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Abstract. More and more embedded devices are connected to the internet
and therefore are potential victims of intrusion. While machine learning
algorithms have proven to be robust techniques, it is mainly achieved
with traditional processing, neural network giving worse results. In this
paper, we propose usage of a multi-layer perceptron neural network for
intrusion detection and provide a detailed description of our methodology.
We detail all steps to achieve better performances than traditional machine
learning techniques with a detection of intrusion accuracy above 99% and
a low false positive rate kept below 0.7%. Results of previous works are
analyzed and compared with the performances of the proposed solution.

Keywords: Machine Learning, Multi-Layer Perceptron, Network Intrusion
Detection, CICIDS2017 Dataset.

1 Introduction

In recent years, IoT is growing in all areas. This is typically the case for smart
agents (IoT-a) that proliferates to provide complex functionalities. Such smart
agents rely on communication to cooperate [1]. This is also true for cars that shall
embed a cellular connection for emergency call. This is mandatory in Europe
from April 1st, 2018 for all passengers cars and light commercial vehicles [12]
and also in Russia from January 2017. The presence of a modem enables the
emergence of new services requiring data transfer through this cellular connection.
In such a context, attacks against IoT-a may lead to loss of functionality or even
worse open access to other elements of the network potentially compromising
privacy. Cars become potential victims of hackers able to run remote attacks
on entire fleet of vehicles. In response to these risks, a first approach is to use
network intrusion detection system (IDS) tools such as Snort (open source IDS
tool) to analyze network traffic and extract signatures that can be compared
to known attack signatures. This type of approach has two limitations: on the
one hand, the signature of an attack must already be known and on the other
hand, it generates a high false positive rate [4]. An alternative approach is to
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use Machine Learning (ML) techniques. These techniques include supervised
learning to classify network flows into different categories and unsupervised
learning to detect anomalies.

Supervised learning is only possible by having a dataset available, in this case
the recording of network frames containing normal traffic and attacks. Cellular
or WLAN conecctivity are quite common in IoT and connected cars and we can
consider that the intrusion is similar to the attack that would be carried out on a
conventional computer network. Common network intrusion detection datasets
like KDD-Cup99 [9], NSL-KDD [17] or CICIDS2017 [14] containing different
types of attacks against computers or servers can be used for IoT and connected
cars.

Traditional machine learning algorithms and neural network-based techniques
(also called deep learning) can be used as supervised learning methods. The
former group contains algorithms like Decision Tree, Random Forest, or SVM.
Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN) or Recurrent
Neural Network (RNN) are examples of the latter group. In IDS researches, many
papers cover deeply the traditional approaches while a smaller amount of papers
concentrate on neural network techniques.

Our main contributions consist in two parts. Firstly, we propose an approach
based on multi-layer perceptron exercised on recent dataset. CICIDS2017 contains
intrusion attacks and traffics that are representative of current network usage.
All steps are detailed from dataset analysis to tuning of neural network. Secondly,
we analyse previous works on the same dataset and compare their performances
with our experimental results.

This paper presents in section 2 the related work. Our proposed methodology
is described in section 3. Section 4 provides the results of our approach using
several metrics and compares it to previous works. A link to the source code is
provided so that it can be used to reproduce results and for further improvements.
Finally, section 5 concludes this paper and identifies ideas for future work.

2 Related work

Several studies have been conducted on multiple network intrusion detection
datasets using various methods. Dhanabal et Shantharajah [3] analyzed the
NSL-KDD dataset content and studied several classifiers from the traditional
machine learning techniques. They obtained pretty good intrusion detection with
accuracy around 99% with SVM and J48 (C4.5) decision tree. Tang et al. [16]
used a deep learning approach on the same dataset. They proposed a small
neural network with a very limited number of features in input and reached an
accuracy of almost 76%.

