N

N

Finding Code-Clone Snippets in Large Source-Code
Collection by ccgrep

Katsuro Inoue, Yuya Miyamoto, Daniel M. German, Takashi Ishio

» To cite this version:

Katsuro Inoue, Yuya Miyamoto, Daniel M. German, Takashi Ishio. Finding Code-Clone Snippets
in Large Source-Code Collection by ccgrep. 17th IFIP International Conference on Open Source
Systems (OSS), May 2021, Lathi/virtual event, Finland. pp.28-41, 10.1007/978-3-030-75251-4_3 .
hal-03254061

HAL Id: hal-03254061
https://inria.hal.science/hal-03254061

Submitted on 9 Jun 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-03254061
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Finding Code-Clone Snippets in Large
Source-Code Collection by ccgrep

Katsuro Inoue!, Yuya Miyamoto', Daniel M. German?, and Takashi Ishio®

! Osaka University, Osaka, Japan
{inoue,yuy-mymt }@ist.osaka-u.ac. jp
2 University of Victoria, Victoria, Canada
dmg@uvic.ca
3 Nara Institute of Science and Technology, Ikoma-shi, Japan
ishio@is.naist.jp

Abstract. Finding the same or similar code snippets in the source code
for a query code snippet is one of the fundamental activities in software
maintenance. Code clone detectors detect the same or similar code snip-
pets, but they report all of the code clone pairs in the target, which
are generally excessive to the users. In this paper, we propose ccgrep, a
token-based pattern matching tool with the notion of code clone pairs.
The user simply inputs a code snippet as a query and specifies the tar-
get source code, and gets the matched code snippets as the result. The
query and the result snippets form clone pairs. The use of special tokens
(named meta-tokens) in the query allows the user to have precise control
over the matching. It works for the source code in C, C++4, Java, and
Python on Windows or Unix with practical scalability and performance.
The evaluation results show that ccgrep is effective in finding intended
code snippets in large Open Source Software.

Keywords: Code Snippet Search - Pattern Matching - Clone Types

1 Introduction

Finding and locating the same or similar code snippets in source code files is
a fundamental activity in software development and maintenance, and various
kinds of software engineering tools or IDEs have been proposed and imple-
mented[19].

A (code) clone is a code snippet that has an identical or similar snippet,
and a pair of such snippets is called a (code) clone pair[6]. A large body of
scientific literature on clone detection has been published and various kinds of
code clone detection tools (detectors) have been developed[18,20]. These code
clone detectors are candidates for finding similar code snippets, but most of
those are designed to detect all of the code clone pairs in the target, which are
generally excessive to the user who wants to search for a specific query snippet.

It has been reported that grep[8|, a character-based pattern matching tool,
is widely used in the software engineering practice to find lines with a specific



2 K. Inoue et al.

keyword[14, 21], although making a query for a code snippet that spans multiple
lines needs some skill and effort.

In this paper we propose a tool, named ccgrep (code clone grep), to find
code snippets by using the notion of clone detection and pattern matching.
Search queries can be simply code snippets, or code snippets enhanced with
meta-tokens having a leading $ that can provide flexibility to narrow or broaden
the search query. ccgrep is not an ordinary code clone detector that finds all
code clone pairs in the target program and is a code snippet finder that reports
code snippets composing code clone pairs against the query snippet.

ccgrep works on Windows or Unix as a simple but reliable clone detector
and pattern matching tool for C, C++, Java, and Python. ccgrep has been
applied to various applications, and it showed high scalability and performance
for large source-code collection. ccgrep is an Open Source Software system and
can be obtained from GitHub?.

