N

HAL

open science

Time-Fluid Field-Based Coordination

Danilo Pianini, Stefano Mariani, Mirko Viroli, Franco Zambonelli

» To cite this version:

Danilo Pianini, Stefano Mariani, Mirko Viroli, Franco Zambonelli. Time-Fluid Field-Based Coordi-
nation. 22th International Conference on Coordination Languages and Models (COORDINATION),
Jun 2020, Valletta, Malta. pp.193-210, 10.1007/978-3-030-50029-0_13 . hal-03273993

HAL Id: hal-03273993
https://inria.hal.science/hal-03273993

Submitted on 29 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-03273993
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Time-fluid field-based coordination

Danilo Pianinil [0000—0002—8392—5409]
Mirko ViI‘Ohl [0000—0003—2702—5702

: 1 1112[0000—0001 51119800
, Stefano Mariani?! I
:2[0000—0002— 6837 —8806]

I, and Franco Zambonelli

! University of Bologna — Cesena, Ttaly
{danilo.pianini, mirko.viroli}@unibo.it
2 University of Modena and Reggio Emilia — Reggio Emilia, Italy
{stefano.mariani, franco.zambonelli}@unimore.it

Abstract. Emerging application scenarios, such as cyber-physical sys-
tems (CPSs), the Internet of Things (IoT), and edge computing, call
for coordination approaches addressing openness, self-adaptation, het-
erogeneity, and deployment agnosticism. Field-based coordination is one
such approach, promoting the idea of programming system coordination
declaratively from a global perspective, in terms of functional manipu-
lation and evolution in “space and time” of distributed data structures,
called fields. More specifically, regarding time, in field-based coordination
it is assumed that local activities in each device, called computational
rounds, are regulated by a fixed clock, typically, a fair and unsynchro-
nized distributed scheduler. In this work, we challenge this assumption,
and propose an alternative approach where the round execution schedul-
ing is naturally programmed along with the usual coordination specifica-
tion, namely, in terms of a field of causal relations dictating what is the
notion of causality (why and when a round has to be locally scheduled)
and how it should change across time and space. This abstraction over
the traditional view on global time allows us to express what we call
“time-fluid” coordination, where causality can be finely tuned to select
the event triggers to react to, up to to achieve improved balance be-
tween performance (system reactivity) and cost (usage of computational
resources). We propose an implementation in the aggregate computing
framework, and evaluate via simulation on a case study.

Keywords: aggregate computing - fluidware - iot - internet of things -
edge computing - causality - time - reactive

1 Introduction

Emerging application scenarios, such as the Internet of Things (IoT), cyber-
physical systems (CPSs), and edge computing, call for software design approaches
addressing openness, heterogeneity, self-adaptation, and deployment agnosticism
[19]. To effectively address this issue, researchers strive to define increasingly
higher-level concepts, reducing the “abstraction gap” with the problems at hand,
e.g., by designing new languages and paradigms. In the context of coordination
models and languages, field-based coordination is one such approach [23, 3,37,

2 D. Pianini et al.

5,21, 40]. In spite of its many variants and implementations, field-based coordi-
nation roots in the idea of programming system coordination declaratively and
from a global perspective, in terms of distributed data structures called (com-
putational) fields, which span the entire deployment in space (each device holds
a value) and time (each device continuously produces such values).

Regarding time, which is the focus of this paper, field-based coordination
typically abstracts from it in two ways: (1) when a specific notion of local time is
needed, this is accessed through a sensor as for any other environmental variable;
and (ii) a specification is actually interpreted as a small computation chunk to be
carried on in computation rounds. In each round a device: (i) sleeps for some time;
(ii) gathers information about state of computation in previous round, messages
received by neighbors while sleeping, and contextual information (i.e. sensor
readings); and (iii) uses such data to evaluate the coordination specification,
storing the state information in memory, producing a value output, and sending
relevant information to neighbors. So far, field-based coordination approaches
considered computational rounds as being regulated by an externally imposed,
fixed distributed clock: typically, a fair and unsynchronized distributed scheduler.
This assumption however, has a number of consequences and limitations, both
philosophical and pragmatic, which this paper aims to address.

Under a philosophical point of view, it follows a pre-relativity view of time
that meets general human perception, i.e., where time is absolute and inde-
pendent of the actual dynamics of events. This hardly fits with more modern
views connecting time with a deeper concept of causality [22], as being only
meaningful relative to the existence of events as in relational interpretations of
space-time [30], or even being a mere derived concept introduced by our cogni-
tion [29]—as in Loop Quantum Gravity [31]. Under a practical point of view,
consequences on field-based coordination are mixed. The key practical advantage
is simplicity. First, the designer must abstract from time, leaving the scheduling
issue to the underlying platform. Second, the platform itself can simply impose
local schedulers statically, using fixed frequencies that at most depend on the
device computational power or energetic requirements. Third, the execution in
proactive rounds allows a device to discard messages received few rounds before
the current one, thus considering non-proactive senders to have abandoned the
neighborhood, and simply modeling the state of communication by maintaining
the most recent message received from each neighbor.

However, there is a price to pay for such a simple approach. The first is that
“stability” of the computation, namely, situations in which the field will not
change after a round execution, is ignored. As a consequence, sometimes “un-
necessary” computations are performed, consuming resources (both energy and
bandwidth capacity), and thus reducing the efficiency of the system. Symmetri-
cally, there is a potential responsiveness issue: some computations may require
to be executed more quickly under some circumstances. For instance, consider
a crowd monitoring and steering system for urban mass events as the one ex-
emplified in [7]: in case the measured density of people gets dangerous, a more
frequent evaluation of the steering advice field is likely to provide more pre-

Time-fluid field-based coordination 3

cise and timely advices. Similar considerations apply for example to the area of
landslide monitoring [28], where long intervals of immobility are interspersed by
sudden slope movements: sensors sampling rate can and should be low most of
the time, but it needs to get promptly increased on slope changes. This generally
suggests a key unexpressed potential for field-based computation: the general
ability to provide improved balance between performance (system reactivity)
and cost (usage of computational resources). For instance, the crowd monitor-
ing and landslide monitoring systems should ideally slow down (possibly, halt
entirely) the evaluation in case of sparse crowd density or of absence of surface
movements, respectively. And they should start being more and more responsive
with growing crowd densities or in case of landslide activation.

The general idea that round execution distribution can actually dynamically
depend on the outcome of computation itself, can be captured in field-based co-
ordination by modeling time by a causality field, namely, a field programmable
along with (and hence intertwined with) the usual coordination specification,
dictating (at each point in space-time) what are the triggers whose occurrence
should correspond to the execution of computation rounds. Programming causal-
ity along with coordination leads us to a notion of time-fluid coordination, where
it is possible to flexibly control the balance between performance and cost of sys-
tem execution. Accordingly, in this work we discuss a causality-driven interpre-
tation of field-based coordination, proposing an integration with the field calcu-
lus [3] with the goal of evaluating a model for time-fluid, field-based coordination.
In practice, we assume computations are not driven by time-based rounds, but
by perceivable local event triggers provided by the platform (hardware/software
stack) executing the aggregate program, such as messages received, change in
sensor values, and time passing by. The aggregate program specification itself,
then, may affect scheduling of subsequent computations through policies (ex-
pressed in the same language) based on such triggers.

The contribution of this work can be summarized under three points of view.
First, the proposed model enriches the coordination abstraction of field-based
coordination with the possibility to explicitly and possibly reactively program
the scheduling of the coordination actions; second, it enables a functional de-
scription of causality and observability, since manipulation of the interaction fre-
quency among single components of the coordinated system reflects in changes
in how causal events are perceived, and actions are taken in response to event
triggers; third, the most immediate practical implication of a time-fluid coordina-
tion when compared to a traditional time-driven approach is improved efficiency,
intended as improved responsiveness with the same resource cost.

The remainder of this work is as follows: Section 2 frames this work with
respect to the existing literature on topic; Section 3 introduces the proposed
time-fluid model and discusses its implications; Section 4 presents a prototype
implementation in the framework of aggregate computing, showing examples and
evaluating the potential practical implications via simulation finally, Section 5
discusses future directions and concludes the work.

4 D. Pianini et al.

2 Background and Related Work

Time and synchronization have always been key issues in the area of distributed
and pervasive computing systems. In general, in distributed systems, the ab-
sence of a globally shared physical clock among nodes makes it impossible to
rely on absolute notions of time. Logical clocks are hence used instead [17], re-
alizing a sort of causally-driven notion of time, in which the “passing time” of
a distributed computation (that is, the ticks of logical clocks) directly expresses
causal relations between distributed events. As a consequence, any observation
of a distributed computation that respects such causal relations, independently
of the relative speeds of processes, is a consistent one [4]. Our proposal absorbs
these foundational lessons, and brings them forward to consider the strict rela-
tions between the spatial dimension and the temporal dimension that situated
aggregate computations have to account for.

In the area of sensor networks, acquiring a (as accurate as possible) globally
shared notion of time is of fundamental importance [33], to properly capture
snapshots of the distributed phenomena under observation. However, global syn-
chronization also serves energy saving purposes. In fact, when not monitoring
or not communicating, the nodes of the network should go to sleep to avoid en-
ergy waste, but this implies that to exchange monitoring information with each
other they must periodically wake-up in a synchronized way. In most of exist-
ing proposals, though, this is done in awakening and communicating rounds of
fixed duration, which makes it impossible to adapt to the actual dynamics of the
phenomena under observation. Several proposals exist for adaptive synchroniza-
tion in wireless sensor networks [1,16, 13], dynamically changing the sampling
frequency (and hence frequency of communication rounds) so as to adapt to
the dynamics of the observed phenomena. For instance, in the case of crowd
monitoring systems, it is likely that people (e.g, during an event) stay nearly
immobile for most of the time, then suddenly start moving (e.g., at the end of
the event). Similarly, in the area of landslide monitoring, the situation of a slope
is stable for most of the time, with periodic occurrences of (sometimes very fast)
slope movements. In these cases, waking up the nodes of the network periodically
would not make any sense and would waste a lot of energy. Nodes should rather
sleep most of the time, and wake up only upon detectable slope movements.

Such adaptive sampling approaches challenge the underlying notion of time,
but they tend to focus on the temporal dimension only (i.e., adapting to the
dynamics of a phenomena as locally perceived by the nodes). Our approach goes
further, by making it possible to adapt in time and space as well: not only how
fast a phenomenon changes in time, but how fast it propagates and induces
causal effects in space. For instance, in the case of landslide monitoring or crowd
monitoring, adapting to the dynamics of local perceived movements to the overall
propagation speed of such movements across the monitored area.

Besides sensor networks, the issue of adaptive sampling has recently landed
in the broader area of IoT systems and applications [35], again with the pri-
mary goal of optimizing energy consumption of devices while not losing relevant
phenomena under observation. However, unlike what promoted in sensor net-

Time-fluid field-based coordination 5

works, such optimizations typically take place in a centralized (cloud) [34] or
semi-decentralized (fog) way [18], which again disregards spatial issues and the
strict space-time relations of phenomena.

Since coordination models and languages typical address a crosscutting con-
cern of distributed systems, they are historically concerned with the notion of
time in a variety of ways. For instance, time is addressed in space-based coor-
dination since Javaspaces [12], and corresponding foundational calculi for time-
based Linda [6,20]: the general idea is to equip tuples and query operations
with timeouts, which can be interpreted either in terms of global or local clocks.
The problem of abstracting the notion of time became crucial when coordina-
tion models started addressing self-adaptive systems, and hence openness and
reactivity. In [25], it is suggested that a tuple may eventually fade, with a rate
that depends on a usefulness concepts measuring how many new operations are
related to such tuple. In the biochemical tuple-space model [38], tuples have a
time-dynamic “concentration” driven by stochastic coordination rules embedded
in the data-space.

Field-based coordination emerged as a coordination paradigm for self-adaptive
systems focusing more on “space” rather than “time”, in works such as TOTA
[24], field calculus [3, 37], and fixpoint-based computational fields [21]. However,
the need for dealing with time is a deep consequence of dealing with space, since
propagation in space necessarily impacts “evolution”. These approaches tend to
abstract from the scheduling dynamics of local field evolution, in various ways.
In TOTA, the update model for distributed “fields of tuples” is an asynchronous
event-based one: anytime a change in network connectivity is detected by a node,
the TOTA middleware provides for triggering an update of the distributed field
structures so as to immediately reflect the new situation. In the field calcu-
lus and aggregate computing [5] as already mentioned, an external, proactive
clock is typically used. In [21] this issue is mostly neglected since the focus is
on the “eventual behavior”, namely the stabilized configuration of a field, as in
[36]. For all these models, scheduling of updates is always transparent to the
application/programming level, so the application designer cannot intervene on
coordination so as to possible optimize communication, energy expenses, and
reactivity.

3 Time-fluid field-based coordination

In this section, we introduce a model for time-fluid field-based coordination. The
core idea of our proposed approach is to leverage the field-based coordination
itself for maintaining a causality field that drives the dynamics of computation of
the application-level fields. Our discussion is in principle applicable to any field-
based coordination framework, however, for the sake of clarity, we here focus on
the field calculus [3].

6 D. Pianini et al.

3.1 A time-fluid model

Considering a field calculus program P, each of its rounds can be though of as
consuming: i) a set of valid messages received from neighbors, M € M; and
it) some contextual information S € S, usually obtained via so-called sensors.
The platform or middleware in charge of executing field calculus programs has
to decide when to launch the next evaluation round of P, also providing valid
values for M and S. Note that in general the platform could execute many
programs concurrently.

In order to support causality-driven coordination, we first require the plat-
form to be able to reactively respond to local event triggers, each representing
some kind of change in the values of M or S—e.g., “a new message is arrived”,
“a given sensor provides a new value”, or “1 second is passed”. We denote by T
the set of all possible local event triggers the platform can manage.

Then, we propose to associate to every field calculus program P a guard
policy G (policy in short), which itself denotes a field computation—and can
hence be written with a program expressed in the same language of P, as will
be detailed in next section. Most specifically, whenever evaluated across space
and time, the field computation of a policy can be locally modeled as a function

fai(§,M) — ({07 1}7P(T))

where P(T) denotes the powerset of 7. Namely, a policy has the same input of
any field computation, but specifically returns a pair of Boolean b € {0,1} and
a set of event triggers T, C 7. T, is essentially the set of “causes”: G will get
evaluated next time by the platform only when a new event trigger is detected
that belongs to T.. Then, such an evaluation produces the second output b:
when this is true (value 1) it means that the program P associated to the policy
must be evaluated as soon as possible. On system bootstrap, every policy gets
evaluated for the first time.

In the proposed framework, hence, computations are caused by a field of event
triggers (the causality field) computed by a policy, which is used to i) decide
whether to run the actual application round immediately, and) decide which
event triggers will cause a re-evaluation of the policy itself. This mechanism thus
introduces a sort of guard mediating between the evolution of the causality field
and the actual execution of application rounds, allowing for fine control over the
actual temporal dynamics, as exemplified in section 4.2.

Crucially, the ability to sense context (namely, the contents of S) and to
express event triggers (namely, the possible contents of 7)) has a large impact
on the expressivity of the proposed model. For the remainder of this work, we
will assume the platform or middleware hosting a field computation to provide
the following set of features, which we deem reasonable for any such platform—
this is for the sake of practical expressiveness, since even a small set of event
triggers could be of benefit. First, 7 must include changes to any value of S;
this allows the computation to be reactive to changes in the device perception,
or, symmetrically speaking, makes such changes the cause of the computation.
Second, timers can be easily modeled as special Boolean sensors flipping their

Time-fluid field-based coordination 7

value from false to true; making the classic time-driven approach a special
case of the proposed framework. Third, which specific event trigger caused the
last computation should be available in S, accessible through the appropriate
sensor. Fourth, the most recent result of any field computation P that should
affect the policy must be available in S; this is crucial for field computations
to depend on each other, or, in other words, for a field computation to be the
cause of another, possibly more intensive field computation. For instance, con-
sider the crowd sensing and steering application mentioned in Section 1 to be
decomposed in two sub-field computations: the former, lightweight, computing
the local crowd density under a policy triggering the computation anytime a
presence sensor counts a different number of people in the monitored area; the
latter, resource intensive, computing a crowd steering field guiding people out of
the over-crowded areas, whose policy can leverage the value of the density field
to raise the evaluation frequency when the situation gets potentially dangerous.
Fifth, the conclusion of a round of any field program is a valid source of event
triggers, namely, 7 also contains a Boolean indicating whether a field program
of interest completed its round.

3.2 Consequences

Programming the space-time and propagating causality As soon as we
let the application affect its own execution policy, we are effectively programming
the time (instead of in time, as is typically done in field-based coordination):
evaluating the field computation at different frequencies would actually amount
at modulating the perception of time from the application standpoint. For in-
stance, sensors’ values may be sampled more often or more sparsely, affecting
the perception that the application has of its operating environment along the
time scale. In turn, as stemming from the distributed nature of the communi-
cating system at hand, such an adaptation along time would immediately cause
adaptation across space too, by affecting the communication rate of devices,
hence the rate at which events and information spread across the network. It
is worth emphasizing that this a consequence of embracing a notion of time
founded on causality. In fact, as we are aware of computational models adaptive
to the time fabric, as mentioned in Section 2, we are not aware of any model
allowing programming the perception of time at the application level.

Adapting to causality Being able to program the space-time fabric as de-
scribed above necessarily requires the capability of being aware of the space-
time fabric in the first place. When the notion of space-time is crafted upon the
notion of causality between events, such a form of awareness translates to aware-
ness of the dynamics of causal relations among events. Under this perspective,
the application is no longer adapting to the passage of time and the extent of
space, but to the temporal and spatial distribution of causal relations among
events. In other words, the application is able to “chase” events not only as they
travel across time and space, but also as their “traveling speed” changes. For in-
stance, whenever in a given region of space some event happens more frequently,

8 D. Pianini et al.

devices operating in the same area may compute more frequently as well, in-
creasing the rate of communications among devices in that region, thus leading
to an overall better recognition of the quickening dynamics of the phenomenon
under observation.

Controlling situatedness The ability to control both the above mentioned
capabilities at the application level enables unprecedented fine control over the
degree of situatedness exhibited by the overall system, along two dimensions: the
ability to decide the granularity at which event triggers should be perceived; and
the ability to decide how to adapt to changes in events dynamics. In modern
distributed and pervasive systems the ability to quickly react to changes in
environment dynamics are of paramount importance [32]. For instance, in the
mentioned case of landslide monitoring, as anomalies in measurement increase
in frequency, intensity, and geographical coverage, the monitoring application
should match the pace of the accelerating dynamics.

Co-causal field computation On the practical side, associating field compu-
tations to programmable scheduling policies brings both advantages and risks
(as most extensions to expressiveness do). One important gain in ezpressive-
ness is the ability to let field computation affect the scheduling policy of other
field computations, as in the example of crowd steering or landslide monitor-
ing: the denser some regions get, the faster will the steering field be computed;
the more intense vibrations of the ground get, the more frequently monitoring
is performed. On the other hand, this opens the door to circular dependencies
among fields computations and the scheduling policies, which can possibly lead
to deadlocks or livelocks. Therefore, it is good practice for time-fluid field coordi-
nation systems that at least one field computation depends solely on local event
triggers, and that dependencies among diverse field computations are carefully
crafted and possibly enriched with local control.

Pure reactivity and its limitations Technically, replacing a scheduler guided
by a fixed clock with one triggering computations as consequence of events, turns
the system from time-driven to event-driven. In principle, this makes the system
purely reactive: the system is idle unless some event trigger happens. Depending
on the application at hand, this may be a blessing or a curse: since pro-activity is
lost, the system is chained to the dynamics of event triggers, and cannot act on
its own will. Of course, it is easy to overcome such a limitation: assuming a clock
is available in the pool of event triggers makes pro-activity a particular case of
reactivity, where the tick of the clock dictates the granularity. Furthermore, since
policies allow the specification of a set of event triggers causing re-evaluation, the
designer can always design a “fall-back” plan relying on expiration of a timer:
for instance, it’s possible (and reasonable) to express a policy such as “trigger
as soon as € happens, or timer 7 expires, whichever comes first”.

Time-fluid field-based coordination 9

4 Time-fluid Aggregate Computing

The proposed model has been prototypically reified within the framework of ag-
gregate computing [5]. In particular, we leveraged the Alchemist Simulator [26]’s
pre-existing support for the Protelis programming language [27] and the Scafi
Scala DSL [39], and we produced a modified prototype platform supporting the
definition of policies using the same aggregate programming language used for
the actual software specification. The framework has been open sourced and
publicly released, and it has been exercised in a paradigmatic experiment.

In this section we first briefly provide details about the Protelis program-
ming language, which we use to showcase the expressive power of the proposed
system by examples, then we present an experiment showing how the time-fluid
architecture may allow for improved precision as well as reduced resource use.

4.1 A short Protelis primer

This Protelis language primer is intended as a quick reference for understanding
the subsequent examples. Entering the language details is out of the scope of this
work, only the set of features used in this paper will be introduced. Protelis is
a purely functional, higher-order, interpreted, and dynamically typed aggregate
programming language interoperable with Java.

Programs are written in modules, and are composed of any number of func-
tion definitions and of an optional main script. module some:namespace creates
a new module whose fully qualified name is some:namespace. Modules’ functions
can be imported locally using the import keyword followed by the fully qualified
module name. The same keyword can be used to import Java members, with org
.protelis.Builtins, java.lang.Math, and java.lang.Double being pre-imported.
Similarly to other dynamic languages such as Ruby and Python, in Protelis top
level code outside any function is considered to be the main script.

def f(a, b) { code } defines a new function named f with two arguments
a and b, which executes all the expressions in code upon invocation, returning
the value of the last one. In case the function has a single expression, a shorter,
Scala/Kotlin style syntax is allowed: def £(a, b) = expression.

The rep (v <- initial) { code } expression enables stateful computation
by associating v with either the previous result of the rep evaluation, or with
the value of the initial expression, The code block is then evaluated, and its
result is returned (and used as value for v in the subsequent round).

The if(condition) {then} else {otherwise} expression requires condition
to evaluate to a boolean value; if such value is true the then block is evaluated
and the value of its last expression returned, while if the value of condition is
false the otherwise code block gets executed, and the value of its last expres-
sion returned. Notably, rep expressions that find themselves in a non-evaluated
branch lose their previously computed state, hence restarting the state com-
putation from the initial value. This behavior is peculiar of the field calculus
semantics, where the branching construct is lifted to a distributed operator with
the meaning of domain segmentation [3].

[

10 D. Pianini et al.

The let v = expression statement adds a variable named v to the local name
space, associating its value to the value of the expression evaluation. Square
brackets delimit tuple literals: [1 evaluates to an empty tuple, [1, 2, "foo"]
to a tuple of three elements with two numbers and a string. Methods can be
invoked with the same syntax of Java: obj.method(a, b) tries to invoke method
member on the result of evaluation of expression obj, passing the results of the
evaluation of expressions a and b as arguments. Special keywords self and env
allow access to contextual information. self exposes sensors via direct method
call (typically leveraged for system access), while env allows dynamic access to
sensors by name (hence supporting more dynamic contexts).

Anonymous functions are written with a syntax reminiscent of Kotlin and
Groovy: { a, b, -> code } evaluates to an anonymous function with two pa-
rameters and code as body. Protelis also shares with Kotlin the trailing lambda
convention: if the last parameter of a function call is an anonymous function,
then it can be placed outside the parentheses. If the anonymous function is
the only argument to that call, the parentheses can be omitted entirely. The
following calls are in fact equivalent:

[1, 2] .map({ a -> a + 1 }) // returns [2, 3]
[1, 2].map() { a -> a + 1 } // returns [2, 3]
[1, 2].map { a -> a + 1 } // returns [2, 3]

4.2 Examples

In this section we exemplify how the proposed approach allows for a single field-
based coordination language to be used for expressing both P and G. In the
following discussion, event triggers provided by the platform (i.e., members of
T), will be highlighted in green. In our first example, we show a policy recreating
the round-based, classic execution model, thus demonstrating how this approach
supersedes the previous. Consider the following Protelis functions, which detect
changes in a value:

def updated(current, condition) = rep(old <- current) {
if (condition(current, o0ld)) { current } else { old %}
} == current
def changed(current) = updated(current){cur, old -> cur!=o0ld}

where current is the current value of the signal being tracked, and condition
is a function comparing the current with the previously memorized value and
returning true if the new value should replace the old one. Function changed is
the simplest use of update, returning true whenever the input signal current
changes. In the showcased code, the second argument to updated is provided
using the trailing lambda syntax (see section 4.1). They can be leveraged for
writing a policy sensitive to platform timeouts. For instance, in the following
code, we write a policy that gets re-evaluated every second (we only return
TIMER(1) of all the possible event triggers in 7), and whose associated program
runs if at least one second passed since the last round.

N

w

IS

o

w

IS

~

3

-

w

I

Time-fluid field-based coordination 11

import platform.EventType.TIMER
[updated (self.getCurrentTime()) { now, last -> now-last>1 },
[TIMER (1)1]

On the opposite side of the spectrum of possible policies is a purely reactive
execution: the local field computation is performed only if there is a change in the
value of any available sensors (SENSOR(".x")); if a message with new information
is received (MESSAGE_RECEIVED); or if a message is discarded from the neighbor
knowledge base (MESSAGE_TIMEOUT), for instance because the sender of the original
message is no longer available:

import platform.EventType.x*

let reason = env.get("platform.event")

[reason == MESSAGE_TIMEOUT || reason == SENSOR(".*") // Regex
|| changed(env.get("platform.neighborstate")),

[MESSAGE_RECEIVED, MESSAGE_TIMEQOUT, SENSOR(".x")]1]

Finally, we articulate a case in which the result of an aggregate computa-
tion is the cause for another computation to get triggered. Consider the crowd
steering system mentioned in section 1: we would like to update the crowd steer-
ing field only when there is a noticeable change in the perceived density of the
surroundings. To do so, we first write a Protelis program leveraging the SCR
pattern [8] to partition space in regions 300 meters wide and compute the av-
erage crowd density within them. Functions S (network partitioning at desired
distance), summarize (aggregation of data over a spanning tree and partition-
wide broadcast of the result), and distanceTo (computation of distance) come
from the Protelis-lang library shipped with Protelis [11].

module jo:github:steering:density

import

let distToLeader = distanceTo(S(300)) // network partitioning
// sum of all the perceived people

let count=summarize (distToLeader ,env.get("people_count"), sum)
// computes an upper bound to the radius

let radius = summarize(distToLeader, distToLeader , max)
count/(2*PI*radius)//approximate crowd density as people/area

Its execution policy could be, for instance, reactive to updates from neighbors
and to changes in a “people counting sensor”, reifying the number of people
perceived by this device (e.g. via a camera).

import platform.EventType.*

let reason = env.get("platform.event")

[reason == MESSAGE_TIMEOUT || reason == MESSAGE_RECEIVED ||
changed(env.get ("people_count")), [SENSOR("people_count")]]

Now that density computation is in place, the platform reifies its final result as
a local sensor, which can in turn be used to drive the steering field computation
with a policy such as:

oA W N e

12 D. Pianini et al.

import

let density = "io:github:steering:density"

[changed (exponentialBack0ff (env.get (density) ,0.1)){cur,o0ld->
abs(cur - old) > 0.5

}, [SENSOR(density)]]

in which a low pass filter exponentialBack0ff avoids to get the program run-
ning in case of spikes (e.g. due to the density computation re-stabilization). Note
that access to the density computation is realized by accessing a sensor with the
same name of the module containing the density evaluation program, thus reifying
a causal chain between field computations.

4.3 Experiment

We exercise our prototype by simulating a distance computation over a network
of situated devices. We consider a 40x40 irregular grid of devices, each located
randomly in a disc centered on the corresponding position of a regular grid; and
a single mobile node positioned to the top left of the network, free to move at a
constant speed v from left to right. Once the mobile device leaves the network,
exiting to the right side, another identical one enters the network from the left
hand side. Mobile devices and the leftmost device at bottom are “sources”, and
the goal for each device is to estimate the distance to the closest source.

Computing distance from a source without a central coordinator in arbi-
trary networks is a representative application of aggregate computing, for which
several implementations exist [36]. In this work, since the goal is exploring the
behavior of the platform rather than the efficiency of the algorithm, we use an
adaptive Bellman-Ford [9], even though it’s known not to be the most efficient
implementation for the task at hand [2]. We choose to compute the distance
from a source (a gradient) as our reference algorithm as it is one of the most
common building block over which other, more elaborate forms of coordination
get built [10, 36]. We expect that an improvement in performance on this simple
algorithm may lead to a cascading effect on the plethora [11] of algorithms based
on it, hence our choice as a candidate for this experiment.

We let devices compute the same aggregate program with diverse policies.
The baseline for assessing our proposal is the classic approach to aggregate
computing: time-driven, unsynchronized, and fair scheduling of rounds set at
1Hz. We compare the classic approach with time fluid versions whose policy
is: run if a new message is received or an old message timed out, and the last
round was at least f~1 seconds ago. The latter clause sets an upper bound
to the number of event triggers a device can react to, preventing well-known
limit situations such as the “raising value problem” for the adaptive Bellman-
Ford [2] algorithm used in this work. We run several versions of the reactive
algorithm, with diverse values for f; and we also vary ||v||. For each combination
of f and ||v||, we perform 100 simulations with different random seeds, which
also alter the irregular grid shape. We measure the overall number of executed
rounds, which is a proxy metric for resource consumption (both network and

Time-fluid field-based coordination 13

Fig. 1. Heat-map representation of executed rounds with time. Each device is depicted
as a point located on its actual coordinates, time progresses from left to right. Devices
start (left) with no round executed (yellow) and, with the simulation progression (left to
right), execute rounds, changing their color to red. Devices closer to the static source
(on the bottom left of the scenario) execute fewer rounds than those closer to the
moving source, hence saving resources.

energy), and the root mean square error of each device. The simulation has been
implemented in Alchemist [26], writing the aggregate programs in Protelis [27].
Data has been processed with Xarray [14], and charts have been produced via
matplotlib [15]. For the sake of reproducibility, the whole experiment has been
automated, documented, and open sourced?.

Intuitively, devices situated closer to the static source than to the trajectory
of mobile sources should be able to execute less often. Figure 1 confirms such
intuition: there is a clear border separating devices always closer to the static
source, which execute much less often, from those that at times are instead
closer to the mobile source. Figure 2 shows the precision of the computation
for diverse values of ||v|| and f, compared to the baseline. The performance
of baseline is equivalent with the performance of the time-fluid version with
f = 1Hz. Higher values of f decrease the error, and lower values moderately
increase it. Figure 3 depicts the cost to be paid for the algorithm execution. The
causal version of the computation has a large advantage when there is nothing
to recompute: if the mobile device is stands still, and the gradient value does not
need to be recomputed, the computation is fundamentally halted. When ||v|| # 0,
the resource consumption grows; however, compared to the classic version, we
can sustain f = 1.5Hz with the same resource consumption. Considering that
the performance of the classic version gets matched with f = 1Hz, and cost
gets equalized at f = 1.5Hz, when 1Hz < f < 1.5Hz we achieve both better
performance and lower cost. In conclusion, the time-fluid version provides a
higher performance/cost ratio.

5 Conclusion and future work

In this work we introduced a different concept of time for field-based coordina-
tion systems. Inspired by causal models of space-time in physics, we introduce

3 https://github.com/DanySK/Experiment-2020-Coordination-Time-Fluid-AC

14 D. Pianini et al.

Error when |V|=0 Error when |V|=2

3.6x107!
4x107!
3.4x107!
3.2x107!

3x107! 3x107!

2.8x1071

2.6x107!

Mean squared error
Mean squared error

2.4x107! 2x107!

2.2x107 A

0 50 100 150 200 250 0 50 100 150 200 250
time time

Error when |V|=5 Error when |V|=10

— f=0.8
— f=0.9
— f=1
— f=11
10°{ — f=12
f=1.5
f=2
m— classic

2x10°{ — f=0.8
— f=0.9
—_— f=1

—_— f=1.1

— f=1.2

10° f=1.5
f=2

= classic

6x107!

Mean squared error
Mean squared error

4x107!

3x107!

time time

Fig. 2. Root mean squared error for diverse v. When the network is entirely static
(top left), after a short stabilization time the network converges to a very low error.
Errors is lower with higher f values. The performance with f = 1 is equivalent with
the performance of the baseline. When |[v|| > 5, there is enough time for the mobile
device to leave the system and for a new one to join, creating a spike in error and
requiring a re-stabilization.

the concept of field of causality for field computations, intertwining the usual
coordination specification with its own actual evaluation schedule. We introduce
a model that allows expressing the field of causality with the coordination lan-
guage itself, and discuss the impact of its application. A model prototype is then
implemented in the Alchemist simulation platform, supporting the execution of
the aggregate computing field-based coordination languages Protelis, demon-
strating the feasibility of the approach. Finally, the prototype is exercised in a
paradigmatic experiment, highlighting the practical relevance of the approach by
showing how it can improve efficiency—intended as precision in field evaluation
over resource consumption.

Future work will be devoted to provide more in-depth insights by evaluat-
ing the impact of the approach in realistic setups, both in terms of scenarios
(e.g. using real world data) and evaluation precision (e.g. by leveraging network
simulators such as Omnet++ or NS3). Moreover, further work is required both
for the current prototype to become a full fledged implementation, and for the
model to be implemented in practical field-based coordination middlewares.

Time-fluid field-based coordination 15

100

Round count when |V|=0 Round count when |V|=2
2501 — f=0.8 — =0.8
— =09 3009 — f=0.9
— f=1 — f=1
2009 o1 250 — f=1.1
€ — f=12 € — f=12
S 150 f=1.5 S 200 f=1.5
g f=2 g f=2
3 = classic 3 150 === classic
c c
5 5
3 3
= =

100
50

0 50 100 150 200 250 0 50 100 150 200 250
time time
Round count when |V|=5 Round count when |V|=10
300 = f=0.8 — f=0.8
— =09 3001 — f=0.9

2504 — f=1 J—
" — f=1.1 » 2501 — f=1.1
s — f=1.2 5 — f=1.2
5 5
g2 f=1.5 8 200 f=1.5
g f=2 g f=2
° 150 classic 0 150 { === classic
c c
& &
3 3
= =

time time

Fig. 3. Root mean squared error for diverse ||v||. When the network is entirely static
(top left), raising f has a minimal impact on the overall cost of execution, as the
network stabilizes and recomputes only in case of time outs. In dynamic cases, instead,
higher f values come with a cost to pay. However, in the proposed experiment, the cost
for the baseline algorithm matches the cost of the time fluid version with f = 1.5Hz,
which in turn has lower error (as shown in fig. 2).

Acknowledgements

This work has been supported by the MIUR PRIN 2017 Project “Fluidware”.
The authors want to thank dr. Lorenzo Monti for the fruitful discussion on
causality, the shape and fabric of space and time, and physical models indepen-
dent of time.

References

1. Ageev, A., Macii, D., Flammini, A.: Towards an adaptive synchronization policy
for wireless sensor networks. In: 2008 IEEE International Symposium on Precision
Clock Synchronization for Measurement, Control and Communication. IEEE (Sep
2008). https://doi.org/10.1109/ispcs.2008.4659224

2. Audrito, G., Damiani, F., Viroli, M.: Optimal single-path information propaga-
tion in gradient-based algorithms. Sci. Comput. Program. 166, 146-166 (2018).
https://doi.org/10.1016/j.scico.2018.06.002

3. Audrito, G., Viroli, M., Damiani, F., Pianini, D., Beal, J.: A higher-order calculus
of computational fields. ACM Transactions on Computational Logic 20(1), 1-55
(jan 2019). https://doi.org/10.1145/3285956

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

D. Pianini et al.

Babaoglu, O., Marzullo, K.: Consistent Global States of Distributed Systems: Fun-
damental Concepts and Mechanisms, p. 55-96. ACM Press/Addison-Wesley Pub-
lishing Co., USA (1993)

Beal, J., Pianini, D., Viroli, M.: Aggregate programming for the internet of things.
IEEE Computer 48(9), 22-30 (2015). https://doi.org/10.1109/MC.2015.261
Busi, N., Gorrieri, R., Zavattaro, G.: Process calculi for coordination: From linda to
javaspaces. In: Algebraic Methodology and Software Technology. 8th International
Conference, AMAST 2000, Iowa City, lowa, USA, May 20-27, 2000, Proceedings,
pp. 198-212 (2000). https://doi.org/10.1007/3-540-45499-3_16

Casadei, R., Fortino, G., Pianini, D., Russo, W., Savaglio, C., Vi-
roli, M.: Modelling and simulation of opportunistic IoT services with
aggregate computing. Future Generation Computer Systems (sep 2018).
https://doi.org/10.1016/j.future.2018.09.005

Casadei, R., Pianini, D., Viroli, M., Natali, A.: Self-organising coordination regions:
A pattern for edge computing. In: Lecture Notes in Computer Science, pp. 182—
199. Springer International Publishing (2019). https://doi.org/10.1007/978-3-030-
22397-7_11

Dasgupta, S., Beal, J.: A lyapunov analysis for the robust stability of an adap-
tive bellman-ford algorithm. In: 55th IEEE Conference on Decision and Control,
CDC 2016, Las Vegas, NV, USA, December 12-14, 2016. pp. 7282-7287 (2016).
https://doi.org/10.1109/CDC.2016.7799393

Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S., Viroli, M., Arcos,
J.L.: Description and composition of bio-inspired design patterns: a complete
overview. Nat. Comput. 12(1), 43-67 (2013). https://doi.org/10.1007/s11047-012-
9324-y

Francia, M., Pianini, D., Beal, J., Viroli, M.: Towards a foundational API for re-
silient distributed systems design. In: 2nd IEEE International Workshops on Foun-
dations and Applications of Self* Systems, FAS*W@SASO/ICCAC 2017, Tucson,
AZ, USA, September 18-22, 2017. pp. 27-32 (2017). https://doi.org/10.1109/FAS-
W.2017.116

Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces: Principles, Patterns, and Practice.
Addison-Wesley (1999)

Ho, Y., Huang, Y., Chu, H., Chen, L.: Adaptive sensing scheme using naive
bayes classification for environment monitoring with drone. IJDSN 14(1) (2018).
https://doi.org/10.1177/1550147718756036

Hoyer, S., Hamman, J.: xarray: N-D labeled arrays and datasets in Python. Journal
of Open Research Software 5(1) (2017). https://doi.org/10.5334/jors.148

Hunter, J.D.: Matplotlib: A 2d graphics environment. Computing in Science En-
gineering 9(3), 90-95 (May 2007). https://doi.org/10.1109/MCSE.2007.55

Kho, J., Rogers, A., Jennings, N.R.: Decentralized control of adap-
tive sampling in wireless sensor networks. TOSN 5(3), 19:1-19:35 (2009).
https://doi.org/10.1145/1525856.1525857

Lamport, L.: Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM 21(7), 558-565 (Jul 1978).
https://doi.org/10.1145/359545.359563

Lee, J., Yoon, G., Choi, H.: Monitoring of iot data for reducing network traf-
fic. In: Tenth International Conference on Ubiquitous and Future Networks,
ICUFN 2018, Prague, Czech Republic, July 3-6, 2018. pp. 395-397 (2018).
https://doi.org/10.1109/ICUFN.2018.8436601

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Time-fluid field-based coordination 17

de Lemos, R., Garlan, D., Ghezzi, C., Giese, H., Andersson, J., Litoiu, M., Schmerl,
B.R., Weyns, D., Baresi, L., Bencomo, N., Brun, Y., Cdmara, J., Calinescu, R.,
Cohen, M.B., Gorla, A., Grassi, V., Grunske, L., Inverardi, P., Jézéquel, J., Malek,
S., Mirandola, R., Mori, M., Miiller, H.A., Rouvoy, R., Rubira, C.M.F., Rutten, E.,
Shaw, M., Tamburrelli, G., Tamura, G., Villegas, N.M., Vogel, T., Zambonelli, F.:
Software engineering for self-adaptive systems: Research challenges in the provision
of assurances. In: Software Engineering for Self-Adaptive Systems III. Assurances -
International Seminar, Dagstuhl Castle, Germany, December 15-19, 2013, Revised
Selected and Invited Papers. pp. 3-30 (2013). https://doi.org/10.1007/978-3-319-
74183-3_1

Linden, I., Jacquet, J.: On the expressiveness of timed coordination via
shared dataspaces. Electron. Notes Theor. Comput. Sci. 180(2), 71-89 (2007).
https://doi.org/10.1016/j.entcs.2006.10.047

Lluch-Lafuente, A., Loreti, M., Montanari, U.: Asynchronous distributed execution
of fixpoint-based computational fields. Logical Methods in Computer Science 13(1)
(2017). https://doi.org/10.23638 /LMCS-13(1:13)2017

Lobo, F.S.: Nature of time and causality in physics. In: Psychology of time, pp.
395-422. Emerald Group Publishing Limited Bingley (2008)

Mamei, M., Zambonelli, F.: Field-based coordination for pervasive mul-
tiagent systems. Springer series on agent technology, Springer (2006).
https://doi.org/10.1007/3-540-27969-5

Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applica-
tions: The TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4), 15:1-15:56
(2009). https://doi.org/10.1145/1538942.1538945

Menezes, R., Wood, A.: The fading concept in tuple-space systems. In: Had-
dad, H. (ed.) Proceedings of the 2006 ACM Symposium on Applied Com-
puting (SAC), Dijon, France, April 23-27, 2006. pp. 440-444. ACM (2006).
https://doi.org/10.1145/1141277.1141379

Pianini, D., Montagna, S., Viroli, M.: Chemical-oriented simulation of com-
putational systems with ALCHEMIST. J. Simulation 7(3), 202-215 (2013).
https://doi.org/10.1057/jos.2012.27

Pianini, D., Viroli, M., Beal, J.: Protelis: practical aggregate program-
ming. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing, Salamanca, Spain, April 13-17, 2015. pp. 1846-1853 (2015).
https://doi.org/10.1145/2695664.2695913

Rosi, A., Berti, M., Bicocchi, N., Castelli, G., Corsini, A., Mamei, M.,
Zambonelli, F.: Landslide monitoring with sensor networks: experiences and
lessons learnt from a real-world deployment. IJSNet 10(3), 111-122 (2011).
https://doi.org/10.1504/IJSNET.2011.042195

Rovelli, C.: Quantum mechanics without time: A model. Physical Review D 42(8),
2638-2646 (Oct 1990). https://doi.org/10.1103/physrevd.42.2638

Rovelli, C.: Relational quantum mechanics. International Journal of Theoretical
Physics 35(8), 1637-1678 (Aug 1996). https://doi.org/10.1007/bf02302261
Rovelli, C.: Loop quantum gravity. Living Reviews in Relativity 1(1) (Jan 1998).
https://doi.org/10.12942/Irr-1998-1

Schuster, D., Rosi, A., Mamei, M., Springer, T., Endler, M., Zambonelli, F.: Per-
vasive social context: Taxonomy and survey. ACM TIST 4(3), 46:1-46:22 (2013)
Sundararaman, B., Buy, U., Kshemkalyani, A.D.: Clock synchronization for
wireless sensor networks: a survey. Ad Hoc Networks 3(3), 281-323 (2005).
https://doi.org/10.1016/j.adhoc.2005.01.002

18

34.

35.

36.

37.

38.

39.

40.

D. Pianini et al.

Traub, J., Bre}, S., Rabl, T., Katsifodimos, A., Markl, V.: Optimized on-demand
data streaming from sensor nodes. In: Proceedings of the 2017 Symposium on
Cloud Computing, SoCC 2017, Santa Clara, CA, USA, September 24-27, 2017.
pp. 586-597 (2017). https://doi.org/10.1145/3127479.3131621

Trihinas, D., Pallis, G., Dikaiakos, M.: Low-cost adaptive monitoring techniques for
the internet of things. IEEE Transactions on Services Computing pp. 1-1 (2018).
https://doi.org/10.1109/tsc.2018.2808956

Viroli, M., Audrito, G., Beal, J., Damiani, F., Pianini, D.: Engineering resilient col-
lective adaptive systems by self-stabilisation. ACM Transactions on Modeling and
Computer Simulation 28(2), 1-28 (mar 2018). https://doi.org/10.1145/3177774
Viroli, M., Beal, J., Damiani, F., Audrito, G., Casadei, R., Pianini, D.:
From field-based coordination to aggregate computing. In: Lecture Notes
in Computer Science, pp. 252-279. Springer International Publishing (2018).
https://doi.org/10.1007/978-3-319-92408-3_12

Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination.
In: Coordination Models and Languages, 11th International Conference, COOR-
DINATION 2009, Lisboa, Portugal, June 9-12, 2009. Proceedings, pp. 143-162
(2009). https://doi.org/10.1007/978-3-642-02053-7_8

Viroli, M., Casadei, R., Pianini, D.: Simulating large-scale aggregate mass with
alchemist and scala. In: Proceedings of the 2016 Federated Conference on Computer
Science and Information Systems, FedCSIS 2016, Gdansk, Poland, September 11-
14, 2016. pp. 1495-1504 (2016). https://doi.org/10.15439/2016F407

Viroli, M., Pianini, D., Beal, J.: Linda in space-time: An adaptive coordination
model for mobile ad-hoc environments. In: Coordination Models and Languages -
14th International Conference, COORDINATION 2012, Stockholm, Sweden, June
14-15, 2012. Proceedings. pp. 212-229 (2012). https://doi.org/10.1007/978-3-642-
30829-1_15