With the release of CICIDS2017, Sharafaldin et al. [14] provided performances
of intrusion detection on their dataset. A significant gap is observed on precision,
recall and f1-measure between all traditional ML algorithms and multi-layer
perceptron. K-Nearest Neighbors and Quadratic Discriminant Analysis outperformed
MLP by almost 20%. Feature selection, data pre-processing and details about
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the classifiers are not described and therefore results cannot be reproduced. In
their paper, Jiang et al. [6] focused only on denial of service, 4 classes among
the 14 of CICIDS2017 dataset. They proposed new features and compared the
results of a neural network with features provided in original CICIDS2017 CSV
files. A two-level model was proposed by Ullah et Mahmoud [18]. The first level
classes traffic either as normal or attack with a decision tree and the second one
identifies the attack type with a random forest after data augmentation based on
synthetic minority oversampling technique [2] and edited nearest neighbors. The
method has been tested on CICIDS2017 and UNSW-NB15 datasets. Ustebay et
al. [19] proposed a two-step approach for CICIDS2017 dataset. Recursive Feature
Elimination (RFE) based on Random Forest is used to identify the most useful
features that are then injected in a neural network.

Those works either obtain lower performances with neural network or when
achieving good results do not consider all types of attacks. We propose a detailed
methodology to achieve high performance with neural network without removing
any type of attacks.

3 Our methodology and MLP solution

After selecting a dataset, we propose an approach consisting in training a multi-
layer perceptron neural network in order to quantify the benefits and potential
limitations of using deep learning in IDS. Fig. 1 give the overall framework.

Fig. 1. Overview of the proposed approach.

3.1 Choice of dataset

KDD-Cup99 is a dataset for IDS publicly released in 1999. It is derived from
DARPA-98 dataset that contains raw data corresponding to captured network
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frames with TCPDUMP. The training set is composed of 24 types of attacks.
Raw data have been processed to produce 41 features in KDD-cup99. A first
critique of this dataset has been carried out by McHugh [10]. Tavallaee et al.
[17] provided a detailed analysis and proposed a derived dataset referred to
as NSL-KDD with the goal to solve some of the shortcomings of KDD-Cup99
described McHugh. NSL-KDD dataset has been widely used for IDS since 2009.
Despite that attacks has evolved over the time, KDD-Cup99 and NSL-KDD
remains a subject of study [13] [15] [20] . We can consider that most of current
attacks are not present in a dataset relying on traffic recorded 20 years ago.

In 2015, Moustafa et Slay proposed a new dataset called UNSW-NB15 [11]
that has been generated by simulation and representing 31 hours of traffic. As a
major difference with NSL-KDD, it contains low footprint and modern attacks
retrieved from CVE site3 that are grouped in nine different families of attacks.
UNSW-NB15 is composed of 49 features. A part has been extracted from packet
headers while some others have been generated specifically.

Gharib et al. [5] reviewed different datasets and evaluated them with respects
to 11 criteria: complete network configuration, complete traffic, labeled dataset,
complete interaction, complete capture, available protocols, attack diversity,
anonymity, heterogeneity, feature set, metadata. On top of elements already
identified in [17], KDD-Cup99 and therefore its NSL-KDD derivative suffer from
the lack of some important protocols like HTTPS.

The University of New Brunswick’s Canadian Institute for Cybersecurity
released the CICIDS2017 dataset based on the framework defined in [14] intending
to solve shortcomings of previous datasets. Raw data in the form of PCAP files
are provided together with a set of 84 features in CSV files. Network traffic has
been recorded over 5 days. The first one only contains normal traffic while 14
types of attack appear for the other days.

Due to the shortcomings of KDD-cup99 and NSL-KDD, we restricted the
choice to either UNSW-NB15 or CICIDS2017. Table 1 presents 7 parameters.
The first one is year of creation of each dataset. Then the number of features
gives us the quantity of input data and labels characterizing each record. The
number of records and the distribution between normal traffic and data are
important information for dataset selection.

We observe that CICIDS2017 is more recent, include more features and
contains more instances than UNSW-NB15. Date of creation and quantity of
data are key elements. Firstly, old dataset are no longer representative of current
network traffic. As example NSL-KDD does not contain HTTPS exchanges while
it represents more than 70% of traffic today. Secondly, more data leads to better
learning. For these reasons, CICIDS2017 dataset is selected for the evaluation of
our intrusion detection solution.

3 http://cve.mitre.org/
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Table 1. Comparison of UNSW-NB15 and CICIDS2017.

