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Finite State Machines

Andrea Pferscher(�) and Bernhard K. Aichernig[0000−0002−3484−5584]

Institute of Software Technology, Graz University of Technology, Austria
{apfersch,aichernig}@ist.tugraz.at

Abstract. Active automata learning gains increasing interest since it
gives an insight into the behavior of a black-box system. A crucial draw-
back of the frequently used learning algorithms based on Angluin’s L∗

is that they become impractical if systems with a large input/output al-
phabet are learned. Previous work suggested to circumvent this problem
by abstracting the input alphabet and the observed outputs. However,
abstraction could introduce non-deterministic behavior. Already exist-
ing active automata learning algorithms for observable non-deterministic
systems learn larger models if outputs are only observable after cer-
tain input/output sequences. In this paper, we introduce an abstraction
scheme that merges akin states. Hence, we learn a more generic behav-
ioral model of a black-box system. Furthermore, we evaluate our algo-
rithm in a practical case study. In this case study, we learn the behavior
of five different Message Queuing Telemetry Transport (MQTT) brokers
interacting with multiple clients.

Keywords: Active automata learning ·Model inference ·Non-deterministic
finite state machines · MQTT.

1 Introduction

The origin of automata learning dates back to the seventies and eighties, when
Gold [9] and Angluin [4] introduced algorithms to learn behavioral models of
black-box systems. Later, in the seminal work of Peled et al. [17], automata
learning proofed itself as a valuable tool to test black-box systems. Today au-
tomata learning reveals security vulnerabilities in TLS [20] or DTLS [8].

The applicability of automata learning, however, suffers from two main prob-
lems: (1) automata learning becomes infeasible for systems with a large input and
output alphabet and (2) many systems behave non-deterministically, e.g. due to
timed behavior or stochastic decisions. One promising solution for the first prob-
lem was proposed by Aarts et al. [2]. They presented an abstraction technique
that introduces a more generic view on the system by creating an abstract and,
therefore, smaller input and output alphabet. However, a too coarse view on the
system creates non-determinism, which leads back to the second problem. In the
literature, several work on learning-based testing [23,8,3] stress the problem of
observing non-deterministic behavior during learning. However, we already find
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learning algorithms [7,16,11] for observable non-deterministic reactive systems.
To make them applicable, we have to provide an input and output alphabet that
establishes observable non-determinism, i.e. systems where an input may lead to
different states, but we can observe which state has been chosen.

In this paper, we propose an active learning algorithm for observable non-
deterministic finite state machines (ONFSMs) that addresses both problems of
active automata learning. The first problem is solved via a mapper that provides
a more generic view on the system under test (SUT) via an abstract input/output
alphabet. The non-deterministic behavior is handled by our learning algorithm
for ONFSMs. We show that an abstracted input/output alphabet does not nec-
essarily decrease the state space of a non-deterministic systems sufficiently. To
overcome the state-space problem, we introduce a new abstraction technique
that defines equivalence classes for outputs and merges akin states of the model.

We evaluated our proposed learning algorithm on the MQTT protocol, which
is a publish/subscribe protocol that is frequently used in the Internet of Things
(IoT). This protocol defines the communication between clients and a broker,
where the broker manages the messages of the clients. Tappler et al. [23] showed
that automata learning is an effective method to test the behavior of different
MQTT brokers. However, in their work they only considered an interaction with
one or two clients to keep the learning feasible. Furthermore, they stress that
the non-deterministic behavior hampered the learning procedure. In this pa-
per, we show that our algorithm for observable non-deterministic systems makes
learning-based testing of the MQTT protocol in a multi-client setup feasible.

Our contribution comprises four aspects. (1) We analyze the challenges of
learning an abstracted system that behaves non-deterministically. (2) We pro-
pose a new abstraction technique that manages these challenges. (3) We intro-
duce a new active learning algorithm that integrates our proposed abstraction
technique and, therefore, learns a more abstract model of a non-deterministic
system. (4) We show the applicability of our algorithm in a case study and com-
pare it to existing algorithms for deterministic finite state machines (FSMs).

Structure. Section 2 explains the modeling formalism and active automata
learning. In Sect. 3, we introduce our learning algorithm including our novel ab-
straction technique. Our case study on five different MQTT brokers is presented
in Sect. 4. Section 5 discusses related work. Finally, Sect. 6 concludes the paper.

2 Preliminaries

2.1 Finite State Machines

An observable non-deterministic finite state machine (ONFSM) is a 5-tupleM =
〈ΣI , ΣO, Q, q0, h〉 where ΣI is the finite set of input symbols, ΣO is the finite
set of output symbols, Q is the finite set of states, q0 is the initial state, and
h ⊆ Q×ΣI ×ΣO ×Q is the transition relation.

We denote a transition in the ONFSM by q
i/o−−→ q′, where (q, i, o, q′) ∈ h. The

assumed ONFSMs are input enabled, i.e., there exists for every pair (q, i), where
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q ∈ Q and input i ∈ ΣI , at least one output o ∈ ΣO and successor state q′ ∈ Q.
Further, we call the finite state machine observable if there exists for any triple
(q, i, o) at most one q′ such that (q, i, o, q′) belongs to h. Hence, in fact, we have
a state transition function δ : Q × I × O → Q, that maps a triplet (q, i, o) to
a unique state q′. Note that learning algorithms, like the ones used in the tool
LearnLib [10], commonly require deterministic systems. We define an FSM as
deterministic if there exists for each input at most one output and succeeding
state. In the literature, deterministic FSM are also known as Mealy machines.

Let s ∈ (ΣI × ΣO)∗ be an input/outputs sequence, with the corresponding
input projection sI ∈ Σ∗I and output projection sO ∈ Σ∗O. We write ε for the
empty sequence and s · s′ for the concatenation of two sequences, where s, s′ ∈
(ΣI × ΣO)∗. We also define a single input/output pair (i, o) ∈ (ΣI × ΣO) as a
sequence and, therefore, s · (i, o) is also defined. The function pre(s) returns the
prefixes of s, including the sequence s. Let s+ ∈ (ΣI ×ΣO)+, s+I ∈ Σ

+
I , s

+
O ∈ Σ

+
O

denote non-empty sequences. For convenience, we write s · (s+I , s
+
O), defining a

sequence s that is concatenated with a sequence of input/output pairs.

2.2 Active Automata Learning

In active automata learning, we gain understanding about a system by actively
questioning the SUT. Many active automata learning algorithms build on the
seminal work of Angluin [4]. Her proposed algorithm (L∗) learns a deterministic
finite automaton (DFA) that accepts a regular language. The learning procedure
is based on the minimally adequate teacher (MAT) framework, which comprises
a teacher and a learner component. The learner asks the teacher either a mem-
bership query or an equivalence query. The former one answers if a word is part of
the language, whereas the second one checks if a hypothesis, i.e. a proposed DFA,
represents the regular language. The equivalence query is either answered with
yes or with a counterexample that shows an evidence to the non-conformance
of the proposed hypothesis and the SUT. All the answers from the queries are
saved in an observation table, which is then used to construct a hypothesis.

Angluin’s L∗ has been extended for different types of systems, including
algorithms for Mealy machines [12,15,21]. In these algorithms for learning Mealy
machines, membership queries are replaced by output queries. There, instead of
asking whether a word is in the language, an input string is provided. The teacher
executes this input string on the SUT and responds the observed output string.
The observed outputs are then saved in the observation table.

The previously mentioned learning algorithms can only handle deterministic
SUTs. Tackling the problem that systems behave non-deterministic due to vari-
ous reasons, e.g. ignoring timed behavior, L∗-based learning algorithms [7,16,11]
for ONFSMs were proposed. The algorithms for ONFSMs follow the idea of the
Mealy machine learning algorithms, but instead of considering just one possible
output for an input, all possible outputs are saved in the observation table.

One major drawback of the Angluin style algorithms is that they do not
scale for a large input/output alphabet, since the number of required queries
significantly grows with the increasing size of the used alphabet. To overcome this
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problem, Aarts et al. [2] proposed an abstraction technique that reduces the size
of the used input/output alphabet of the learning algorithm. This abstraction
technique introduces a mapper component that translates the communication
between the learner and the SUT in both directions.

A mapper is an 8-tupleA = 〈ΣI , ΣO, R, r0, ΣAI , ΣAO , ∆,∇〉, where ΣI and ΣO
are the disjoint sets of concrete inputs and outputs, R is the set of mapper states,
r0 ∈ R is the initial state, ΣAI and ΣAO are the finite disjoint sets of abstract
inputs and outputs, ∆ : R× (ΣI ∪ΣO)→ R is the state transition function, and
∇ : (R×ΣI → ΣAI )∪ (R×ΣO → ΣAO ) is the abstraction function. The mapper
takes abstract inputs and translates them to concrete inputs, which can then be
executed on the SUT. In return, the mapper observes concrete outputs from the
SUT and returns the corresponding abstracted outputs to the learner. On each
received input/output pair, the mapper updates its internal state.

A large input/output alphabet is not the only challenge that limits the feasi-
bility of active automata learning. Berg et al. [5] state that the real bottleneck of
active automata learning is the equivalence oracle since the presence of such an
oracle is highly improbable. To make active learning practically applicable, tools
like LearnLib [10] substitute the equivalence oracle by conformance testing.

3 Method
Teacher Learner

Conformance
Testing

Mapper

System
Under Test

Observation
Table

Abstracted
Observation

Table

second level
abstraction

equivalence query

yes/counterexample

abstract
output query

abstract query output

output
query

query
output

inputs +
resets outputs

perform tests

passed/failed
tests

Fig. 1. Angluin’s [4] traditional learning
framework is extended by a mapper com-
ponent and an abstracted observation table.

In this section, we describe our ac-
tive learning algorithm for abstracted
ONFSMs. Firstly, we introduce our
basic learning setup. Secondly, we ex-
plain the two different levels of ab-
straction and, thirdly, we discuss the
application of our abstraction mech-
anism on the learning algorithm.

3.1 Learning Setup

Our proposed learning algorithm for
ONFSMs is based on an Angluin-style active learning setup. For this, we define
a learner that queries a teacher. Figure 1 shows the components of our learning
algorithm. The teacher comprises three components: (1) conformance testing, (2)
a mapper and (3) the SUT. (1) The aim of conformance testing is to make the
equivalence check feasible. For this, we assume that the learned model conforms
to the SUT if a finite set of test cases passes. (2) The mapper is based on
the idea of Aarts et al. [2], where the mapper translates a (possibly infinite)
alphabet to a finite alphabet that is used by the learning algorithm to create
an abstracted model. The difference to Aarts’ proposed mapping concept is that
we do not require an abstracted alphabet that assures that the learned model
behaves deterministically. This gives us the possibility to create an even more
abstract view on the SUT. (3) The SUT represents an interface, where concrete
inputs can be executed and the corresponding concrete outputs can be observed
by the mapper. This allows a black-box view on the SUT.
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The difference to other active learning setups is that the learner uses an
additional abstraction mechanism for the observation table. To avoid confusion
between the abstraction done by the mapper and the abstraction of the obser-
vation table, we distinguish two levels of abstraction. We denote the abstraction
by the mapper as first level abstraction and the abstraction of the observation
table is denoted as second level abstraction.

3.2 First Level Abstraction
q0 q1

Connect/Ack

Connect/Closed

Connect/Ack

Connect/Closed

Fig. 2. Abstracted non-
deterministic Mealy machine of
the MQTT connection protocol

q0 q1

Connect/Ack

Connect/Closed All

Connect/Ack

Connect/Closed

Fig. 3. The ONFSM of the
MQTT connection protocol

The first level abstraction comprises the map-
per component of the teacher that translates
abstract inputs to concrete inputs and concrete
outputs to abstract outputs. The aim of map-
ping is to decrease the size of the alphabet to
make the learning algorithm feasible. However,
Aarts et al. [2] stress that a too abstract alphabet
creates non-determinism, which is not suitable
for many learning algorithms. We circumvent the
problem of creating a deterministic alphabet by
using a learning algorithm for non-deterministic
systems. Still, the abstracted alphabet must not violate the assumption of ob-
servable non-deterministic outputs. If the abstraction is too coarse, we have to
refine the abstracted outputs by introducing new outputs that make the model
of the SUT observable non-deterministic.

Example 1 (Multi-Client Connection Mapper). Our goal is to learn a model of
an MQTT broker that interacts with several clients. For simplicity, here we only
consider the connection procedure of the protocol. The clients can send a con-
nection request to the broker. A client gets disconnected if the client is already
connected. The concrete inputs are ΣI = {Connect(id)|id ∈ N} and the concrete
outputs ΣO = {Ack(id),Closed(id)|id ∈ N}, where id ∈ N uniquely identifies a
client by an integer. Therefore, the set of concrete inputs and outputs is infi-
nite. To build a finite model of this connection protocol for multiple-clients, we
have to define a mapper that abstracts the input/output alphabet. The mapper
for this example has the abstracted inputs ΣAI = {Connect} and abstracted out-
puts ΣAO = {Ack,Closed}. The abstracted non-deterministic model is depicted in
Fig. 2. We distinguish the states where no client (q0) or more than one client (q1)
is connected. In the state where more than one client is connected, further clients
can connect or disconnect. Since the Mealy machine in Fig. 2 is not observable
non-deterministic, we have to refine the abstracted outputs to make the states
distinguishable. For this, we add another abstract output Closed All, capturing
the observation when the last client gets disconnected, to ΣAO which makes the
automaton observable non-deterministic. The refined model is depicted in Fig. 3.

3.3 Second Level Abstraction

The first level abstraction enables an abstracted view and supports the feasibility
of the learning algorithm. However, due to the iterative state exploration of L∗,
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Table 1. Observation table of the multi-
client connection protocol of Example 1.

Γ\E Connect
ε Ack
(Connect,Ack) Ack,Closed All
(Connect,Ack)(Connect,Ack) Ack,Closed
(Connect,Ack)(Connect,Closed All) Ack

Table 2. Abstracted observation table of
Table 1.
Γ\E Connect
ε Ack
(Connect,Ack) Ack,Closed
(Connect,Ack)(Connect,Ack) Ack,Closed
(Connect,Ack)(Connect,Closed All) Ack

the first level abstraction might not be enough to keep the number of states
low. To overcome this problem, we introduce a second level abstraction. The
aim of this abstraction level is to decrease the state space by defining equivalent
outputs. This is done by the definition of equivalence classes for outputs, which
then replace the observations saved in the observation table. The mapping of
the equivalence classes is a surjective function µ : ΣAO → ΣA

′

O that maps an

abstracted output of ΣAO to an equivalence class of ΣA
′

O .

Example 2 (Multi-Client Connection Equivalence Classes). Even though we ab-
stracted the alphabet in Example 1, learning algorithms for ONFSMs, e.g. LN
[7], would learn a model similar to the one shown in Fig. 4. The problem is that
these algorithms count the number of clients, and create a new state for each
client. To avoid a large model, we want to merge akin states. For this, we define
for the outputs ΣAO = {Ack,Closed,Closed All} the following equivalence classes

ΣA
′

O = {Ack,Closed}. The function µ for the second level abstraction of this
example is defined as follows µ : {Ack} → Ack, {Closed,Closed All} → Closed.

q0 q1 · · · qn

Connect/Ack

Connect/Closed All

Connect/Ack

Connect/Closed

Connect/Ack

Connect/Closed

Fig. 4. Learned model of Example 1 without second
level abstraction, which has n+ 1 states for n clients.

In our learning algo-
rithm, the learner maintains
an extended observation ta-
ble. The classic observation
table T is defined as a triplet
〈Γ,E, T 〉, where Γ ⊂ (ΣAI ×
ΣAO )∗ contains sequences of inputs and outputs, E ⊂ ΣA

+

I is a suffixed closed

set of input sequences, and T is a mapping Γ × E → 2Σ
A
O

+

containing first

level abstract outputs of the power set of ΣAO
+

. The extension of the classi-

cal observation table T A′
is a 5-tuple 〈Γ,E, T, TA′

, µ〉 where TA
′

is a mapping

Γ × E → 2Σ
A′
O

+

to the second level abstracted outputs and µ : ΣAO → ΣA
′

O is
the second level abstraction function.

Example 3 (Multi-Client Connection Observation Table). Table 1 shows an in-
termediate observation table in the learning procedure of the system depicted in
Fig. 3. Table 1 is then abstracted with the equivalence classes defined in Example
2. The abstracted observation table is presented in Table 2.

3.4 Learning Algorithm

In the following, we introduce our learning algorithm for ONFSMs. Especially, we
explain the integration of the second level abstraction in the L∗-based learning
setup and how this abstraction technique generates a more generic hypothesis.
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Algorithm 1 Learning algorithm using an abstracted observation table

Input: input alphabet ΣA
I , equivalence class map-

ping µ, teacher Π
Output: ONFSM H
1: 〈Γ,E, T 〉 ← InitTable(ΣA

I )
2: cex← ε
3: do
4: 〈Γ,E, T 〉 ← FillTable(〈Γ,E, T 〉, Π)

5: T A′
← AbstractTable(〈Γ,E, T 〉, µ)

6: while ¬IsClosedConsistentComplete(T A′
)

do
7: Γ ← MakeClosed(T A′

)
8: 〈Γ,E, T 〉 ← FillTable(〈Γ,E, T 〉, Π)

9: T A′
← AbstractTable(〈Γ,E, T 〉, µ)

10: Γ ← CompleteQueries(T A′
)

11: 〈Γ,E, T 〉 ← FillTable(〈Γ,E, T 〉, Π)

12: T A′
← AbstractTable(〈Γ,E, T 〉, µ)

13: E ← MakeConsistent(T A′
)

14: 〈Γ,E, T 〉 ← FillTable(〈Γ,E, T 〉, Π)

15: T A′
← AbstractTable(〈Γ,E, T 〉, µ)

16: H ← ConstructHypothesis(T A′
)

17: cex← ConformanceTest(H)
18: if cex 6= ε then
19: 〈Γ,E, T 〉 ← AddCex(cex, Π)

20: while cex 6= ε
21: return H

Algorithm 1 describes the procedure performed by the learner to learn an
ONFSM. For this, the learner requires the abstract input alphabet ΣAI of the
SUT, the second level abstraction mapping µ, and the teacher Π which provides
access to the mapper and SUT. In Line 1 and 2 we start with the initializa-
tion of the observation table and the counterexample (cex). Remember that the
classic observation table is a triplet T = 〈Γ,E, T 〉. Γ is a prefixed-closed set of
sequences, which can be written as Γ = ΓS ∪ΓP where ΓS ∩ΓP = ∅. ΓS contains
the sequences that identify the states of the ONFSM and ΓP = ΓPS ∪ΓP ′ , where
ΓPS ⊆ ΓS · (ΣAI ×ΣAO ), ΓP ′ ⊂ Γ · (ΣAI ×ΣAO ) and ΓPS ∩ ΓP ′ = ∅. We initialize
T by adding the empty sequence ε to ΓS and the input alphabet ΣAI to E.

After the initialization we fill the observation table T (Line 4) by performing
output queries to the teacher Π. The mapper translates the first level abstracted
inputs of ΣAI to concrete inputs of ΣI and the observed concrete outputs of
ΣO to first level abstracted outputs ΣAO . Every time we fill the table with the
query outputs we extend the observation table T = 〈Γ,E, T 〉 to the abstract
observation table T A′

= 〈Γ,E, T, TA′
, µ〉 by translating observed outputs with

µ as explained in Sect. 3.3. Note that the second level abstraction only changes
the mapping TA

′
; Γ , E and T stay unchanged.

After the abstraction in Line 5 we check in Line 6 if the abstracted observation
table T A′

is closed, consistent and complete. To the best of our knowledge, this
part is different to other learning algorithms.

Closedness First, we check if the abstracted table T A′
is closed. This check

is similar to the closed check proposed by El-Fakih et al. [7], however, instead
of checking the values in the mapping T , we check if the second level abstracted
outputs in TA

′
are equal. For this, we denote that two rows γ, γ′ ∈ Γ in the

abstracted table are equal, i.e. γ ∼=A′ γ′, iff ∀e ∈ E, TA′
(γ, e) = TA

′
(γ′, e). The

abstract observation table T A′
is not closed if there exists a γ′ ∈ ΓP such that

no γ ∈ ΓS fulfills γ ∼=A′ γ′.

Consistency Unlike the other learning algorithms for ONFSMs, we have to
check if our abstract observation table T A′

is consistent. The consistency check
is necessary due to queries that are added through the abstraction mechanism
and due to the counterexample processing which we discuss later in this section.
Our check is based on the consistency check for Mealy machines introduced by
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Table 3. Observation table of Example 1
after the first output queries.

Γ\E Connect
ε Ack
(Connect,Ack) Ack,Closed All

Table 4. