody Extraction algorithm in this project.

Artificial Intelligence in Music Composition 5

4 Implementation1

4.1 Choice of Technology

For the front-end, the technology of choice was Nuxt.js. Nuxt is built on top of
Vue.js, a JavaScript framework. Nuxt supports Server-Side Rendering out of the
box and helps organize the project allowing it to scale as big as needed while
keeping everything structured. These features combined with Vue’s ease of use,
make the process of creating extremely complex applications easier to manage
and make sure everything is well organized. Additionally, Nuxt allows developing
custom plugins that can be attached to any application seamlessly which helped
us integrate Google’s plugins and algorithms into our application. Furthermore,
Nuxt integrates seamlessly with Google Cloud Services, which will be discussed
in the Hosting section.

The batch learning process was done over Ubuntu using Anaconda and
Python with the help of TensorFlow and the Magenta library. Anaconda makes it
easier to manage long term projects by separating dependencies of every project
in a virtual environment.

Google’s Cloud Computing services were the hosting services of choice. The
reason behind that choice is to benefit from the full potential of Server-Side-
Rendering. Cloud hosting means that our project will not be limited to the user’s
resources, and it will scale with ease. Furthermore, this allows us to benefit from
Google Cloud tools to optimize and improve in the future.

As for the final exported type, we chose to export MIDI files. Exporting as
MP3 or any other codec adds unnecessary load to the server because it will
force us to pre-load high-quality samples, which will then need to be rendered
as audio, taking more time. Additionally, creators may often need to fine-tune
the generated melody to fit their liking.

4.2 Implementation Process

Training the main model requires Magenta’s development environment. Magenta
was developed for Linux. In our case, we had to work with a Windows ma-
chine, therefore, we had to use WSL 2 (Windows Subsystem for Linux) to get
started with the training without having to install a new OS. After download-
ing Magenta, it is recommended to create a new virtual python environment
using Anaconda to avoid any unwanted conflicts and library issues with other
projects. After finishing with the environment setup, we have to start building
our dataset.

Curating a proper dataset is the most laborious and time-consuming part
of every AI project. In our case, we had to collect thousands of midi files and
sanitize them so we can train our AI model and avoid as much noise as possible.
There were no specific requirements or features that decided whether a MIDI

1 The project source code is available in the following GitHub repository: https:

//github.com/minceralaeddine/ai-music-producer

https://github.com/minceralaeddine/ai-music-producer
https://github.com/minceralaeddine/ai-music-producer

6 M. Alaeddine A. Tannoury

file is fit for the learning process or not. The reason behind that is that if we
narrow all our MIDI files into 1 genre, style or tempo, we will be overfitting
our model making it biased towards a specific genre, and it will no longer serve
as a good base for other genres and styles. Therefore, any midi file could work
as long as we balance out the genres. To accelerate the process of building the
dataset, we used datasets with diverse genres from https://archive.org/,
https://bitmidi.com/ and the MAESTRO Dataset. Additionally, we used
Mincer’s own library of midi files to cover the electronic music genre, since he
is an electronic music producer and already has a clean collection. We ended up
with a dataset that consisted of more than 13000 midi files of diverse st yles,
bpm, and scales.

Once the dataset is ready, we can begin the training process. The Magenta
library makes it easy to train models using midi data. Magenta offers basic pre-
trained models out of the box that we could have used, however, for our case, we
had to train a custom model. Magenta’s models are relatively basic and offer no
flexibility, therefore, if the predictions were inaccurate we will need to revert to
creating our custom model. We ended up creating four separate models using the
magenta development environment: Two big models that require short on-the-
spot training and two small models that require long on-the-spot training. One
model of every batch is capable of generating a 16 bars melody, and the other is
capable of generating a 4 bars melody. To start the training, we first need to con-
vert our midi dataset to a TensorFlow-friendly type. Fortunately, the Magenta
library makes that easy by providing a midi to note sequence converter, ready to
be fed to our TensorFlow model. [8] To begin the training, we first need to con-
vert our MIDI dataset into a format that we can work with using TensorFlow. We
picked Magenta’s NoteSequence [10] because it offers flexibility when it comes to
exporting and manipulating MIDI files. Furthermore, note sequences contain in-
formation on how every note is played and where it is laid out in the song. All of
this information will serve as input data. We could have easily parsed the MIDI
file ourselves and optimized the attributes (like velocity and note length etc.)
to create our own TensorFlow Record but that would be an unnecessary extra
step since the conversion script is already there. Once the conversion is done, we
can then initiate the training of our model using the generated sequences. The
RNN used for this training is Magenta’s Melody RNN [12]. Melody RNN is a
neural network that generates monophonic melody predictions no matter how
many voices it receives [13]. We could have used a polyphony RNN to generate
polyphonic samples, but that would have taken a lot of time to get a decent
accuracy as it involves harmony and chords [14]. That being said, the amount
of time required to get an accurate polyphonic prediction will be directly de-
pendent on the number of voices present in a chord. For example, training the
model using a melody and strictly triads will take a lot less time than using a
melody on top of 9th, 11th, or 13th chords that are most commonly found in
dominant chords in Jazz music.

Once everything is set up, we can use the trained model’s checkpoint for the
online training. The user will be asked to provide a MIDI sample of their choice.

https://archive.org/
https://bitmidi.com/

Artificial Intelligence in Music Composition 7

Once the sample is uploaded, we need to convert it to a NoteSequence just like
we previously did to train our model. Online training relies heavily on detecting
MIDI attributes from the provided file. To avoid unexpected errors, we must
predefine some default settings as constants to fall back to in case the MIDI
analysis fails, like the default velocity and note length. After the conversion is
completed, we then need to quantize the sequence to match the BPM grid and
then proceed to split our note sequence into bars of the size that the model is
going to generate (4 or 16). Quantizing helps detect the tempo accurately, how-
ever, this will cause pieces played by real musicians to lose their original groove
and might drastically change the rhythm [15]. Since we already trained a base
model, re-analyze the entire input sample will cause the training to take much
longer than it should. We can use the base model as a checkpoint instead, and
then analyze small parts of the sample, which is why we split it into 4 or 16
bar samples. To proceed, we encode our chunks using a variational autoencoder
to ensure that there is enough variation to create a new sample and not just
replicate the user’s input, and then initiate the training. Variational Autoen-
coders (VAEs) are encoders that use complex mathematical encoders that can
be applied to all sorts of data types [11]. Once the training is done, we generate
5 samples by calling the model.sample(1) command. Then we use the VAE again
to decode that sample and using Tone.js, the user can listen to the results inside
the browser. If the user was happy with one of the results and would like more
of that sample, they could ask for new samples based on that result. The same
algorithm will run again using the chosen sample as input data.

5 Experiments and Performance Analysis

5.1 Testing multiple genres and analysing the results

The model performs very well when the sample input is of a generic genre, like
electronic music with an accuracy of 70% to 80% since human imperfection does
not dictate the structure of such genres. However, when exposed to more complex
genres, Middle Eastern music or Jazz, for example, we notice a drop in accuracy.
The reason behind the confusion when it comes to Middle Eastern music is rather
simple to understand but harder to incorporate into the network. Middle Eastern
music, unlike western music, contains quarter tones, meanwhile, western music
only consists of semi-tones and whole tones [16]. This causes confusion once our
model runs into a quarter-tone because the way this is portrayed in MIDI is using
microtones, which adds another layer of complexity to the network. For example,
if the note that is being played is B semi-flat, it will be recorded as a B flat with
50 cents microtones in the MIDI sequence. Jazz, on the other hand, does not
follow the same theory as other music genres and features unpredictable off-beat
notes and complex chord progressions. Quantizing Jazz pieces will drastically
alter the rhythm of the song so the predictions will be inaccurate. Leaving the
piece unquantized, however, will lead to a failure in tempo detection therefore
the predicted results will not respect the tempo of the original piece. To perform
an in-depth analysis of our samples we loaded them into Ableton Live, a digital

8 M. Alaeddine A. Tannoury

audio workstation. If we compare the predicted sample from Avicii’s Levels (see
Fig. 1) with the original (see Fig. 2), we can see that the generated sample is in
the same key and respects the rhythm of the original sample.

Fig. 1. Predicted Sample from Avicii-Levels. The vertical axis is the pitch, the hor-
izontal axis is time, the green rectangles are notes, and the red bars at the bottom
represent velocity.

Fig. 2. Original Sample of Avicii-Levels

Dealing with an acoustic Jazz Guitar, however, produces a much less accurate
result. If we compare the generated sample (see Fig. 3) with the original (see
Fig. 4), we can see that even though the AI managed to detect the key and scale
of the sample and extract the melody, the rhythm and feel is still off.

Artificial Intelligence in Music Composition 9

Fig. 3. Predicted Sample from a Jazz piano

Fig. 4. Original Sample of a Jazz piano

We performed the analyses on five different genres, each using five samples.
The results were as follows:

Table 1. Analysis of 25 predicted samples from 5 different genres.

GENRE Rhythm Accuracy Key Accuracy Tempo Accuracy Samples

Electronic Music 100% 80% 100% 5

Jazz 40% 80% 40% 5

Classical Music 80% 80% 100% 5

Middle Eastern Music 80% 20% 60% 5

Game Music 100% 80% 100% 5

10 M. Alaeddine A. Tannoury

5.2 Conclusion

The analysis and experimentation above showcase this model’s capability of
generating very accurate structures quickly until a certain level of structural
complexity, then the accuracy starts to fall off. While it is true that we only
used 25 samples in our analysis, it was more than enough to reveal the strong
and weak points of this model. The weak points being complex genres like Jazz
and Oriental Music, and the strong points being genres that follow strict music
theory rules like classical music, electronic music, and game music.