Parameters UNSW-NB15 CICIDS2017

Year of creation 2015 2017
Features 49 (+ 2 labels) 84 (+ 1 label)
Attack families 9 14
Duration 31 hours 5 days
# of instances 2,540,044 2,830,743
# of normal instances 2,218,764 2,273,097
# of attack instances 321,283 (12.65%) 557,646 (19.70%)

3.2 Data Preparation

Original dataset Clean-up A series of operations has been carried out to
detect the presence of empty lines, redundant features and non numeric values
in numeric fields. This systematic verification allowed to drop more than 280,000
instances whose all features were empty. One column corresponding to forward
header length appearing twice, one instance has been removed. Most of features
are numeric but some values are not a number. Such cases appear in 6 different
traffic types: BENIGN, FTP-PATATOR, DoS Hulk, Bot, PortScan and DDoS.
As the number of instances containing ’NaN’ or ’Infinity’ is negligible in each
traffic type, these instances have simply been removed. Table 2 provides the
number of records for each traffic type and the number of ’NaN’/’Infinity’.

Table 2. CICIDS2017 Traffic Instances.

Traffic original instances NaN/Infinity after clean-up

BENIGN 2,273,097 1,777 2,271,320

Bot 1,966 10 1,956

DDoS 128,027 2 128,025

DoS GoldenEye 10,293 0 10,293

DoS Hulk 231,073 949 230,124

DoS Slowhttptest 5,499 0 5,499

DoS Slowloris 5,796 0 5,796

FTP-PATATOR 7,938 3 7,935

Heartbleed 11 0 11

Infiltration 36 0 36

PortScan 158,930 126 158,804

SSH-PATATOR 2,897 0 2,897

WebAttack BruteForce 1,507 0 1,507

WebAttack SQL Injection 21 0 21

WebAttack XSS 652 0 652
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Training set, cross-validation set and test set creation As shown in Table
2, the dataset is highly imbalanced at two different levels. First, the normal traffic
(BENIGN) accounts for 80% and second, some attacks (Heartbleed, Infiltration,
WebAttack SQL injection) are represented by a very limited number of instances.
This is known to be a challenge for supervised learning. The proposal to create
dataset for MLP training and testing consists in choosing randomly 50% of each
attacks for the training set, 25% for the cross-validation set and 25% for the test
set, ensuring that each instance is used only once. Then each set is completed by
adding randomly selected instances of normal traffic. This results in a dataset
that is balanced in term of normal traffic versus attacks but still imbalanced in
term of attack types. The exact composition of the training, cross-validation and
test set is provided in Table 3.

Table 3. Dataset Split.

Traffic Training set Cross-validation set Test set

BENIGN 278,274 139,135 139,135

Bot 978 489 489

DDoS 64,012 32,006 32,006

DoS GoldenEye 5,146 2,573 2,573

DoS Hulk 115,062 57,531 57,531

DoS Slowhttptest 2,749 1,374 1,374

DoS Slowloris 2,898 1,449 1,449

FTP-PATATOR 3,967 1,983 1,983

Heartbleed 5 2 2

Infiltration 18 9 9

PortScan 79,402 39,701 39,701

SSH-PATATOR 2,948 1,474 1,474

WebAttack BruteForce 753 376 376

WebAttack SQL Injection 10 5 5

WebAttack XSS 326 163 163

Total 556,548 278,270 278,270

Feature selection Feature selection is one of the fundamental concepts of
machine learning that greatly influences the model performance. Irrelevant or
partially relevant features can have a negative impact and lead to a decrease in
accuracy. An analysis of the dataset revealed 8 features that are not informative
as their value is constant whatever the traffic types. Consequently, features ’Bwd
PSH Flags’, ’Bwd URG Flags’, ’Fwd Avg Bytes/Bulk’, ’Fwd Avg Packets/Bulk’,
’Fwd Avg Bulk Rate’, ’Bwd Avg Bytes/Bulk’, ’Bwd Avg Packets/Bulk’, ’Bwd
Avg Bulk Rate’ have been dropped. As we don’t want the model to learn when
attack occurs, the ’Timestamp’ feature cannot be considered as informative.

Each instance is characterized by its source and destination port and IP
address, its protocol and a flow identifier containing the same information. As



Efficient MLP-based NIDS for CICIDS2017 dataset 7

’FlowID’ feature is redundant with other features, it has been removed from the
dataset.

Our model will be trained with 2 feature sets in order to ease comparison
with previous works on the same dataset. Variant-1 contains 73 characteristics:
all features except those listed above. In variant-2, source/destination IP address
and source port have be dropped, resulting in 70 features.

Standardization Data pre-processing is essential to prepare the dataset for
an efficient training. In particular, the neural network can better learn when
all features are scaled within the same range. This is especially useful when
the inputs are on very different scales. Several normalization techniques exist.
In our implementation, Z-score normalization (also called standardization) has
been selected as it presents better results than other techniques on the selected
dataset. For each feature Fj , the transformation of each value xi is given by
equation 1 where µ(Fj) and σ(Fj) are respectively the mean and standard deviation
values of feature Fj .

x
(Fj)
i =

x
(Fj)
i − µ(Fj)

σ(Fj)
(1)

3.3 Model creation

Model description Multi-layer perceptron is a fully connected, feed-forward
neural network classifier. Figure 2 shows the architectural design of our model.
Inputs correspond to the normalized values of the selected features of the original
dataset. Both hidden layers contain 256 nodes. The classifier has 15 outputs for
the 14 types of attacks and the benign traffic. Dropout is used as regularization
technique for hidden layers to prevent over-adjustment on training data by
dropping units randomly in the MLP with a probability keep prob.

Neural network output h(3) is calculated by chaining outputs of the different
layers according to equations 2, 3 and 4 in which x, W (i) and b(i) are respectively
the input vector containing selected features, the matrix of weights and the vector
of biases for layer i.

h(1) = g1

(
W (1)T .x + b(1)

)
(2)

h(2) = g1

(
W (2)T .h(1) + b(2)

)
(3)

h(3) = g2

(
W (3)T .h(2) + b(3)

)′
(4)

Activation functions g1 and g2 bring non linearity to neural network. As MLP
does not provide an intrinsic normalization of its outputs, scaled exponential
linear unit given in equation 5 is used as activation function for hidden layers
with values λ = 1.0507 and α = 1.6733 as defined in [8] to take advantage of
self normalization. Output layer is a softmax activation function g2 as defined in
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Fig. 2. MLP architectural design.

equation 6 so that each output can be interpreted as the probability of predicting
a given class. The predicted label ŷ is given by ŷ = argmax h(3).

g1(z) = λ.

{
α.(ez − 1) for z < 0

z for z ≥ 0
(5)

g2 (z)j =
ezj∑N
k=1 e

zk
for j ∈ [1; 15] (6)

Training For model implementation and training, we have used python and
Tensorflow as deep learning framework. Training set is divided in mini-batch of
32 instances. MLP learns classification by tuning the weights w between neural
network nodes in order to reduce the cross-entropy loss function L(w) as defined
in equation 7 where y the ground truth label and ŷ the predicted class. L(w)
is optimized with Adam algorithm. Three parameters α, β1 and β2 described in
[7] allow to configure this optimizer.

L(w) = − [y. log (ŷ) + (1− y) . log (1− ŷ)] (7)

Two different models corresponding to the two variants described in section
3.2 have been trained.

3.4 Evaluation Metrics

Several key information can be extracted from a confusion matrix as depicted
in Table 4: True Positive (TP) is the number of attacks correctly predicted



Efficient MLP-based NIDS for CICIDS2017 dataset 9

as attacks, True Negative (TN) is the number of normal instances classified as
normal traffic while False Positive (FP) and False Negative (FN) are respectively
the number of normal instances classified as attacks and the number of attacks
predicted as normal traffic.

Table 4. Confusion matrix.

Predicted labels
Attacks Normal

Actual Attacks TP FN
labels Normal FP TN

Different metrics can be derived from the information contained in the confusion
matrix. As some existing papers use only a subset of metrics, we propose to cover
more metrics in order to enable comparison of our work with future studies on
the same dataset.

TNrate given in equation 8 is the percentage of traffic classified as benign
over the actual number of benign instances and FPrate in equation 9 is the
percentage of benign traffic classified as attacks.

TNrate =
TN

TN + FP
(8)

FPrate =
FP

TN + FP
(9)

Precision and Recall given in equations 10 and 11 correspond respectively
to the percentage of attacks correctly detected over the number of instances
predicted as attacks and the percentage of attacks correctly detected over the
total number of actual attacks.

