
HAL Id: hal-03250494
https://inria.hal.science/hal-03250494

Submitted on 4 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ProConAR: A Tool Support for Model-Based AR
Product Configuration

Sebastian Gottschalk, Enes Yigitbas, Eugen Schmidt, Gregor Engels

To cite this version:
Sebastian Gottschalk, Enes Yigitbas, Eugen Schmidt, Gregor Engels. ProConAR: A Tool Support
for Model-Based AR Product Configuration. 8th International Conference on Human-Centred Soft-
ware Engineering (HCSE), Nov 2020, Eindhoven, Netherlands. pp.207-215, �10.1007/978-3-030-64266-
2_14�. �hal-03250494�

https://inria.hal.science/hal-03250494
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ProConAR: A Tool Support for Model-based
AR Product Configuration?

Sebastian Gottschalk1, Enes Yigitbas1, Eugen Schmidt2, and Gregor Engels1

1 Software Innovation Lab, Paderborn University, Germany
{sebastian.gottschalk,enes.yigitbas,gregor.engels}@uni-paderborn.de

2 Paderborn University, Paderborn, Germany
eschmidt@mail.uni-paderborn.de

Abstract. Mobile shopping apps have been using Augmented Reality
(AR) in the last years to place their products in the environment of the
customer. While this is possible with atomic 3D objects, there is is still a
lack in the runtime configuration of 3D object compositions based on user
needs and environmental constraints. For this, we previously developed
an approach for model-based AR-assisted product configuration based on
the concept of Dynamic Software Product Lines. In this demonstration
paper, we present the corresponding tool support ProConAR in the form
of a Product Modeler and a Product Configurator. While the Product
Modeler is an Angular web app that splits products (e.g. table) up into
atomic parts (e.g. tabletop, table legs, funnier) and saves it within a
configuration model, the Product Configurator is an Android client that
uses the configuration model to place different product configurations
within the environment of the customer. We show technical details of
our ready to use tool-chain ProConAR by describing its implementation
and usage as well as pointing out future research directions.

Keywords: Product Configuration · Augmented Reality · Model-based
· Tool Support

1 Introduction

In the last years, Apple and Google have pushed the topic of Augmented Re-
ality (AR) in mobile apps within their mobile ecosystems. One area of focus is
mobile shopping [3], where AR can support the decision process of the customer
with additional product information, direct placement of products in the envi-
ronment, and a greater product choice [4]. Examples for these mobile apps are
the placing of an atomic product in the environment as in IKEA Place app3,
the configuration of products like windows in the VEKA Configurator AR app4,

? This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (CRC 901,
Project Number: 160364472SFB901)

3 IKEA Place at Apple’s AppStore: https://apps.apple.com/us/app/ikea-place/
id1279244498

4 VEKA Configurator AR at Apple’s AppStore: https://apps.apple.com/us/app/
vµ-configurator-ar/id1450934980



2 S. Gottschalk et al.

or the placement of multiple products in an environment as recently announced
by Amazon5. While these approaches focus on simple placements, they neglect
the runtime configuration of 3D object compositions based on user needs and
environmental constraints.

To improve this configuration process, we previously presented a model-based
AR-assisted product configuration [6] that uses the concept of Dynamic Software
Product Lines (DSPLs) [2]. The approach consists of a Design Stage and a Run-
time Stage. At the Design Stage, we use the concepts of feature models and
reuseable assets from Software Product Lines (SPLs) [1] to split the product
representation and its possible configurations from the corresponding 3D ob-
jects. Out of both, we export a configuration model that is used at runtime. At
the Runtime Stage, we import the configuration model and use the MAPE-K
architecture [7] to monitor the user needs in the form of user inputs, the actual
product configuration, and the environment. Based on the measured inputs, we
configure possible product configurations within the environment.

Product Modeler Product Configurator

(a) Modeling of AR-Products 

(b) Configuration of AR-Products 

(c) Validation of AR-Products 

Fig. 1. ProConAR consists of a Product Modeler used by the Developer and a Product
Configurator used by the User

In contrast to our research paper [6], in this demonstration paper we fo-
cus on the technical implementation of the corresponding tool ProConAR and
point our future research directions. ProConAR, as shown in Fig. 1, consists of
a Product Modeler and a Product Configurator. The Product Modeler, which is
used at the Design Stage, is an Angular web app based on an existing feature
model editor in [5]. It can be used to create feature models of possible prod-
uct configurations (see Fig. 1 (a) for a developed kitchen model). Moreover, for

5 Announcement of Amazon: https://techcrunch.com/2020/08/25/amazon-rolls-
out-a-new-ar-shopping-feature-for-viewing-multiple-items-at-once/



ProConAR: A Tool Support for Model-based AR Product Configuration 3

each feature, a 3D object together with additional attributes can be saved. The
created configuration model can be exported for the Product Configurator. The
Product Configurator, which is used at the Runtime Stage, is an Android client
based on the Unity Engine6 . It imports the configuration model and uses the
information to configure products within the environment (see Fig. 1 (b) for
kitchen configuration in the environment). Moreover, it adapts the product con-
figuration to the user needs, the product requirements, and the environmental
constraints (see Fig. 1 (c) for validation of the product in the environment).

The rest of the paper is structured as follows: Sect. 2 provides the solution
architecture of ProConAR in the form of a component diagram. Sect. 3 shows
technical details in the modeling of the product, the transfer of the assets from
the Product Modeler to the Product Configurator, and the configuration of the
product. Finally, in Sect. 4 we conclude our paper and point out future research
directions.

2 Solution Architecture

In this section, we provide a solution architecture for ProConAR based on a
component-based architecture as shown in Fig. 2. The solution is divided into
the Design Stage, which consists of the Product Modeler and the Asset Modeler,
and the Runtime Stage, which consists of the Product Configurator.

In the Design Stage, the configuration parts of the products are modeled
through a Feature Model Editor together with the attributes for additional prod-
uct information as presented in [6]. Moreover, the assets for the configuration
parts are made available with the Asset Model Exporter which is an external
graphic modeling tool. Both, the Feature Model and Assets, are connected so
that each feature can consist of an asset with a specific type (e.g. product, part
of product, texture) and positioning (e.g. left slot, right slot, upper slot) to other
features. Next, both are serialized through the Asset Binder to create a single
Asset Feature Bundle which can be transferred to the Product Configurator. By
choosing the Asset Feature Bundle as a loose coupling between both stages, the
tools of each stage can be exchanged independently.

In the Runtime Stage, the Asset Manager is used to deserialize the Asset
Feature Bundle into components. Here, we use the Feature Model to store all
possible configurations, the Configuration Model to store the actual product
configuration, the User Model to store the user needs and the Environment
Model to store the environmental constraints. While the Assets can be directly
used in the Configurator Manager, the Features need to be analyzed by the
Feature Modeler Interpreter to derive the Feature Model. Moreover, the Config-
uration Manager, whose activities are based on the MAPE-K architecture and
explained in [6], receives the requirements of the user, the configuration, and
the environment during the runtime. While the User Input of the UI Interface
can be directly restricted to use the Configuration Model and User Model, the

6 Unity Engine: http://www.unity.com



4 S. Gottschalk et al.

Design Stage

Product Configurator

Asset ModelerProduct Modeler

Feature 
Model Edior

Asset Model 
Exporter

Asset Manager
Feature Model 

Interpreter

Configuration 
ManagerUI Interface

Environment 
Interpreter

Asset Binder

Asset Feature Bundle

Features

AssetsFeature
 Model

<Environment>

<User Input>

Feature Model

<Output>

User Model

Env. Model

<controls>

Conf. Model

Assets

Runtime Stage

Fig. 2. Component overview of the developed Product Modeler and Product Configu-
rator together with the external Asset Modeler

Environment needs to be analyzed by the Environment Interpreter to derive the
Environment Model. This is done by analyzing the images of the camera. With
all these requirements the Configuration Manager can control the UI Interface
and provide the configuration to the Output.

3 Technical Implementation

In this section, we present the technical implementation of the Product Modeler7

and the Product Configurator8. Both tools are built on top of well-accepted
development techniques to allow the reusing for other researchers. The Product
Modeler is built on an Angular web app and can run directly in the web browser.
Moreover, we use an existing feature modeler [5] to cover all possible feature
restrictions and dependencies. The Product Configurator is built on ARCore, the
AR SDK of Android. Moreover, we use the Unity SDK that provides solutions
for most interactions with the environment like detecting obstacles or modifying
3D mesh models. For the transfer between both tools, we use the assets bundling

7 Source Code of the Product Modeler: https://github.com/sebastiangtts/

feature-modeler
8 Source Code of the Product Configurator: https://github.com/sebastiangtts/

ar-product-configurator



ProConAR: A Tool Support for Model-based AR Product Configuration 5

mechanism of Unity by using an Importer Script for the feature model, stored
as JSON file, and the assets in the form of 3D meshes, stored as FBX files, and
textures, stored as PNG files.

In the following, we are focusing on the steps of product modeling, the trans-
fer of product configurations, and the product configuration. While this demon-
stration paper just roughly goes through the whole process of ProConAR, the
detailed description of the installation and usage is provided within the reposi-
tories.

3.1 Step 1: Product Modeling

In the first step of our process, we have to define the products which we want
to configure in the environment. For that we need to design the parts of our
product in the Asset Manager and model the possible product configurations
within the Product Modeler as shown in Fig. 3.

Asset Modeler Product Modeler

(a) Export of Product Configurations (b) Import of Product Configurations

Fig. 3. Creating of products with the Asset Modeler and modeling them with the
Product Modeler

At first, we use an Asset Manager like Blender9 or AutoDesk10 to separate
the different product parts from each other and create a single model for each
part (e.g. fridge of a kitchen). Moreover, we separate the 3D mesh as FBX from
the texture as PNG to allow a reusing of the texture for different meshes. After
that, we store both within our Unity product in the Assets/Inputs folder so
that we can reference them with the corresponding Importer Script.

Next, we have to model the possible product configurations within our Prod-
uct Configurator. For that, we create a new feature model that adds multiple
features that can have the type of wrapper, product-part, or textures. While
wrapper features are just used for structuring the model itself, the product-part

9 Homepage of Blender: https://www.blender.org
10 Homepage of AutoDesk: https://www.autodesk.com



6 S. Gottschalk et al.

and texture features contain corresponding 3D mesh files or images. These files
are referenced in the assets folder of the importer by choosing the same naming.
For each feature of type product-part, we can set a brand, a price, and slots for
left, right, and upper positioning. After adding all features to the feature model,
we can export the model as a JSON file and store it within the Assets/Inputs
folder so that it is useable within the Importer Script.

3.2 Step 2: Transfer of the Product Configuration

In the second step, we need to transfer the product configuration from the Prod-
uct Modeler to the Product Configurator. The transfer process is shown in Fig.
4. In the last step, we have already shown the design and modeling of the prod-
uct and its transfer to the Importer Script. This script is written for the Unity
Game Engine and imports all files from the Assets/Inputs folder. After vali-
dating the files (e.g. looking if all references of the feature model are inside the
folder), it bundles the JSON with the 3D meshes and textures by using the as-
set bundling11 which is a build-in technique of Unity to load non-code assets at
runtime into an application. After the bundling process, the DB file is stored in
the Assets/Bundles. This bundle can be uploaded to a web server, for which we
used GitHub, and downloaded by the Product Configurator. The Product Con-
figurator downloads the asset bundle and interprets it which is described in the
next step.

Feature
 Model

3D Models Textures

WebApp
Product
Modeler

Android
Product

Configurator

Unity
Importer

Script

GitHub
Web

Server

Asset Feature 
Bundle

U
se

d 
To

ol
s

D
at

a 
M

od
el

s

Transfer Upload Download

references references

uses uses uses

Fig. 4. Transfer of the product configuration from the Product Modeler to the Product
Configurator by using the Feature Asset Bundle

3.3 Step 3: Configuration of Products

In the last step, we need to configure the product out of the asset file as shown in
Fig. 5. In the beginning, the app loads the file from the webserver and splits into

11 Asset Bundling of Unity: https://docs.unity3d.com/Manual/AssetBundlesIntro.
html



ProConAR: A Tool Support for Model-based AR Product Configuration 7

the JSON feature model and the assets in the form of 3D meshes and textures.
After that, the app deserializes the JSON with an external library12 and builds
an internal structure of the model to validate violations at runtime.

Product Configurator

(a) Scanning the Environment (b) Adding of Product Configuration

(c) Validation of the Environment (d) Validation of the Product Configuration

Fig. 5. Configuration of the product by scanning the environment, adding product
parts and validating the product configuration

After that, the customer can scan the environment to detect horizontal sur-
faces on which the product parts will appear standing and vertical surfaces that
will provide spatial boundaries of the environment (see Fig. 5 (a)). After that,
the customer can tap on the environment and select the first product part he
wants to add to the environment (see Fig. 5 (b)). From this point, the customer
clicks on the plus buttons next to the placed product parts to extend the con-
figuration and is informed with visual hints if an error (e.g. two stoves in one
kitchen) duo to the placement has occurred (see Fig. 5 (c)). Moreover, the config-
urator validates at runtime if constraints of the underlying feature model or the
user needs are violated. For that, we have developed our own feature model in-
terpreter script. At the end of the configuration (see Fig. 5 (d)), the configurator
check also violations which can not be displayed during the runtime.

4 Conclusion and Outlook

Mobile shopping apps have been used Augmented Reality (AR) in the last years
to place their products in the environment of the customer. While this is possible

12 Unity-Library for JSON Interpretations: https://assetstore.unity.com/

packages/\-tools/input-management/json-net-for-unity-11347



8 S. Gottschalk et al.

with atomic 3D objects, there is is still a lack in the runtime configuration of
3D object compositions based on user needs and environmental constraints. For
this, we previously developed an approach for model-based AR-assisted product
configuration based on the concept of Dynamic Software Product Lines. Based
on this approach, we have shown the tool-support ProConAR with a Product
Modeler and a Product Configurator. For both, we have shown a solution archi-
tecture together with the most important parts of the technical implementation.

4.1 Research Directions

We want to extend our approach and our tool support so that the underlying
concepts can be used domain-independent across VR and AR apps. For that, we
improve the modeling of the user and the environment by separating them into
distinct models as represented in our research paper. Based on that, we want
to transfer our model-based approach into a model-driven framework that can
generate code for different platforms. These platforms can be all kinds of mixed
reality and allow a fluid usage of product configurations between the platforms.

Furthermore, we want to extend the framework in various ways: First, we
plan to configure parts of products in each other (e.g. changing the grips of a
kitchen). This should support the modeling of product configuration with finer
granularity and extend the possible use cases. Second, we want to add an intelli-
gent obstacle detection based on machine learning (e.g. detecting sockets, water
connections). This should improve the constraints space of the possible product
configurations with the environment. Third, we add support for collaborative
product configuration (e.g. changings of the product configuration by the cus-
tomer and the kitchen salesman). This will allow a multi-user experience in the
configuration of products by taking also a product validation based on different
user feedback into account.

References

1. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

2. Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., Hinchey, M.: An overview of
Dynamic Software Product Line architectures and techniques: Observations from
research and industry. Journal of Systems and Software 91, 3–23 (2014)

3. Chatzopoulos, D., Bermejo, C., Huang, Z., Hui, P.: Mobile Augmented Reality Sur-
vey: From Where We Are to Where We Go. IEEE 5, 6917–6950 (2017)

4. Dacko, S.G.: Enabling smart retail settings via mobile augmented reality shopping
apps. Technological Forecasting and Social Change 124, 243–256 (2017)

5. Gottschalk, S., Rittmeier, F., Engels, G.: Hypothesis-driven Adaptation of Business
Models based on Product Line Engineering. In: Proceedings of the 22nd Conference
on Business Informatics (CBI). IEEE (2020)

6. Gottschalk, S., Yigitbas, E., Schmidt, E., Engels, G.: Model-based Product Con-
figuration in Augmented Reality Applications. In: Human-Centered Software Engi-
neering. Springer (2020)

7. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)