6 Future Work

There is still a lot to improve on this approach of music generation through a
combination of both online and batch training:

– Improving the accuracy for non-generic music played by instrumentalists
– Improving the accuracy of Jazz music generation by exposing the base model

to more Jazz pieces so it can learn the theoretical exceptions
– Supporting middle eastern music by exposing the base model to more se-

quences with quarter tones and pitch bends
– Improving velocity detection for non-generic music genres

In the long, this approach can support a lot more complex features, to list a
few:

– Using polyphony and harmony to create chords to complement the generated
melody

– Generating drum beats for a given melody
– Using AI to identify weaknesses in a musical piece and suggesting improve-

ments
– Providing high-level controls to the user allowing him to customize the pre-

dictions to his taste

7 Conclusion

AI will, without a doubt, have a major impact on the music industry and should
not be looked at as a technology that will replace the creative process but as one
that will develop it and open up more opportunities for creativity. Even though
AI music composition faces some tough challenges, especially when it comes to
making the result more humane, it’s already doing a great job. Generating music
using AI can help musicians overcome their creative barriers, it can automate the
repetitive technical process that is inevitable in every music composition session,
and it can expand the toolset of musicians allowing them to express themselves
better by focusing on the creative process. To conclude, while humans excel at
composing music and art, AI can still help humanity understand music even
better and shed light on unexplored bits of the world of music composition.

Artificial Intelligence in Music Composition 11

List of Figures

1 Predicted Sample from Avicii-Levels. The vertical axis is the pitch,
the horizontal axis is time, the green rectangles are notes, and the
red bars at the bottom represent velocity. 8

2 Original Sample of Avicii-Levels . 8
3 Predicted Sample from a Jazz piano . 9
4 Original Sample of a Jazz piano . 9

References

1. M.R. Jones, Dynamic pattern structure in music: Recent theory and research. Per-
ception & Psychophysics 41, 621634 (1987).

2. Analytics Vidhya, https://www.analyticsvidhya.com/blog/2020/01/how-to-pe
rform-automatic-music-generation/. Last accessed 9 March 2021

3. UX Planet, https://uxplanet.org/why-fast-matters-a-lot-14c202e352f8.
Last accessed 9 March 2021

4. Musical U, https://www.musical-u.com/learn/rhythm-tips-for-identifying-
music-genres-by-ear/. Last accessed 7 Mar 2021

5. Tensorflow, https://magenta.tensorflow.org/studio. Last accessed 7 Mar 2021
6. MuseNet, https://openai.com/blog/musenet/. Last accessed 9 Mar 2021
7. Sageev Oore, Ian Simon Sander Dieleman, Douglas Eck, Karen Simonyan (2018)

This time with feeling: learning expressive musical performance. Neural Computing
and Applications (2020) 32:955967

8. Twilio, https://www.twilio.com/blog/training-a-neural-network-on-midi-
music-data-with-magenta-and-python/. Last accessed 7 Mar 2021

9. Machine Learning Mastery, https://machinelearningmastery.com/gentle-intr
oduction-long-short-term-memory-networks-experts/. Last accessed 7 Mar
2021

10. GitHub Magenta, https://github.com/magenta/note-seq. Last accessed 9 Mar
2021

11. Jeremy Jordan, https://www.jeremyjordan.me/variational-autoencoders/.
Last accessed 7 Mar 2021

12. GitHub Magenta, https://github.com/magenta/magenta/tree/master/magenta
/models/melody rnn. Last accessed 11 Mar 2021

13. Britannica Art, https://www.britannica.com/art/monophony. Last accessed 11
Mar 2021

14. Britannica Art, https://www.britannica.com/art/polyphony-music. Last
accessed 11 Mar 2021

15. Midi.org Midi Quantization, https://www.midi.org/midi-articles/5-midi-qu
antization-tips-1. Last accessed 11 Mar 2021

16. Ghrab, A.: The Western Study of Intervals in ”Arabic Music,” from the Eighteenth
Century to the Cairo Congress. The World of Music 47, no. 3 (2005): 55-79.

https://www.analyticsvidhya.com/blog/2020/01/how-to-perform-automatic-music-generation/
https://www.analyticsvidhya.com/blog/2020/01/how-to-perform-automatic-music-generation/
https://uxplanet.org/why-fast-matters-a-lot-14c202e352f8
https://www.musical-u.com/learn/rhythm-tips-for-identifying-music-genres-by-ear/
https://www.musical-u.com/learn/rhythm-tips-for-identifying-music-genres-by-ear/
https://magenta.tensorflow.org/studio
https://openai.com/blog/musenet/
https://www.twilio.com/blog/training-a-neural-network-on-midi-music-data-with-magenta-and-python/
https://www.twilio.com/blog/training-a-neural-network-on-midi-music-data-with-magenta-and-python/
https://machinelearningmastery.com/gentle-introduction-long-short-term-memory-networks-experts/
https://machinelearningmastery.com/gentle-introduction-long-short-term-memory-networks-experts/
https://github.com/magenta/note-seq
https://www.jeremyjordan.me/variational-autoencoders/
https://github.com/magenta/magenta/tree/master/magenta/models/melody_rnn
https://github.com/magenta/magenta/tree/master/magenta/models/melody_rnn
https://www.britannica.com/art/monophony
https://www.britannica.com/art/polyphony-music
https://www.midi.org/midi-articles/5-midi-quantization-tips-1
https://www.midi.org/midi-articles/5-midi-quantization-tips-1

	Artificial Intelligence in Music Composition