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Accuracy measures the proportion of total number of correct classifications.

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

f1score is the harmonic mean of Precision and Recall

f1score =
2× precision× recall
precision+ recall

(13)

Matthews Correlation Coefficient (MCC) is an interesting measure taking
into account all elements of the confusion matrix in a correct way for imbalanced
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dataset as opposed to the accuracy which may report high value even when the
whole minority class is wrongly classified. As intrusion detection datasets are
intrinsically imbalanced, this is an key metric for such application. MCC provides
a value between -1 and +1. A perfect prediction corresponds to MCC = 1. At
the opposite, MCC = −1 denotes a full disagreement between predictions and
actual classes. A random prediction would result to MCC = 0.

MCC =
TP × TN + FP × FN√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(14)

4 Experimental results

4.1 Performance evaluation

After training a golden model, the test set has been used to measure the MLP
performance as a 15-class classifier. The resulting confusion matrices for the 2
variants are simplified in Tables 5 and 6 to show the estimated class in 3 columns:
benign, correct attack and other attacks. In multi-class classification, an attack
can be predicted as another attack. This denotes an issue if the correct class
is required. In intrusion detection, such a misclassification is acceptable as it is
still considered as an attack. Consequently, predictions of all attack types have
been merged in one single class to get a binary classifier to calculate metrics in
Table 7.

Table 5 shows that MLP performs well on all classes except ’Infiltration’. This
specific issue is most likely due to the extremely low number of instances. The
neural network didn’t succeed in learning from the only 18 examples available
in the training set. A significant difference can be observed in Table 6. On the
one hand, 1244 normal traffic instances are classified as error, generating false
positive detection. On the other hand, more attack instances are classified as
normal traffic for almost all classes, meaning that the classifier failed to detect
some attacks. In particular, ’infiltration’ and ’WebAttack’ are not successfully
detected. Again, it corresponds to classes with low number of instances. It
confirms the well-know fact that the amount of data is a key point for success
in machine learning.

The best results are obtained with variant-1 but we can guess the MLP learns
the IP address of the machine conducting the attack. By removing IP addresses
and source ports in variant-2, the model requires a longer training to reach good
performances without being as good as the previous one. This clearly show the
importance of these 3 features. Even if the accuracy is above 99%, the recall
falls from 99.99% to 99.34% and FPrate goes up from 0.08% to 0.62%. Our
classifier provides an MCC value close to 1 and therefore indicate a pretty good
performance.

All results can be fully reproduced by using the source code available on
Github (https://github.com/ArnaudRosay/mlp4nids) to generate the training,
cross-validation and test sets, build the golden model and obtain the values of
all the metrics described in this document.
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Table 5. Simplified confusion matrix for variant-1.

Predictions
BENIGN Correct attack Other attack

A
c
tu

a
l

c
la

ss
e
s

BENIGN 139,017 - 118
Bot 5 472 12
DDoS 1 31,994 11
DoS GoldenEye 0 2,544 29
DoS Hulk 0 57,529 2
DoS Slowhttptest 0 1,345 29
DoS Slowloris 0 1,434 15
FTP-PATATOR 0 1,969 14
Heartbleed 0 2 0
Infiltration 4 3 2
PortScan 0 39,675 26
SSH-PATATOR 0 1,459 15
WebAttack BruteForce 0 349 27
WebAttack SQL Injection 0 0 5
WebAttack XSS 0 0 163

Table 6. Simplified confusion matrix for variant-2.

Predictions
BENIGN Correct attack Other attack

A
c
tu

a
l

c
la

ss
e
s

BENIGN 138,277 - 858
Bot 193 296 0
DDoS 30 31,970 6
DoS GoldenEye 33 2,537 3
DoS Hulk 45 57,486 0
DoS Slowhttptest 18 1,348 8
DoS Slowloris 7 1,420 22
FTP-PATATOR 12 1,967 4
Heartbleed 0 2 0
Infiltration 7 0 2
PortScan 43 39,639 19
SSH-PATATOR 18 1,455 1
WebAttack BruteForce 340 0 36
WebAttack SQL Injection 2 0 3
WebAttack XSS 162 0 1
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Table 7. Performance Results.

