%0 Conference Proceedings %T Defining and Verifying Durable Opacity: Correctness for Persistent Software Transactional Memory %+ University of Surrey (UNIS) %+ University of Sheffield [Sheffield] %+ University of Augsburg (UNIA) %+ University of Paderborn %A Bila, Eleni %A Doherty, Simon %A Dongol, Brijesh %A Derrick, John %A Schellhorn, Gerhard %A Wehrheim, Heike %Z Part 1: Full Papers %< avec comité de lecture %( Lecture Notes in Computer Science %B 40th International Conference on Formal Techniques for Distributed Objects, Components, and Systems (FORTE) %C Valletta, Malta %Y Alexey Gotsman %Y Ana Sokolova %I Springer International Publishing %3 Formal Techniques for Distributed Objects, Components, and Systems %V LNCS-12136 %P 39-58 %8 2020-06-15 %D 2020 %R 10.1007/978-3-030-50086-3_3 %Z Computer Science [cs] %Z Computer Science [cs]/Networking and Internet Architecture [cs.NI]Conference papers %X Non-volatile memory (NVM), aka persistent memory, is a new paradigm for memory that preserves its contents even after power loss. The expected ubiquity of NVM has stimulated interest in the design of novel concepts ensuring correctness of concurrent programming abstractions in the face of persistency. So far, this has lead to the design of a number of persistent concurrent data structures, built to satisfy an associated notion of correctness: durable linearizability.In this paper, we transfer the principle of durable concurrent correctness to the area of software transactional memory (STM). Software transactional memory algorithms allow for concurrent access to shared state. Like linearizability for concurrent data structures, opacity is the established notion of correctness for STMs. First, we provide a novel definition of durable opacity extending opacity to handle crashes and recovery in the context of NVM. Second, we develop a durably opaque version of an existing STM algorithm, namely the Transactional Mutex Lock (TML). Third, we design a proof technique for durable opacity based on refinement between TML and an operational characterisation of durable opacity by adapting the TMS2 specification. Finally, we apply this proof technique to show that the durable version of TML is indeed durably opaque. The correctness proof is mechanized within Isabelle. %G English %Z TC 6 %Z WG 6.1 %2 https://inria.hal.science/hal-03283234/document %2 https://inria.hal.science/hal-03283234/file/495615_1_En_3_Chapter.pdf %L hal-03283234 %U https://inria.hal.science/hal-03283234 %~ IFIP-LNCS %~ IFIP %~ IFIP-TC %~ IFIP-WG %~ IFIP-TC6 %~ IFIP-WG6-1 %~ IFIP-FORTE %~ IFIP-LNCS-12136