2 DMotivating Example

Some uses of the ternary operator (e.g., expl ? exp2 : exp3 meaning the result
of this entire expression is exp2 if expl is true, otherwise the result is exp3—
available in C, C++ and Java) are considered bad practice[23]. For example, the
use of a < b ? a : b is arguably harder to read than using min(a,b). Therefore,
it might be desirable to replace the ternary operator with a function or macro
that returns the minimum value. The following is an example found in the file
drivers/usb/misc/adutux.c in the Linux kernel (v5.2.0).

amount = bytes_to_read < data_in_secondary 7
bytes_to_read : data_in_secondary;

This line of code should be replaced with a more readable expression (note that
the macro min in Linux guarantees no side effects):

amount = min(bytes_to_read, data_in_secondary);

We might consider that finding all occurrences of such usage of the ternary
operator could be done by clone detectors. A popular clone detector NiCad[7] re-
ports 646 block-level clone classes for the drivers/usb files by the default setting,
but no snippet with the ternary operator case is included in the result because
it is too small to be detectable.

Alternatively, we would try it with grep but it is not easy. For example,
simply executing “grep ’<’” for all 598 files (total 51,6394 lines in C) under
/drivers/usb produces 16335 matching, including many undesired patterns such
as “if (a<b)”, “for (i=0; i<x; ...)”, or “#include <linux/...>". We could
narrow the matches by concatenating grep like,

* https://github.com /yuy-m/CCGrep



Finding Code-Clone Snippets ... by ccgrep 3

grep ’<’ -r . | grep 7?7’ | grep ’:’

However, it still produces 149 matches. Perhaps more problematic is that the
expressions could span multiple lines. While it is possible to create a complex
regular expression to find these expressions, it would be time-consuming and
potentially error-prone.

Ideally, we would like to be able to specify a simple and easy-to-create-and-
understand query to find these types of snippets. Therefore in this paper, we
propose ccgrep and its query is written simply as:

a<b7?7a:b

In a nutshell, this query specifies that a variable (represented by a) should be
followed by < and then the second variable (represented by b), followed by a 7,
followed by the same first variable found, followed by :, followed by the second
variable. Also, white spaces and comments should be ignored. This query would
match all type 2 clones (mentioned in Sec.3.3) with consistent variable names
such as x<y?x:y but it would not match x<y?x:z.

As a practical application, we have used this query to identify 3 instances
of such an expression in Linux’s drivers/usb and submitted patches to replace
them with min. Two of those patches have been accepted already into Linux.

3 Overview of Code Clone Query by ccgrep

3.1 Basic Features

The input of ccgrep is the query and the target of the source code files in the
same programming language. The output is a list of the matched code snippets
in the target. The query and the matched code snippets form clone pairs. The
query is a code snippet of single or multiple lines and is composed of the regular
tokens in the language and the extended tokes with meta symbols having a
leading $. We will describe these based on the classification of the clone types.
Formalization of the matching is presented in Appendix and also in [11].

3.2 Query for Type 1 Clone

A Type 1 code clone pair is two code snippets possibly with different spacing,
line break, or comment. To find type 1 cloned snippets, a code snippet in the
programming language is directly given as the query, with a leading $ for each
identifier or literal. Note that in the following examples, we will use Java as the
programming language.

Query: |int $a= $0;

Target: |int a=0 /* some comments */; Match
Target: |int b=0 ; ‘ Not Match

In this case, the query matches a code snippet with a comment, but it does not
match the latter case of identifier b. The users do not worry about the white
spaces and comments in the query.



4 K. Inoue et al.

3.3 Query for Type 2 Clone

A Type 2 code clone pair is two code snippets with the difference of the replace-
ment of identifiers and literals, in addition to the difference of type 1 clones.

In type 2 matching, a user-defined identifier in the query matches any iden-
tifier in the target. The same also applies to literal. This “normalization” of the
user-defined names allows very flexible pattern matching to find different iden-
tifiers or literals. By default, ccgrep executes so-called Parameterized match[3)
or P-match for short, such that if two identifiers (or literals) in the query are
the same, then the corresponding tokens in the target must be consistently the
same. These normalization and p-match are formally explained in Appendix.

Query:‘a=0; a=a+b;‘

Target: ‘y =0; y=y+ c;‘ Match

Target: ‘y =0; y=2z+ c;‘ Not Match

In the former case, a consistently corresponds to y, but in the latter case, it does
not®.

3.4 Query for Type 3 Clone

A Type 3 code clone pair is two code snippets with a difference of some state-
ments of addition, deletion, or change, in addition to the distinction of type 2.
We employ wild-card tokens in the query, which extend the matching from the
original seed tokens. The seed snippet and the matched snippet form a code
clone pair of type 3. We can replace a token in the seed snippet with ’$.” that
matches any single token.

’$$’ is a wild-card token to match zero or more tokens before the next token
matches.

Seed:
Query: |a = $$ ;
Target: = b+c+10 ; Match
= f(g,h) ; Match

a
Target: |a

The following is a more complex example.

Seed: ‘a= f(Q; if(a<0){a=—a;}‘

Query: ‘a= $f(p); $$ if(a<0){a=—a;}‘

£(q); if(b<0){b=-b;} \ Match

£(q); o= c+10; d=20; if(b<0){b=-b;}| Match

5 This can be changed by an option to allow inconsistent matching.

Target: |b

Target: | b




Finding Code-Clone Snippets ... by ccgrep 5

3.5 Finding Various Code Snippets

Combining the regular tokens and meta-tokens in the query, we can find many
different kinds of code patterns in the target, from simple to complex ones.

Method XY 7 with no parameter

Query:

Method XY 7 with 0 or more parameters

Query:

Method print with variable buf as the 1st parameter
Query: |$print ($buf, $3) |

Any method definition

Query: [T £($$){$$}

Note that type names are treated as identifiers and then T matches any type
name.

Getter method
Query: ‘T f(){return this.v;} ‘

Setter method
Query: |T1 £(T2 vi){this.vi=v2;} |

if statement
Query: |if ($$){$3$}

for statement using control variable
Query: ‘for(T i=0; i<$$; i++){$$}‘

In addition to finding these patterns, one of the usable use-cases would be
a copy-and-paste code search. A developer finds a bug in a system and locates
the snippet that causes the defects. She would want to find the same or similar
occurrences of the bug in the system, then she copies the buggy snippet and
runs ccgrep with the pasted snippet as the query. Then she instantly gets type
2 clone snippets. She does not need to set up a heavy clone detector, nor does
she need to do tedious analysis of the unnecessary detection results.

4 Architecture of ccgrep

The architecture of ccgrep is presented in Figure 1.



6 K. Inoue et al.

Extended
Token gua Tokenizer
Definition Definition Generation

[ 1

' |

1

1 Q : (executed only
' . once for each
: Tokenizer Tokenizer : language)

. Generator Generator 1

Language

_________

Token
1
Output
/ Tokenizer / / Matcher M Formatter /# izt
Token

Sequence

7/
B '
ccgrep

Fig. 1. Architecture of ccgrep

Tokenizer Generators: Parser generator ANTLR is used to generate two kinds
of tokenizers. For the target tokenization, only the language definition is used
to recognize the regular tokens, but for the query tokenization, the definition
of the meta-tokens and that of regular tokens are used. This process has been
executed only once for each target language.

Tokenizers: Each tokenizer removes white spaces and comments from the input
files and decomposes the code into tokens. The query tokenizer accepts the
meta-tokens starting with $ and the regular tokens defined by the language,
but the target tokenizer accepts only the regular tokens. The tokenizer for
the target files is executed in parallel for each file, along with the following
CC Matcher.

CC Matcher: This performs a naive sequential pattern matching algorithm
between two token sequences for the query (of the length m) and the target
(of the length n), whose worst-case time complexity is O(mn)[9]. For type 2
code clone matching, we record the position for each identifier and literal in
Map Table to check proper P-matching. The table contents are flushed for
each query. Option controls the normalization level, input language, output
form, and many others.

Output Formatter: This process constructs the output for the successful match-
ing result. Based on the input option, we can view the match result, like grep,
in the form of the file name associated with the matched top line as the de-
fault, or as many other styles such as full matched lines, only the number of
lines, or so on.

ccgrep is written in Java associated with the ANTLR output, and it is very
easily installed and executed on various Unix or Windows environments with a
single JAR file (about 1M byte) containing all necessary libraries.



Finding Code-Clone Snippets ... by ccgrep 7

5 Evaluation

The goal of the evaluation is to show that our proposed approach can find various
kinds of intended code snippets effectively and efficiently. This goal could be
decomposed into the following three research questions.

RQ1 : Query Expressiveness Are queries for various types of code clones
expressible by ccgrep?

RQ2 : Accuracy of ccgrep Does ccgrep accurately find various types of code
clones already detected by other approaches?

RQ3 : Performance of ccgrep What is the execution time of ccgrep? Is
the token-based naive sequential pattern matching approach fast enough in
practice?

5.1 RQ1: Query Expressiveness

As shown in previous sections, it is obvious that our approach can easily create
various query patterns for type 1 matching, type 2 matching with P-match,
and type 2 matching with non-P-match, by specifying a code snippet associated
with appropriate options. In addition, we can specify the name of an identifier
or literal, if we place $ before the name.

A type 3 code-clone snippet is one with a few statement addition, or deletion,
or change for a seed snippet. Thus the query for type 3 matching could be made
from the seed by adding meta-tokens such as $., $$, or $*, deleting some regular
tokens in the seed, or modifying some regular tokens with $., $$, or other meta-
tokens.

Therefore, the queries for type 1 to 3 code clones can be effectively created
from a code snippet at hand.

5.2 RQ2: Accuracy of ccgrep

For evaluation of query-matching (or information retrieval) systems, recall and
precision values, computed by comparing the matched results with the oracles for
the queries, are popularly employed|[2]. Here in our approach, however, the query
to CC matching has no ambiguity and it reports the matching result rigorously
as expected and specified by the query with options. In such a sense, the result
is always the same as the oracle, i.e., the recall and precision are always 1. Thus,
instead of using recall and precision, here we simply investigate if ccgrep works
accurately in the sense that code clones already reported by other approaches
could be found by our approach.

For this purpose, first, we have employed BigCloneBench[24] which is a huge
collection of various kinds of code clones. We have extracted all pairs classified
as type 1 and type 2 code clones from BigCloneBench, and for each clone pair
(spl,sp2), we have checked if sp2 is successfully found in the result of ccgrep
for spl as a query with appropriate options, and vice versa. Table 1 shows the
numbers of type 1 and 2 clones found by ccgrep.



8 K. Inoue et al.

Table 1. Checked Clones in BigCloneBench

lClone TypeHClone Pairs[Found[Not Found‘

Type 1 48116[ 48111 5
Type 2 4234] 4232 2
[ Total || 52350] 52343 7|

As we can see in Table 1, most type 1 and 2 clones are found accurately.
There were several cases of not-found clones, and we have investigated further
those cases and recognized that those cases are faults of the classification of
BigCloneBench, some of which should be classified into type 3, and some others
are not clones. Thus, we can say that all of the proper type 1 and 2 clones in
BigCloneBench were perfectly found by ccgrep.

For type 3 clones, since BigCloneBench contains huge type 3 data and we
cannot make the queries for those, we have instead used CBCD data[16], that
contains 11 type-3 clone sets taken from the source code of Git, the Linux kernel,
and PostgreSQL. We have crafted type 3 queries from one of the code snippets
in each clone set as the seed and have checked if those queries accurately match
the other snippets in the same clone set. We have confirmed that all the crafted
queries accurately match other snippets in each clone set.

As far as our investigation, all the matches are controlled by the query and
are performed accurately as we have expected.

5.3 RQ3: Performance of ccgrep

It is interesting to know that our approach, i.e., token-based and naive sequential
pattern matching, can be implemented fast enough for practical use. We have
examined various queries for ccgrep with the target source files of Antlr and
Ant in Java, and CBCD data (Git, PostgreSQL, and Linux Kernel) in C, and
have measured the performance of ccgrep. Following are employed queries. All
execution was made with the default setting of ccgrep except for the language
option.

aA:

Find ternary operation to give a smaller value.
gB: ‘Tl £(T2 a) { return $$; } ‘
Find function definition immediately returning a value.

qC: [£(s$, 33, $8); |

Find three parameter function.

for(a = 0; a < $$; a++) { $$ } $1
a = 0; while(a < $$) { $$ a++; }
Find for or (represented by $|) while statement with a control variable.

qD:




Finding Code-Clone Snippets ... by ccgrep 9

Table 2. Target and Execution Result by ccgrep

lTarget “ Antlr[ Ant[ Git[PgSQL[ Linuxl
Lang. Java| Java C C C
#file 678 1,272| 339 904 15,123
#line 59,511(138,396|90,495(177,174|3,756,212
qA|#found 0 2 8 3 48
time(sec.)|| 1.12 1.32| 1.11 1.43 9.46
qB|#found 159 161 7 27 543
time(sec.)|| 1.15 1.33| 1.10 1.47 10.15
qC|#found 1,710 2,487| 5,717 10,603| 187,653
time(sec.)|| 1.20 1.38| 1.13 1.55 12.01
qD|#found I 13 442] 621 10,754
time(sec.)|| 1.19 1.52| 1.10 1.49 11.06

Antlr: Antlrd v.4.7.2, Ant: Apache Ant v.1.10.5, Git: v.1.6.4.3,
PgSQL: PostgreSQL v.6.5.3, Linux: Linux kernel v.2.6.14rc2

Table 2 shows the size metrics of the target, the number of found snippets,
and the execution time of each query on a workstation with Intel Xeon E5-1603v4
(@2.8GHz x 4), 32GB RAM, and Windows 10 Pro for WS 64bit.

As we can see from Table 2, the execution times are about 1-10 sec. even for
a few million lines of Linux kernel target. We would think that those are fast and
acceptable as a daily-use tool. The execution times for qA to qD are very stable
for each target. For example, in the case of Linux, they are about 10 sec. even for
the small #found case (48 for qA) and the large #found case (187,653 for qC).
Thus, we would say that the execution time is not heavily affected by the result
size (#found) but mainly affected by the target size (#line). Targets Ant in Java
and PgSQL in C have similar sizes around 140-180 Klines, and the execution
times are also similar around 1-1.5 sec. This would show that the execution time
is not strongly affected by the target language.

For comparison to grep we have employed a query gE, that is almost equiv-
alent to qA except qE does not match the targets with more than one line.

([a-zA-Z_] [a-zA-Z_0-9]*) \s*<
qE(grep): | ([a-zA-Z_] [a-zA-Z_0-9]*)\s*\?\s*

\1\s*:\s*\2

This query is complex and hard to create for inexperienced grep users. It has
been executed by grep 3 to 9 times faster than ccgrep, but it missed some
expected matches of the code snippets with two or more lines.

As the conclusion of RQ3, although the speed of ccgrep is slower than grep,
it is sufficiently fast and acceptable as a search tool even for large targets such
as 3 million LOC Linux kernel.



10 K. Inoue et al.

6 Related Works

There are numerous publications on code clone detection methods and their
tools[18, 20]. Most of those tools focus on finding all of the code clone pairs in the
target file collection. They report all code clones or similar code snippets with
similarities higher than a certain threshold. Precisely controlling the matches
with meta-symbols like ours cannot be accomplished by those approaches.

There are several tools specialized for finding code snippets. CBCD has been
designed for finding related code snippets from a buggy code snippet, by using
matching of Program Dependence Graph (PDG)[16]. It can be used to find
type 1, 2, and 3 clones; however, the matching generally requires a long pre-
processing time to construct PDG, and so this approach would not fit the nimble
clone finding that we are interested in. NCDSearch has been designed to find
similar code snippets in the pile of source code files for the analysis of code
reuse and evolution[12]. The approach would be unique and interesting, but the
speed is slower than ours. Micro-clones are recently getting focus due to their
importance[4, 13]. Our tool is one of the convenience tools for finding micro
clones.

Siamese has been developed for finding code clone pairs for a query method
or file using multiple representations of n-gram token sequences with inverted
index[17]. It requires a long indexing time (e.g., about 10 minutes indexing time
for 10,000 method target). Thus its application and usage would be different
from ours.

Variants of grep such as context grep cgrep, approximate grep agrep,
and many others had been proposed and implemented to meet various require-
ments[1]. However, there is no one for clone-based matching like ours. Semantic-
based matching tool sgrep[5], data-structure-based matching tool coccigrep[15],
and the logic-based query pattern capturing language[22] were proposed, where
the specific notations for the queries are provided without using the notion of
clones like ours.

7 Conclusions

We have presented ccgrep that effectively finds code snippets in the target files
with the notion of code clone and meta-pattern. It is a practical and effective
pattern matching tool, easy-to-use to many software engineers.

As a future direction, we are interested in further performance improvement
by using more efficient pattern matching algorithms. Also, we are trying to
spread the use of ccgrep to industry collaborators who are trying to detect
similar bug patterns in their legacy systems.

Acknowledgments This work was partially supported by JSPS KAKENHI
Grant Number 18H04094, and Osaka University Program for Promoting In-
ternational Joint Research. We are grateful for important comments from T.
Kamiya, N. Yoshida, Raula Gaikovina Kula, E. Choi, K. Takenouchi, T. Kanda,
and M. Matsushita.



Finding Code-Clone Snippets ... by ccgrep 11
Table 3. Token-Level Matching
token(s) in query [matched token(s) in target ‘ simple example of match ‘
‘ query ‘target ‘
reserved wordf  |exact reserved word while while
delimiter exact delimiter ( (
identifier any identifierf myname abc
literal any literalf 1 100
Sidentifier exact identifier $myname myname
Sliteral exact literal $1 1
8. any single token $. if
$# X any shortest token sequence ending with X $# + while (f (a+
88 X any shortest token sequence ending with X, excluding X
inside well-balanced bracket {...}, [...], or (...) $$ + while (f (a+1))+
X $—Y either X or Y + $l - -
X $* repeated sequence of X zero or more times ( $* («
X $+ repeated sequence of X one or more times ( $+ ((
X $7 X or none ( $7 (
$( X1X2.. $)[X1, X2, ... (group for further regular expression operations)||$( a++ $| ++a $)|a++

tType names are treated as identifiers.

iIdentifier and literal may match only the exact one by an option.

- Tokens starting with $ are meta-tokens and others are regular tokens.

- Wildcard meta-tokens $# and $$ match in reluctant way, and $*, $+, and $? match in possessive
way[10].

- X, Y, X1, X2, ... are any regular token or a group with $( ... $).

Appendix: Formulating Matching

Here we formulate the matching made by ccgrep. The input of the matching
is the query ¢, the target T of source code files in a programming language L,
and matching option o. The output is a list of matched code snippet ¢ in T.
We refer to reserved words, delimiters (operators, brackets, ; ...), identifiers, and
literals in L as regular tokens. Other tokens starting with meta symbol $ are
called meta-tokens. q is a sequence of regular tokens and the meta-tokes, and
each matched result ¢ is a sequence of the regular tokens. These token sequences
do not contain comments, white spaces, or line breaks. We always consider the
matching on the token sequence level, not on the character level.

In Table 3, we define a token-level matching for various kinds of tokens with
simple examples. The basic ideas of these matches are as follows.

A language-defined token such as reserved words or delimiters matches the
exact token.

A user-defined token such as an identifier or literal can match the same
kind of token with a possibly different name or value. To pin down them
to a specific identifier name or literal value, $ is used before the token. For
example, $count would match only the token count.

Wildcard tokens $., $#, and $$ are introduced for the matches to any single
token, any token sequence, or any token sequence discarding paired brackets,
respectively.

Popular regular expression operators for choice, repetition, and grouping are
introduced to enhance the expressiveness.



12 K. Inoue et al.

Consider that query ¢ is a token sequence qi, ..., ¢, (1 < m), and a target
t is a token sequence ti,...,t, (0 < n). From ¢ to g, if each token in the
query matches tokens in the target from ¢; to ¢,, as defined in Table 3 without
overlapping or orphan tokens, then we say ¢ matches t.

For the query token sequence q1, ..., ¢ and the target token sequence t1, ..., t,,,
if n = m and norm(q;) = norm(t;) for each i, then ¢ matches ¢ as type 2 match-
ing. Here norm is a normalization function to flat the distinction of identifiers
(or literals), defined below.

#id if x is an identifier
norm(x) = ¢ #li if x is an literal
x  otherwise
In type 2 matching, an identifier in the query can match any identifier in the
target, and also a literal in the query can match any literal in the target.

ql: a = 0; b = 10;
tl: x = 10; y = 200;

ql matches t2, because the sequences of the normalized tokens are both [#id, =
s H#Hl s, #id, =, #liy ]

A special case of type 2 matching, with a constraint such that for any identi-
fier or literal g; if ¢; = g;, then t; = t;, is Parameterized matching or P-matching.
This is sometimes referred to consistent or aligned matching, meaning the same
identifiers (or literals) in the query are mapped into the same ones in the tar-
get. P-matching is formally defined with a specialized normalization function
normy(), as follows.

F#idyos(z) if T is an identifier
normy(x) = § F#lipes(z) if @ is a literal
x otherwise
Here, pos(x) is a function returning position ¢ such that identifier (or literal) x is
the 4-th identifier (literal) newly appeared in the token sequence. Note that any
meta-token starting with $ in the query and their matched tokens in the target
are out of consideration of pos().

q2: a =0; a=a + b;
t2: y=0; y=y + c;

For g2, pos(a) = 1 and pos(b) = 2, and for t2, pos(y) = 1 and pos(c) = 2.
q2 matches t2 as P-matching, because the P-normalized sequences are both
[#idy, =, #lir, ;, #idy, =, #idq, +, #ida, ; ]. The following case is type 2 matching
but not P-matching.

q3: a = 0; a=a + b;

t3: y = 0; y = z + ¢; (type 2 matching but not P-matching)

At 13, z cannot be matched by a because normy(a) = #id; is not equal to

normy,(z) = #ida. As a default of CC matching, P-matching is assumed but it
can be changed by the tool’s option.



Finding Code-Clone Snippets ... by ccgrep 13

References

1.

2.

10.

11.

12.

13.

14.
15.
16.

17.

18.

19.

Abou-Assaleh, T., Ai, W.: Survey of global regular expression print (grep) tools.
In: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.95.3326 (2004)
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press,
Addison-Wesley, New York (1999)

Baker, B.S.: A program for identifying duplicated code. Proc. of Computing Science
and Statistics: 24th Symposium on the Interface 24 pp. 49-57 (1992)

Beller, M., Zaidman, A., Karpov, A., Zwaan, R.A.: The last line effect explained.
Empirical Softw. Engg. 22(3), 1508-1536 (2017). https://doi.org/10.1007/s10664-
016-9489-6

Bull, R.I., Trevors, A., Malton, A.J., Godfrey, M.W.: Semantic grep:
Regular expressions + relational abstraction. In: Ninth Working Confer-
ence on Reverse Engineering, 2002. Proceedings. pp. 267276 (Nov 2002).
https://doi.org/10.1109/WCRE.2002.1173084

Carter, S., Frank, R., Tansley, D.: Clone detection in telecommunications software
systems: A neural net approach. In: Proc. Int. Workshop on Application of Neural
Networks to Telecommunications. pp. 273-287 (1993)

Cordy, J.R., Roy, C.K.: The nicad clone detector. In: 2011 IEEE 19th In-
ternational Conference on Program Comprehension. pp. 219-220 (June 2011).
https://doi.org/10.1109/ICPC.2011.26

FreeSoftwareFoundation: Gnu grep 3.3 manual (2018),
https://www.gnu.org/software/grep/manual/grep.html

Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press, New York, NY (1997)

Habibi, M.: Java Regular Expressions: Taming the Java.util.regex Engine. Apress
(2004). https://doi.org/10.1007/978-1-4302-0709-2

Inoue, K., Miyamoto, Y., German, D.M., Ishio, T.: Code clone matching: A prac-
tical and effective approach to find code snippets. arXiv CS.SE(2003:05615v1),
1-11 (2020)

Ishio, T., Maeda, N., Shibuya, K., Inoue, K.: Cloned buggy code detection in
practice using normalized compression distance. In: 2018 IEEE International Con-
ference on Software Maintenance and Evolution, ICSME 2018, Madrid, Spain,
September 23-29, 2018. pp. 591-594 (2018)

Islam, J., Mondal, M., Roy, C., Schneider, K.: Comparing bug replication in regular
and micro code clones. In: 27th International Conference on Program Comprehen-
sion (ICPC19). pp. 81-92 (05 2019)

Kernighan, B., Pike, B.: The Practice of Programming. Addison-Wesley (1999)
Leblond, E.: Coccigrep introduction, http://home.regit.org/software/coccigrep/
Li, J., Ernst, M.D.: Cbcd: Cloned buggy code detector. In: 2012 34th Inter-
national Conference on Software Engineering (ICSE). pp. 310-320 (June 2012).
https://doi.org/10.1109/ICSE.2012.6227183

Ragkhitwetsagul, C., Krinke, J.: Siamese: Scalable and incremental code clone
search via multiple code representations. Empirical Software Engineering 24(4),
2236-2284 (2019)

Rattan, D., Bhatia, R., Singh, M.: Software clone detection: A systematic review.
Information and Software Technology 55(7), 1165-1199 (2013)

Roehm, T., Tiarks, R., Koschke, R., Maalej, W.: How do professional developers
comprehend software? In: Proceedings of the 34th International Conference on
Software Engineering. pp. 255-265. ICSE ’12, IEEE Press, Piscataway, NJ, USA
(2012), http://dl.acm.org/citation.cfm?id=2337223.2337254



14

20.

21.

22.

23.

24.

K. Inoue et al.

Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Science of Computer Pro-
gramming 74(7), 470 — 495 (2009)

Singer, J., Lethbridge, T.C.: What$ so great about ‘grep’? implications for program
comprehension tools. In: Tech. Rep., National Research Council, Canada (1997)
Sivaraman, A., Zhang, T., Van den Broeck, G., Kim, M.: Active inductive logic
programming for code search. In: Proceedings of the 41st International Conference
on Software Engineering. pp. 292-303. IEEE Press (2019)

Soetens, Q.D., Demeyer, S.: Studying the effect of refactorings: A complexity
metrics perspective. In: 2010 Seventh International Conference on the Qual-
ity of Information and Communications Technology. pp. 313-318 (Sep 2010).
https://doi.org/10.1109/QUATIC.2010.58

Svajlenko, J., Roy, C.K.: Evaluating clone detection tools with bigclonebench. In:
2015 IEEE International Conference on Software Maintenance and Evolution (IC-
SME). pp. 131-140. IEEE (2015)