Metrics
Variant-1 (73 feat.) Variant-2 (70 feat.)
Training Test Training Test

TP 278,256 139,125 276,444 138,225

FP 257 118 1,630 858

FN 18 10 1,830 910

TN 278,017 139,017 276,644 138,277

TNrate (%) 99.91 99.92 99.41 99.34

FPrate (%) 0.09 0.08 0.59 0.62

Recall (%) 99.99 99.99 99.34 99.35

Precision (%) 99.91 99.92 99.42 99.38

Accuracy (%) 99.95 99.95 99.38 99.36

F1-score (%) 99.95 99.95 99.38 99.36

MCC 0.9990 0.9991 0.9876 0.9873

4.2 Comparison with prior results

Table 8 compares results with reference papers. As different metrics are used,
it is not possible to fill in all cells of the table. In addition to neural network
solutions, traditional machine learning algorithms are also considered for this
comparison.

Our model outperforms all the results reported by Sharafaldin et al, both for
neural network and traditional machine learning techniques. Jiang et al. achieves
a slightly worse performances than our solution. It should be noted that the type
of attacks has been limited to application layer DoS (slowloris, slowhttptest, hulk,
DDos GoldenEye) and with a very limited amount of instances (4171). Therefore
it is difficult to make an exact comparison.

A two-stage approach using decision trees proposed by Ullah and Mahmoud
[18] reports metrics with an average of 100%, a closer look at the details reveals
that 4 attack types are not perfectly detected by the decision trees. These are
the exact same classes for which our classifier encounter some difficulties. The
lack of significant digits and averaging method in [18] do not allow a fine-grain
analysis but the overall comparison shows that our MLP-based solution reaches
the same performance level as traditional machine learning algorithms.

The neural network based solution of Jiang et al. [6] achieved results similar
to our proposed method but only cover DoS attacks. As shown in Table 5 and
6, thoses attacks are not the most difficult to detect. We can expect a drop of
their overall performance when all other attacks are taken into account.

Ustebay et al. [19] also used multi-layer perceptron but did not achieved
high performance. Nevertheless, their results cannot be directly compared with
[6] and [18] as the latter use IP addresses of the machines conducting attacks. In
a real life scenario, addresses of hackers are not known and cannot be used for
intrusion detection. It should be noted that once source IP address is removed,
RFE reports the source port as the most important feature. More generally,
this proves that usage of source/destination ports and addresses features may
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improve intrusion detection on CICIDS2017 but may not be realistic for application
to a real network.

Table 8. Performance Comparison.

Paper Algorithm Accuracy Precision Recall FPrate MCC
(%) (%) (%) (%)

our work - variant-1 MLP 99.95 99.92 99.99 0.08 0.9991
(45 epochs)

our work - variant-2 MLP 99.36 99.38 99.35 0.62 0.9873
(715 epochs)

Sharafaldin et al. [14] MLP - 77 83 - -
Quadratic - 97 88 - -

Discriminant
Analysis

K-Nearest - 96 96 - -
Neighbors

Jiang et al. [6] MLP 99.23 99.87 99.60 0.77 -

Ullah and Mahmoud Decision Tree + - 100 100 - -
[18] Random Forest

Ustebay et al. [19] MLP 91 - - - -

5 Conclusion

This paper proposed an approach based on multi-layer perceptron for network
intrusion detection system covering analysis of the dataset, definition of the
MLP and its training. As in any machine learning project, cleaning the dataset
and selecting features is an important step before optimization of a neural
network. The experiment has shown that MLP is a viable solution reaching top
performance. Our approach provides better results than previous implementations
with neural networks. It should be noted that IP addresses and destination port
are important features, helping to detect intrusion detection. Nevertheless this is
not suitable for real world implementation. Without these features, our approach
reaches high performance at the cost of a longer training phase. Deep learning
techniques are computationally expensive. We only focused on performance but
in a constrained system it may be a drawback pushing to use traditional machine
learning algorithms. This may evolve with the increase of hardware accelerators
for deep learning in many electronic devices.

In future work, neural network in supervised learning may be improved by
data augmentation techniques. Number of instances in classes that are not well
detected is clearly a point to address to obtain better performances. Beyond
this, supervised learning does not allow detection of attacks unseen during the
training phase. Unsupervised learning methods may be considered to overcome
this limitation.
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