
HAL Id: hal-03243641
https://inria.hal.science/hal-03243641

Submitted on 31 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Proactively Extracting IoT Device Capabilities: An
Application to Smart Homes

Andy Dolan, Indrakshi Ray, Suryadipta Majumdar

To cite this version:
Andy Dolan, Indrakshi Ray, Suryadipta Majumdar. Proactively Extracting IoT Device Capabilities:
An Application to Smart Homes. 34th IFIP Annual Conference on Data and Applications Security
and Privacy (DBSec), Jun 2020, Regensburg, Germany. pp.42-63, �10.1007/978-3-030-49669-2_3�.
�hal-03243641�

https://inria.hal.science/hal-03243641
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Proactively Extracting IoT Device Capabilities:
An Application to Smart Homes

Andy Dolan1, Indrakshi Ray1, and Suryadipta Majumdar2

1 Computer Science, Colorado State University, USA
2 Information Security and Digital Forensics, University at Albany, USA

Abstract. Internet of Things (IoT) device adoption is on the rise. Such
devices are mostly self-operated and require minimum user interventions.
This is achieved by abstracting away their design complexities and func-
tionalities from the users. However, this abstraction significantly limits a
user’s insights on evaluating the true capabilities (i.e., what actions a de-
vice can perform) of a device and hence, its potential security and privacy
threats. Most existing works evaluate the security of those devices by
analyzing the environment data (e.g., network traffic, sensor data, etc.).
However, such approaches entail collecting data from encrypted traffic,
relying on the quality of the collected data for their accuracy, and facing
difficulties in preserving both utility and privacy of the data. We over-
come the above-mentioned challenges and propose a proactive approach
to extract IoT device capabilities from their informational specifications
to verify their potential threats, even before a device is installed. We
apply our approach to the context of a smart home and evaluate its
accuracy and efficiency on the devices from three different vendors.

1 Introduction

The popularity of IoT devices is gaining momentum (e.g., projections of 75.44
billion devices worldwide by 2025 [18]). This large ecosystem is comprised of a
variety of devices that are being used in diverse environments including health-
care, industrial control, and homes. Manufacturers emphasize certain features
and characteristics of the IoT devices and often abstract away their actual de-
sign complexity and functionalities from the user. Many IoT devices are equipped
with an extended set of sensors and actuators which allows them to perform dif-
ferent functionalities. For example, a smart light with a microphone and motion
detector can possibly perform far more than just light sensing.

Such abstraction and extended (and in many cases hidden) functionalities
of an IoT device result in a blind spot for the consumers and leave an IoT
system vulnerable to various security and privacy threats. Installing the above-
mentioned smart light necessitates that the consumer understand its potential
security and privacy consequences. This requires the consumer to study its design
specifications to find out what sensors it possess. Furthermore, she must have
the insights to realize the security and privacy consequences of having a micro-
phone and motion detector in a light, and determine if any of those consequences
violate the policies of the household or organization. Performing all these steps



2

is infeasible for most IoT users due to either their time constraints or lack of
knowledge. Therefore, IoT consumers need assistance to properly interpret the
underlying security and privacy threats from these devices. Our work aims to
fill this gap by providing consumers information on IoT device capabilities.

A comprehensive knowledge of device capabilities can be used in various se-
curity applications, including security verification, monitoring, risk analysis, and
digital forensics. One example application is proactively verifying the security
and privacy of IoT devices in a smart home or in an organization. Specifically,
once we know the capabilities of a device, we can check if any of those capabilities
violate any of the security and privacy policies in an organization or a household.
We can also ensure that the deployment of an IoT device in some location or
under some configuration does not cause any security or privacy breaches and
can take adaptive measures to mitigate that risk.

Several works [21,24,35,12,23,22,25,33,14] that profile IoT devices and their
behaviors to detect security breaches and/or monitor an IoT environment pose
two limitations: (i) Collecting and interpreting data from an IoT system is ex-
tremely challenging. Existing solutions [35,12] either perform entropy analysis
of encrypted traffic or use only the unencrypted features of network traffic (e.g.,
TCP headers and flow metadata). Due to its great reliance on data inference,
false positives/negatives are a legitimate concern. Providing better accuracy in
these security solutions is a critical challenge. (ii) Such approaches may reveal
sensitive information (e.g., daily routines of smart home users [14]) about an IoT
system and its users, threatening their privacy. Preserving privacy while sharing
sensitive data for security analysis is another challenge.

We overcome these limitations and propose an approach to proactively ex-
tract IoT device capabilities from their design specifications. We first define the
notion of device capability in the context of IoT. Second, we extract the trans-
ducer (e.g., sensors and actuators) information for each device using vendor-
provided specification materials. Third, we identify the capabilities of a device
by deriving the capabilities of each sensor and actuator of that device. We discuss
our approach in the context of smart homes, an important IoT domain (with
projections of 505 million active smart home devices worldwide by this year [19])
and evaluate its efficiency and accuracy. The main contributions of this paper
are as follows.

– We propose a new approach to proactively extract the device capabilities
from design specifications. The key advantages of this approach over exist-
ing works are: (i) this approach does not rely on environment data and is
therefore not directly affected by the difficulties of collecting and interpret-
ing IoT data, and further is free from the privacy concerns of data sharing;
and (ii) this approach enables proactive security verification of an IoT device
even before it is installed or deployed.

– We are the first to define this concept of device capability in IoT, which
can potentially be applied in the future security solutions for various IoT
applications (e.g., smart grid, autonomous vehicle, smart health, etc.) to
offer proactive security guarantee.



3

– As a proof of concept, we apply our approach in the context of smart homes.
We demonstrate the applicability of our approach by applying it to devices
from various vendors (e.g., Google, Ring, and Alro), and we evaluate it in
terms of its efficiency and accuracy.

The remainder of the paper is organized as follows. Section 2 summarizes
related work. Section 3 provides background on vendor materials. Section 4
presents our methodology. Section 5 describes its implementation. Section 6
presents the evaluation results. Section 7 concludes the paper.

2 Related Work

Research on IoT security has gained significant interest. These studies
[21,24,35,12,23,22,25,33,17,34,36,13,16,28,27]) are categorized into device finger-
printing, application monitoring, intrusion detection, and access control.

The existing device fingerprinting techniques [21,24,35,12,23,22,25] monitor
and analyze network traffic in IoT. More specifically, [21,24] automatically dis-
cover and profile device behaviors by building machine learning models trained
on network traffic according to their service (e.g., DNS, HTTP) and the seman-
tic behaviors of devices (e.g., detected motion), respectively. Similar analysis is
performed in Zhang et al. [35], where the fingerprints of a particular smart home
device are built using its network traffic. Other works (e.g., [12,23,22,25]) use sim-
ilar techniques to automatically determine device identity or typical aggregate
behaviors (as opposed to specific behavior). Bezawada et al. [12] utilize machine
learning to build behavior profiles based on network traffic for devices using the
device category and device type. IoTSentinel [23], AuDI [22] and DeviceMien
[25] use unsupervised learning to build models for individual device-types based
on network traffic captured during a device connection.

There exist several other security solutions (e.g., [20,32,16,36]) for smart
homes. The existing application monitoring techniques (e.g., [20,32]) run on
source code of IoT applications and analyze these applications. More specifically,
ContextIoT [20] and SmartAuth [32] offer permission-based systems to monitor
an individual app. ProvThings [33] builds provenance graphs using security-
critical APIs for IoT forensics. Soteria [15] and IoTGuard [16] verify security
and safety policies by performing static and dynamic code analysis, respectively.
Zhang et al. [36] monitor isolation-related properties among IoT devices through
a virtual channel. Yang et al. [34] protect IoT devices from remote attacks by
hiding them inside onion gateways.

Limitations of Existing Work. First, most of the solutions above rely on a
great amount of inference, especially when considering encrypted network traffic.
Many solutions either perform entropy analysis of encrypted traffic [12] or use
only the unencrypted features of network traffic such as TCP headers and other
packet and flow metadata [21,24,35,22,23,25]. Because of this inference, false
positives and false negatives are a legitimate concern of these solutions. Sec-
ond, as most of the existing works rely on the application of inferential models



4

(machine learning or otherwise), they are vulnerable to deceptive attacks, where
an adversary may craft an attack that conforms to the model’s expectation of
legitimate traffic or behavior, thereby circumventing the model. An attack at
the other end of this spectrum would be to simply conduct a denial-of-service
attack by, for example, inundating the system with purposefully malicious traf-
fic to overwhelm the model and prevent the processing of any legitimate traffic.
Third, these related works cannot detect/prevent the critical safety or privacy
implications that are not observable from the network traffic.

Our paper, on the other hand, is complementary to those existing works,
and targets a different threat model where we extract IoT device capabilities
from their design specifications that will facilitate evaluating potential security
threats even before a device is installed.

3 Vendor Materials

3.1 Vendor Material Description

We consider vendor materials including product webpages, technical specifica-
tions, and developer documentations which are publicly available and contain
aspects of the specifications (sensors, actuators, or related features) of a device.

Product Webpages. Product webpages are official marketing pages from which
a consumer can purchase the product, and contain the summary information
about a device. For instance, Google has an online store for its smart home
products (e.g., [4]). These pages can be an initial source of information about a
smart home device and its specifications.

Technical Specifications. Technical specification pages provide details about
a device and its hardware specifications. For instance, Google has a technical
specification page for its smart home products (e.g., [5]). This work considers
these technical specification pages as one of the most significant sources of in-
formation about a device’s hardware components.

Developer Documentations. Developer documentations provide information
to developers who create applications for the smart home devices. Even though
these materials are intended for application developers, they can be used as a
source for the extraction of information about the hardware and capabilities of
a device.

3.2 Investigation on the Real-World Vendor Materials

Analysis of the Vendor Materials. We analyze the contents of several vendor
materials by leveraging natural language processing techniques. These analyses
result in insights on the challenges that come with the extraction of vendor
materials, which is illustrated through the following examples.

Figure 1a shows the term frequency distribution for the Google Nest Cam
Indoor’s vendor materials as a word cloud, where the larger terms appear more



5

frequently across the corpus. This particular corpus is constructed from the
Nest Cam Indoor main product page, technical specifications page, technical
specifications support page, and the Nest Cam Developer API documentation
[4,5,10,2]. The full corpus contains 4,175 words after pre-processing. The word
cloud suggests that terms that would intuitively be assumed to appear frequently,
such as “camera” and “nest” appear often, as these terms are directly related
to the primary functionality of the device. However, terms that are indicative of
other transducers and their capabilities appear less often, and even appear less
often than terms that are unrelated or potentially indicative of transducers that
the device does not have. Figure 1b illustrates the frequency distribution of only
a subset of notable terms.

(a)

ca
m

er
a

im
ag

e
lea

rn
vi

deo

pow
er

ca
m
ca

ble

te
m

per
at

ure
au

dio

hu
m

id
ity

pre
ss

ure

sp
ea

ke
r

m
icr

op
hon

e

m
eg

ap
ix

el
0

25

50

75

100

125

150

175

200

N
u

m
.

O
cc

u
rr

en
ce

s
in

C
or

p
u

s

196

71 71

42 41
34

28
15

8 8 8 7 7 7

Freq. Dist. of Nest Cam Terms (Subset)

Transducer-relevant terms

Irrelevant terms

(b)

Fig. 1. (a) The term frequencies for the corpus of vendor materials on the Nest Cam
Indoor, visualized as a word cloud. (b) The term frequencies for a subset of terms from
vendor materials on the Nest Cam Indoor. Terms that are more directly related to the
transducer they refer to appear in blue, while other terms appear in red.

Additionally, term frequency-inverse document frequency (TF-IDF) calcula-
tions are also performed within individual corpora for a device. Specifically, each
separate vendor material for a device is treated as an article in the corpus, and
the TF-IDF metric is computed for an individual corpus. Overall, TF-IDF fails
to find terms that are most indicative of a device’s transducers and capabilities
due to their infrequent appearances. We also apply TF-IDF on each section of
a vendor material as an individual document. However, this technique also does
not produce any conclusive results.

Challenges in Extracting Capabilities from Vendor Materials. Based
on the outcome of the analysis above, we enumerate the major challenges in
extracting capabilities from vendor materials as follows.

– No Standaridized Template. Each vendor follows different templates for their
materials and furthermore, different materials of the same vendor follow



6

different formats. There is no standard template or specification for how
to describe different generic features or hardware components. This implies
significant effort to learn those different templates to enable their extraction.

– Brevity of the Materials. Vendor materials are usually expressed in a brief
manner and do not include all explicit specifications of a device. Therefore,
extracting device information from them requires more interpretation of the
contents. Additionally, terms that are indicative of particular hardware com-
ponents may only appear a limited number of times within the materials,
especially if they are not related to the primary function of the device.

– Vendor-Specific Jargons. Each vendor tends to use their own set of termi-
nologies for their devices. Mainly due to their business policy, vendors craft
languages around what information they believe is the most useful to or
well-received by the consumer, and include terminology that may be unique
to only their line of products. Accordingly, learning the vocabularies used
for various vendors and then normalizing them to infer their capabilities
presents additional challenges.

– Interpreting Visual Contents. Several contexts (e.g. device type) of a material
is visually represented and is therefore very difficult to encode automatically.
An interesting aspect of the marketing and technical specification pages for
IoT devices is the way that page layout and structure provide contextual in-
formation in the form of visual cues and hierarchical organization. Therefore,
text processing alone becomes insufficient in those cases.

– Distributed Materials. The information about a device is distributed over
various materials (e.g., product webpage, technical specifications, user man-
ual, and developer documentation), and it is essential to obtain information
from as many different materials as possible, normalize their formats, and
extract capabilities for the most thorough extraction.

4 Methodology

We first present our threat model and the assumptions of our approach, followed
by the overview, and finally the details.

4.1 Threat Model

We focus on smart homes, an IoT application, in this work. We assume that
the sensors and actuators in a smart home device may be used to conduct var-
ious security and privacy attacks. Our approach, therefore, builds the device
capabilities (i.e., the actions that a device can perform) which can later be used
to detect/prevent the adversaries that exploit these sensors or actuators. Our
approach does not consider the threats from a malicious or vulnerable trans-
ducer; which includes misbehavior and malfunction. Also, any network attack
that does not involve the transducers is beyond the scope of this paper. In this
work, we derive the device capabilities from the vendor-provided materials that
are publicly available. In this paper, the impact of negation in the language of



7

1)	Model	Definitions

2)	Pre-Processing

[c1,	c2,	c3,	...][c1,	c2,	c3,	...]

D

TT

TT .	.	..	.	.

3)	Building	Device	Capabilities

Ontology
Enum.	Algorithm

Extracted
Specifications

Vendor	Materials

Normalized
Text

Enumerated	Transducers	&	Capabilities

Fig. 2. An overview of our methodology, including 1) development of the model, 2) pre-
processing of vendor materials, and 3) applying an ontology to extracted specifications
by way of an automatic enumeration function.

this materials is not considered in extracting capabilities. Therefore, any missing
information about a device in those materials may affect the effectiveness of our
approach.

4.2 Overview

Figure 2 illustrates an overview of our approach to extract the capabilities of a
smart home device from its specifications. The three steps are described below,
and we provide the example of a motion-activated smart camera throughout.

[Step 1: Defining Capability Model for IoT Devices] We first define
IoT devices, then define their transducers (e.g., sensors and actuators), and
finally define the capability models that map transducers to their set of
capabilities. (See Section 4.3).

[Step 2: Normalizing Specifications from Vendor Materials] We first
extract the device specifications from various vendor materials, then prune
the extracted data to eliminate irrelevant contents (e.g., stop words and site
navigation links), and finally normalize the pruned contents to refer to the
transducer information. (See Section 4.4).

[Step 3: Building IoT Device Capabilities] We first build the ontology
of the device specifications, then derive an enumeration of transducers for
a device by applying this ontology on the processed vendor materials, and
finally map these transducers to their capabilities. (See Section 4.5).



8

4.3 Defining Capability Models for IoT Devices

This work defines a transducer as a sensor or actuator (partly inspired by the
definitions in NIST 8228 [29]). A sensor holds the core functionality of sensing
or measuring various aspects of a physical environment and converting it to
a digital signal. For example, image sensors, motion sensors, and microphones
sense light, motion, and sound from a physical environment, respectively. An
actuator converts a digital signal to various physical actions (e.g., emitting light,
producing sound, actuating a lock to toggle its state).

The set of all transducers T is partitioned into two sets, where S is the set
of all sensors and A is the set of all actuators, where T = S ∪A and S ∩A = ∅.
A capability of a sensor is denoted as csi and the capability of an actuator is
denoted as caj . Note that, ∀i, j, csi 6= caj . However, for any two sensors sm and
sn, where m 6= n and sm, sn ∈ S, their set of capabilities may overlap.

Definition 1. [Transducer]: A transducer ti is either a sensor si or an ac-
tuator ai. That is, if ti = si, then ti 6= ai. Also, if ti = ai, then ti 6= si. Each
sensor si and each actuator ai consists of a non-zero finite set of capabilities,
denoted as si = {cs1, cs2, . . . , csp} and ai = {ca1, ca2, . . . , caq}. Also si 6= {} and
ai 6= {}.

Definition 2. [Device:] A device is an embedded system that consists of a set
of transducers. A device Di consists of a set of sensors Si and actuators Ai

where Si ⊆ S and Ai ⊆ A and Si = {s1, s2, . . . , sn} and Ai = {a1, a2, . . . am}.
The number of transducers in Di equals n + m.

Multiple devices may have common sensors or actuators. For example, smart
cameras and smart video doorbells both have a camera sensor. Two devices Dr

and Ds shown below have common sensor s3 and common actuator a2.
Dr = S1 ∪A1 = {s1, s2, s3, a1, a2}; Ds = S2 ∪A2 = {s3, s4, a2, a3}.

Definition 3. [Device Capability]: A capability of device Di is a function
the device can perform. The set of capabilities for Di is computed as the union
of the set of capabilities of the transducers comprising the device.

Multiple devices can have common capabilities. For example, a smart camera
has an image sensor and therefore holds the capability of capturing an image.
On the other hand, a smart light has both light and motion sensors; therefore
it holds the capabilities of sensing lights and detecting motion. In the following,
the two devices Dp and Dq have common capabilities cs3 and ca2:
Dp = {cs1, cs2, cs3, ca2, ca3}; Dq = {cs3, cs4, cs5, ca1, ca2}.

4.4 Normalizing Specifications from Vendor Materials

To prepare the vendor materials for building device capabilities, we first extract
the device specifications from the vendor materials, then remove irrelevant in-
formation (e.g., external navigation links or copyright information) from those



9

extracted specifications, and finally refine them into a more homogeneous, and
machine-friendly format.

Selective Extractions of Device Specifications. The initial extraction of
the device specification is a process that operates on the input vendor materials.
The vendor materials must be parsed for their contents, which can be defined
in terms of semantics as well as more abstract information such as document
structures and page layouts. This work extracts the vendor materials in HTML
and/or text formats.

For HTML documents, we first remove the non-HTML contents from each
web page, such as style and script blocks. We then extract the raw text from the
resulting HTML elements. We parameterize this step so that specific sections of a
page can be extracted. For example, the technical specifications page for a smart
camera may contain page elements unrelated to the device, such as navigation
links, or even additional specification information for similar products (e.g., video
doorbells). With our parameterized method, we are able to extract only the
specification information for the smart camera. We also tailor the parameters to
specific vendor pages; these parameters are often reusable, as web design under
a single vendor is often homogeneous.

Normalizing the Data. To ensure that the contents extracted from the ven-
dor materials are best suited for the transducer enumeration technique, our
approach normalizes those contents by removing elements that are not criti-
cal to the enumeration process, including punctuation, non-alphanumeric, and
non-white-space characters, as well as “stop words” (i.e., common articles and
prepositions in English). The term case and plurality are also normalized through
lemmatization, a process of linguistics that simply involves homogenizing differ-
ent inflections of the same term to the dictionary form of the term. The content
output by the normalization step contains a more homogeneous sequence of
terms in the original order that they appeared in the vendor materials.

For example, a motion activated camera’s marketing page may contain the
following text: “with the camera’s array of motion sensors, video will be recorded
automatically”. After this step, the same string will read “camera array motion
sensor video record automatically”.

4.5 Building IoT Device Capabilities

We now describe how to derive the device capabilities after pre-processing.

Building the Ontology. Our approach understands the language and structure
of the vendor materials, and then builds an ontology. The ontology will contain
an understanding of the terminologies used to refer to specific components of a
device. It is possible to include other information as well that can be derived
from the vendor products.

Enumerating Transducers. To enumerate device transducers using the above-
mentioned ontology, we devise three algorithms, namely, ranked key term set
matching (rKTSM), unranked key term set matching (KTSM), and unguided
key term set matching, where key terms are one or more words related to a



10

transducer. These algorithms use two types of key terms: indicative terms and
related terms. The indicative terms are unambiguously indicative of the presence
of a transducer. The related terms are related to a transducer, but may be more
ambiguous, and hence are not sufficient in drawing conclusions about its pres-
ence. In the case of a motion-activated camera, the term “camera” is considered
indicative of an image sensor, while the term “video” is considered related to an
image sensor. We describe each algorithm below, in which the notation “x[y]”
indicates the mapping or membership of a field y in x.

– Ranked Key Term Set Matching (rKTSM) Algorithm: Algorithm 1 first filters
the key term sets for different abstract device types, and then performs key
term matching based on the most relevant set of indicative terms. Specifically,
Lines 1-11 outline the first matching step, which uses both indicative and
related terms to determine which abstract device type is most likely being
represented by the corpus of vendor materials. The “get matches” function
extracts any matching key terms in the provided set that are contained within
the input corpus. The indicative terms of the device type that is ranked as
the best match candidate are considered to be the terms that refer to the
transducers of the device. A reverse-mapping step is then performed on Line
12, where only these indicative terms are used to determine which transducers
are present. Note that the output of the first matching step is a subset of
indicative terms for the selected abstract device type. The reverse mapping
step determines which transducer each indicative term refers to, where some
transducers may be referred to by more than one indicative term. The final
results contain an enumeration of transducer identifiers, which are returned at
Line 12.

Algorithm 1: Ranked Key Term Set Matching (rKTSM)

1 best score ← 0
2 best indicative ← null
3 for d in Ontology[Devices] do
4 indicative terms ← d[transducers][indicative terms]
5 related terms ← d[transducers][related terms]
6 ind matches ← get matches(indicative terms, corpus)
7 rel matches ← get matches(related terms, corpus)
8 match score ← |rel matches|+ |ind matches|
9 if match score > best score then

10 best score ← match score
11 best indicative ← ind matches

12 transducer identifiers ← reverse map(best indicative)

The rKTSM algorithm is able to better exploit context clues found in the
related terms while avoiding erroneous matches that can be introduced by
their ambiguity. Additionally, the approach accounts for the fact that terms
that are most directly indicative of the presence of a transducer may have a
frequency that is much lower than that of other terms. For example, even if the
indicative term “microphone” appears only twice within the entire corpus, the



11

presence of related terms such as “audio” or “voice” can help bolster confidence
when concluding that a microphone transducer is present.

– Unranked Key Term Set Matching (KTSM) Algorithm: Algorithm 2 uses only
the indicative terms without ranking term sets. Specifically, it evaluates the
corpus for any matching indicative terms of any transducer, and identifies the
transducers through the same reverse-mapping process (as in Algorithm 1).

Algorithm 2: Unranked Key Term Set Matching (KTSM)

1 all indicative terms ←
⋃
d

d[transducers][indicative terms]

2 ind matches ← get matches(all indicative terms, corpus)
3 transducer identifiers ← reverse map(ind matches)

– Unguided Key Term Set Matching: Additionally, we consider a completely un-
guided KTSM alrogithm, shown in Algorithm 3, that performs the same match-
ing as unranked KTSM, but also matches on the related terms. We consider
this algorithm to be the least focused and exact, as it attempts to match using
an entire vocabulary.

Algorithm 3: Unguided Key Term Set Matching

1 all indicative terms ←
⋃
d

d[transducers][indicative terms]

2 all related terms ←
⋃
d

d[transducers][related terms]

3 all terms ← all indicative terms + all related terms
4 all matches ← get matches(all terms, corpus)
5 transducer identifiers ← reverse map(all matches)

The transducers that are enumerated from the extraction step must be rep-
resented in a standardized way, (e.g., using the same identifier for the transducer
type), where each extracted transducer is completely decoupled from the device
instance it was extracted from. This is to ensure that the transducers fit into the
model that is described in Section 4.3.

Mapping to Device Capabilities. Capabilities of a device are enumerated
from its constituent transducers. This work assumes that transducers are as-
sociated with a static, finite set of capabilities that are established during the
creation of the ontology. Each transducer can be directly mapped to its set of
capabilities as per Section 4.3. The capabilities contained in the final output set
represent a device’s functionality unambiguously. Table 1 provides examples of
the outputs of our methodology.

5 Implementation

We build the ontology of vendor materials for seven smart home products: Arlo
Ultra Camera, Nest Cam Indoor, Nest Hello Doorbell, Nest Protect, Nest Learn-
ing Thermostat, Nest X Yale Lock, and Ring Indoor Camera [1,4,6,8,7,9,3].



12

Table 1. An excerpt of outputs from our approach.

Device Category Transducer Atomic Capabilities

Arlo Ultra [1]

Sensors
Image Sensor Capture image, Capture video, Detect

light
Microphone Capture sound

Motion Sensor Detect motion

Actuators

Speaker Produce sound
LED Light Produce light

Infrared Light Produce IR light (enabling night vision)
Siren Produce high-volume siren

Nest Cam Indoor [5]

Sensors
Image Sensor Capture image (take photo), Capture

video, Detect light
Microphone Capture sound

Actuators
Speaker Produce sound

LED Light Produce light
Infrared Light Produce IR light (enabling night vision)

Nest Protect 2nd
Gen [8]

Sensors

Smoke Sensor Detect smoke
Carbon Monoxide

Sensor
Detect carbon monoxide

Temperature Sensor Measure temperature
Humidity Sensor Measure humidity, detect steam

Microphone Capture sound
Motion Sensor Detect motion
Light Sensor Detect light

Actuators
Speaker Produce sound

LED Light Produce light

Nest X Yale Lock [9]

Sensors
Light sensor Detect light
Touch Sensor Detect (capacitive) contact

Actuators
Lock Lock and unlock door

Speaker Produce sound
LED Light Produce light

Our pre-processing step is implemented (in Python) to fetch the product web
pages directly over the network via the requests library [26] by way of their URI,
or to read pages fetched previously and saved locally. To extract the textual con-
tent from those pages, we utilize the BeautifulSoup package [11] which allows us
to extract only specific sections of vendor material pages by providing parame-
ters with specific HTML tags and attributes used to identify page portions. Our
current implementation supports the static elements in web pages (i.e., HTML),
which is the current format for most vendor materials. However, if some vendor
materials only display the content dynamically, a simple workaround would be
to use a web engine to first internally render any dynamic content before pro-
cessing the resulting HTML. To normalize the text, a separate Python function
replaces stop words and non-alphanumeric characters via regular expressions.
For the normalization of term plurality, lemmatization is performed using the
Spacy natural language processing package [31].

The KTSM algorithms described in Section 4.5 are also implemented as
Python functions that take a corpus as input from which to enumerate trans-
ducers. To encode the ontology created during the manual review process (as
described in Appendix A), a data model is created to represent abstract de-
vice types, transducers, their capabilities, and key term sets. Each transducer
is represented in the data model as having a static set of capabilities, a set of
indicative terms, and a set of related terms. These data models act as addi-
tional parameters to our KTSM functions. Given the corpus of a device’s vendor
materials and the data model, the implemented KTSM functions utilize the



13

tree-based flashtext algorithm [30] to perform key term matching. In the case of
ranked KTSM, the number of matches is used to determine the best abstract
device type. In unranked and unguided KTSM, only the matching step takes
place with all indicative terms, and with all indicative and related terms, re-
spectively. Any matches are mapped to their associated transducer’s identifier
automatically (enabled by the Python implementation of flashtext).

6 Evaluation

This section discusses the performance of our implemented solution, which is
used to extract enumerations of transducers for the seven devices. All extractions
are performed on a system with an Intel Core i7-8550U processor @ 1.80 GHz and
8 GB of memory. We evaluate the performance of our implementation in terms
of its efficiency, the enumeration accuracy for each device, and the proportion of
incorrect transducer matches for each device.

0 1000 2000 3000 4000

Collection Size (KB)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

E
x
tr

ac
ti

on
T

im
e

(S
ec

on
d

s)

Mean Extraction Time by Input Size

Nest Thermostat

Nest Doorbell

Ring Indoor Camera

Nest Protect 2nd Gen

Nest Yale Lock

Arlo Ultra

Nest Cam Indoor

(a)

2.5 5.0 7.5 10.0 12.5
Total Number of Lemmas

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
at

io
n

T
im

e
(S

ec
on

d
s)

Mean Text Normalization Times

Arlo Ultra

Nest Cam Indoor

Nest Doorbell

Nest Protect 2nd Gen

Nest Thermostat

Nest Yale Lock

Ring Indoor Camera

(b)

Fig. 3. (a) Average text extraction time of the vendor materials for different devices
by their size on disk, computed over 5 trials. (b) Average text normalization time by
the total number of lemmas in a corpus, computed over 5 trials.

Efficiency. The goal of the first set of our experiments is to measure the effi-
ciency of our approach. The efficiency of our implementation refers to the total
time required to perform the pre-processing step on the input vendor materials
for a particular device. Displayed in Figure 3a, the extraction step is the most
significant source of processing time in our methodology, ranging from less than
a second to nearly 20 seconds.

The time required for the extraction step depends on the size of the vendor
materials that are used as input. HTML files for devices may exhibit a large
range of sizes; for example, pages on Google Nest devices have the largest range
of sizes on disk, from 38 KB to 2.6 MB. The HTML extraction portion of the



14

pre-processing step takes the largest amount of time, between 15 and 18 sec-
onds, for the largest collections of web pages (over 4 MB total). Comparatively,
smaller collections of pages (totalling 200 KB or less) take less than a second for
extraction. Figure 3a indicates that extraction time scales with the size linearly.

For most evaluated devices, the times required to perform the text normal-
ization step, displayed in Figure 3b, are negligible when compared to those of
the extraction step. Consistently, across all devices, the text normalization step
is performed in less than a second, increasing slightly with the total number of
lemmas extracted.

Ranked KTSM

Unranked KTSM

Unguided KTSM
0%

20%

40%

60%

80%

100%

P
ro

p
or

ti
on

of
T

ru
e

T
ra

n
sd

u
ce

rs

Enumeration Accuracy by Device

Arlo Ultra

Nest Cam Indoor

Nest Doorbell

Nest Protect 2nd Gen

Nest Thermostat

Nest Yale Lock

Ring Indoor Camera

(a)

Ranked KTSM

Unranked KTSM

Unguided KTSM
0%

10%

20%

30%

40%

50%

60%

P
ro

p
or

ti
on

of
E

n
u

m
er

at
ed

T
ra

n
sd

u
ce

rs

Incorrect Transducers by Device
Arlo Ultra

Nest Cam Indoor

Nest Doorbell

Nest Protect 2nd Gen

Nest Thermostat

Nest Yale Lock

Ring Indoor Camera

(b)

Fig. 4. For each device, grouped by KTSM algorithm (a) the proportion of ground
truth transducers that are correctly enumerated, and (b) the proportion of matching
transducers that are incorrectly identified.

We do not analyze the impact of the automatic enumeration of device trans-
ducers from normalized texts, due to the efficiency of the tree-based flashtext
algorithm for keyword extraction which we use. Additionally, we do not consider
the mapping from enumerated transducers to their capabilities as having any
impact on efficiency, due to the fact that this mapping is statically defined in
the ontology. That is, once the transducers have been enumerated, establishing
their corresponding capabilities requires a trivial lookup in the ontology.

Enumeration Accuracy. For the purposes of evaluation, a sample set of trans-
ducers for the evaluated devices are enumerated manually as ground truth. Enu-
meration accuracy is computed as the ratio between the number of these ground
truth transducers that were correctly identified by an extraction approach to
the total number of ground truth transducers. Figure 4a displays the results of
our enumerations on the seven different devices from three different vendors,
grouped by the enumeration algorithms.

Figure 4a shows that both the ranked and unranked KTSM algorithms pro-
vide similar proportions of correctly identified transducers, averaging about 60%



15

Info Page

Tech Specs

Support Specs

Nest Cam API
0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%
P

ro
p

or
ti

on
of

al
l

L
em

m
as

Nest Cam Indoor Term Proportions

Indicative Terms

Related Terms

(a)

Info Page

Tech Specs

Buying Guide
0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

P
ro

p
or

ti
on

of
al

l
L

em
m

as

Nest Yale Lock Term Proportions

Indicative Terms

Related Terms

(b)
Fig. 5. A comparison of the proportions of indicative and related terms per document
for (a) the Nest Cam Indoor [5] and (b) the Nest X Yale Lock [9].

and 62%, respectively, of ground truth transducers identified among all devices
with a standard deviation of 24% and 27%, respectively.

For each extraction approach, there is a large disparity between the trans-
ducer enumeration rate for the Nest Cam Indoor and the Nest Yale Lock. We
present a comparison of these two devices in Figure 5, showing the proportion of
indicative and related terms for each document per device. An interesting prop-
erty that follows from this comparison is the correlation between this property
and the enumeration accuracy for each device. As can be seen in Figure 6a, as the
proportion of indicative terms grows larger, the overall enumeration accuracy of
the rKTSM algorithm generally does as well. This is fairly intuitive, in that a set
of vendor materials with a larger number of terms that more explicitly reference
a particular transducer will better inform a reader of the association of that
transducer with the device. This means that a more refined ontology will con-
tribute to an increased number of indicative terms and improve the enumeration
accuracy.

Similarly, Figure 6b displays the negative relationship between proportion
of lemmas that are related terms and the transducer enumeration rate. This
relationship follows from that of indicative terms and transducer enumeration
rate, as a higher proportion of related terms in a corpus is likely accompanied
by a lower proportion of indicative terms in the corpus.

Proportion of Incorrect Transducer Matches. To evaluate the tendencies
of our algorithms to incorrectly identify transducers, we also measure the propor-
tion of matched transducers that are not within the ground truth set. In other
words, we measure the rates at which our algorithms enumerate transducers that
are not actually associated with the device.

Figure 4b shows the proportion of incorrect matches. The unguided KTSM
approach suffers from the highest proportions of incorrect matches across all
devices, with an average of 36% of all transducer matches for each device. Un-



16

0.0% 1.0% 2.0% 3.0% 4.0% 5.0%
Proportion of all Lemmas

20%

30%

40%

50%

60%

70%

80%

90%

E
n
u

m
er

at
io

n
A

cc
u

ra
cy

Enumeration Accuracy by % Indicative Terms

Arlo Ultra

Nest Cam Indoor

Nest Doorbell

Nest Protect 2nd Gen

Nest Thermostat

Nest Yale Lock

Ring Indoor Camera

Best Fit

(a) By proportion of indicative terms

0.0% 2.0% 4.0% 6.0% 8.0% 10.0%
Proportion of all Lemmas

20%

30%

40%

50%

60%

70%

80%

E
n
u

m
er

at
io

n
A

cc
u

ra
cy

Enumeration Accuracy by % Related Terms

Arlo Ultra

Nest Cam Indoor

Nest Doorbell

Nest Protect 2nd Gen

Nest Thermostat

Nest Yale Lock

Ring Indoor Camera

Best Fit

(b) By proportion of related terms

Fig. 6. The proportion of corpus terms that are (a) indicative and (b) related correlated
with transducer enumeration rate of ranked KTSM.

ranked KTSM, on the other hand, averages only 3% incorrect transducers, and
ranked KTSM does not incorrectly attribute any transducers to any of the new
evaluated devices.

The advantage that comes from applying ranked KTSM on texts extracted
from vendor materials is the fact that only the indicative terms that are asso-
ciated with certain devices as defined in the ontology are applied for matching.
This ensures that only the most relevant terms with the least ambiguity will
be used to draw conclusions about the device’s transducers. If ranked KTSM
behaves in a way that is too restrictive and fails to enumerate transducers that
unranked or unguided KTSM can enumerate, it may be the case that the term
sets used for matching are not thorough enough, or a sign that the ontology’s
representation of the device in question should be improved.

7 Conclusion and Future Work

With the growing popularity of IoT, the necessity of ensuring its security be-
comes important than ever. We proposed a proactive approach to extract IoT de-
vice capabilities from their design specifications to verify their potential threats
even before a device is installed. More specifically, we defined the notion of de-
vice capability in the context of IoT, extracted the transducer information for
each device using vendor-provided design specifications and finally identified the
capabilities of a device.

Our current work relies only on vendor provided materials that are pub-
licly available and may be missing some information. In future, we plan to aug-
ment our approach with information from software specifications, device con-
figurations, and firmware versions. Our future work also includes adapting our
methodology to other IoT applications including smart grid, smart health, and
autonomous vehicle.



17

Acknowledgement

The authors thank the anonymous reviewers for their comments. This work was
funded in part by NIST under Contract Number 60NANB18D204, by funds from
NSF under Award Number CNS 1650573, CNS 1822118, and funds from AFRL,
SecureNok, Furuno Electric Company, and CableLabs. We would also like to
thank Upakar Paudel for help with code development.

References

1. Arlo ultra — hd security camera — wireless camera system, https://www.arlo.
com/en-us/products/arlo-ultra/default.aspx

2. Camera API — nest developers, https://developers.nest.com/reference/

api-camera

3. Indoor cam — indoor security cameras — ring, https://shop.ring.com/

products/mini-indoor-security-camera

4. Nest cam indoor - home security camera - google store, https://store.google.
com/us/product/nest_cam

5. Nest cam indoor - installation and tech specs - google store, https://store.

google.com/us/product/nest_cam_specs

6. Nest hello video doorbell - know who’s knocking - google store, https://store.
google.com/us/product/nest_hello_doorbell

7. Nest learning thermostat - installation and tech specs - google store, https://

store.google.com/us/product/nest_learning_thermostat_3rd_gen_specs

8. Nest protect 2ng gen - installation and tech specs - google store, https://store.
google.com/us/product/nest_protect_2nd_gen_specs

9. Nest x yale lock - key-free smart deadbolt - google store, https://store.google.
com/us/product/nest_x_yale_lock

10. Technical specifications for nest cameras and video doorbells - google nest help,
https://support.google.com/googlenest/answer/9259110

11. beautifulsoup: beautifulsoup4 4.8.2, available at: https://pypi.org/project/

beautifulsoup4/

12. Bezawada, B., Bachani, M., Peterson, J., Shirazi, H., Ray, I., Ray, I.: Behavioral
Fingerprinting of IoT Devices. In: Proc. of ASHES. pp. 41–50 (2018)

13. Bhatt, S., Patwa, F., Sandhu, R.: An access control framework for cloud-enabled
wearable Internet of Things. In: CIC (2017)

14. Birnbach, S., Eberz, S., Martinovic, I.: Peeves: Physical Event Verification in Smart
Homes. In: Proceedings of CCS. pp. 1455–1467. ACM (2019)

15. Celik, Z.B., McDaniel, P., Tan, G.: Soteria: Automated IoT Safety and Security
Analysis. In: USENIX ATC (2018)

16. Celik, Z.B., Tan, G., McDaniel, P.D.: IoTGuard: Dynamic Enforcement of Security
and Safety Policy in Commodity IoT. In: NDSS (2019)

17. Choi, J., Jeoung, H., Kim, J., Ko, Y., Jung, W., Kim, H., Kim, J.: Detecting and
identifying faulty IoT devices in smart home with context extraction. In: IEEE
DSN (2018)

18. market forecast, S.: Internet of Things (IoT) connected devices installed base world-
wide from 2015 to 2025 (2016), https://www.statista.com/statistics/471264/
iot-number-of-connected-devices-worldwide/

https://www.arlo.com/en-us/products/arlo-ultra/default.aspx
https://www.arlo.com/en-us/products/arlo-ultra/default.aspx
https://developers.nest.com/reference/api-camera
https://developers.nest.com/reference/api-camera
https://shop.ring.com/products/mini-indoor-security-camera
https://shop.ring.com/products/mini-indoor-security-camera
https://store.google.com/us/product/nest_cam
https://store.google.com/us/product/nest_cam
https://store.google.com/us/product/nest_cam_specs
https://store.google.com/us/product/nest_cam_specs
https://store.google.com/us/product/nest_hello_doorbell
https://store.google.com/us/product/nest_hello_doorbell
https://store.google.com/us/product/nest_learning_thermostat_3rd_gen_specs
https://store.google.com/us/product/nest_learning_thermostat_3rd_gen_specs
https://store.google.com/us/product/nest_protect_2nd_gen_specs
https://store.google.com/us/product/nest_protect_2nd_gen_specs
https://store.google.com/us/product/nest_x_yale_lock
https://store.google.com/us/product/nest_x_yale_lock
https://support.google.com/googlenest/answer/9259110
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/beautifulsoup4/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/


18

19. market forecast, S.: Smart home – United States (2019), https://www.statista.
com/outlook/279/109/smart-home/united-states

20. Jia, Y.J., Chen, Q.A., Wang, S., Rahmati, A., Fernandes, E., Mao, Z.M., Prakash,
A., Unviersity, S.J.: ContexloT: Towards Providing Contextual Integrity to Appi-
fied IoT Platforms. In: NDSS (2017)

21. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A., Lloret, J.: Network Traf-
fic Classifier With Convolutional and Recurrent Neural Networks for Internet of
Things. IEEE Access 5, 18042–18050 (2017)

22. Marchal, S., Miettinen, M., Nguyen, T.D., Sadeghi, A., Asokan, N.: AuDI: Toward
Autonomous IoT Device-Type Identification Using Periodic Communication. IEEE
Journal on Selected Areas in Communications 37(6), 1402–1412 (June 2019)

23. Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A., Tarkoma, S.: IoT
SENTINEL: Automated Device-Type Identification for Security Enforcement in
IoT. In: Proc. of ICDCS. pp. 2177–2184 (June 2017)

24. OConnor, T., Mohamed, R., Miettinen, M., Enck, W., Reaves, B., Sadeghi, A.R.:
HomeSnitch: Behavior Transparency and Control for Smart Home IoT Devices. In:
Proc. of WiSec. pp. 128–138 (2019)

25. Ortiz, J., Crawford, C., Le, F.: DeviceMien: Network Device Behavior Modeling
for Identifying Unknown IoT Devices. In: Proc. of IoTDI. pp. 106–117. Montreal,
Quebec, Canada (2019)

26. Requests: Requests: HTTP for humans, available at: https://requests.

readthedocs.io/en/master/
27. Román-Castro, R., López, J., Gritzalis, S.: Evolution and trends in IoT security.

Computer 51(7), 16–25 (2018)
28. Serror, M., Henze, M., Hack, S., Schuba, M., Wehrle, K.: Towards in-network

security for smart homes. In: ARES (2018)
29. Shen, V., Siderius, D., Krekelberg, W., Hatch, H.: Considerations for Managing

Internet of Things (IoT) Cybersecurity and Privacy Risks. Tech. rep., National
Institute of Standards and Technology (June 2019), https://doi.org/10.6028/
NIST.IR.8228

30. Singh, V.: Replace or Retrieve Keywords In Documents at Scale. ArXiv e-prints
(Oct 2017), http://adsabs.harvard.edu/abs/2017arXiv171100046S, provided by
the SAO/NASA Astrophysics Data System

31. spaCy: spaCy: Industrial-strength natural language processing in python, available
at: https://spacy.io/

32. Tian, Y., Zhang, N., Lin, Y.H., Wang, X., Ur, B., Guo, X., Tague, P.: Smar-
tAuth: User-Centered Authorization for the Internet of Things. In: USENIX Se-
curity (2017)

33. Wang, Q., Hassan, W.U., Bates, A., Gunter, C.: Fear and Logging in the Internet
of Things. In: NDSS (2018)

34. Yang, L., Seasholtz, C., Luo, B., Li, F.: Hide your hackable smart home from
remote attacks: The multipath onion IoT Gateways. In: ESORICS (2018)

35. Zhang, W., Meng, Y., Liu, Y., Zhang, X., Zhang, Y., Zhu, H.: HoMonit: Monitoring
Smart Home Apps from Encrypted Traffic. In: Proc. of CCS. pp. 1074–1088 (2018)

36. Zhang, Y., Chen, J.l.: Modeling virtual channel to enforce runtime properties for
IoT services. In: ICC (2017)

A Study on Vendor materials

Reviewing vendor materials manually is important for understanding any infer-
ences required in drawing conclusions about a device’s transducers and capabil-

https://www.statista.com/outlook/279/109/smart-home/united-states
https://www.statista.com/outlook/279/109/smart-home/united-states
https://requests.readthedocs.io/en/master/
https://requests.readthedocs.io/en/master/
https://doi.org/10.6028/NIST.IR.8228
https://doi.org/10.6028/NIST.IR.8228
http://adsabs.harvard.edu/abs/2017arXiv171100046S
https://spacy.io/


19

ities. The goal of the manual review step is to enumerate the different hardware
components and capabilities of a device for a baseline of ground truth, and also
to enumerate and analyze the inferences and assumptions that are required for
the reader to draw these conclusions. These results are captured and become
the basis for the ontology that will be used as a parameter for the automated
enumeration process.

The process of manually reviewing vendor materials is the same for all de-
vices. This process involves reading through different documents that are as-
sociated with each device and interpreting from them the set of transducers
(and capabilities) on the device. During this process, any insights, inferences, or
context clues that are used to make this interpretation are also captured. The
most important of these features that are key terms that act as indicators of
the presence of a particular transducer or capability. In some cases, key terms
are only indicative of a transducer or capability when considered in conjunction
with another key term.

Table 2. Obtained ontology for the Nest Cam Indoor

Category Transducer Capabilities

Sensors
Image Sensor Capture Image, Capture Video, Detect Light
Microphone Capture Sound

Actuators
Speaker Produce Sound

LED Light Produce Light
Infrared Light Produce Infrared Light

For example, during the manual review of the Nest Cam Indoor’s technical
specifications on the Google Nest support forums [10], simple terms such as
“camera” are indicative of the presence of an image sensor. On the other hand,
a term like “video” is more ambiguous, and could refer to the video captured
by the image sensor, or video displayed on some kind of screen. In this case, it
can be “inferred” that this term refers to an image sensor because of context
clues provided by additional related terms such as “1080p,” which refers to the
resolution of the video captured by the sensor, and “lens,” which refers to the lens
of the camera. On their own, these additional terms do not necessarily suggest
the presence of an image sensor, but they can provide context when considered in
conjunction with other camera-related terms to suggest with higher confidence
the presence of the sensor. The understanding of these terms as context clues
carries an assumed level of prerequisite knowledge of camera-related terminology.
A sample outcome for the Google Nest Cam Indoor is summarized in Table 2.

The visual cues provided by page structure can also help a reader understand
the context around the terms. For the Nest family of products, it is common for
the term “temperature” to appear on technical specification pages for devices
that have no sensors or actuators related to the measurement or alteration of
any temperature. Instead, these instances of the term are used to describe the
“operating” constraints of the device (the theoretical range of temperature in
which it can operate). The only real indicator of this difference is in the table



20

Fig. 7. Different sections of the Nest Cam Indoor technical specifications page [10],
where the terms “temperature” and “humidity” can be seen multiple times, but only
in reference to the theoretical temperature range in which the device can regularly
operate and be stored.

layout of the Nest Cam Indoor’s technical specifications page, where a reader
can see by way of the row’s label “operation” that the temperature in this case
refers to the device’s operating temperature and not any sensor. This part of the
page is illustrated in Figure 7.

Perhaps the most abstract feature that is considered during manual review,
which is largely dependent on the individual reviewer, is the use of technical
background knowledge to infer, from a described concept, how a certain feature
of a device may be implemented. The term “motion detection,” for example,
could indicate the presence of a motion sensor or of software that enables an
image sensor to perform motion detection. Regardless, the ability for the reviewer
to conceive of these possibilities is dependent on their technical background
knowledge.


	Proactively Extracting IoT Device Capabilities: An Application to Smart Homes

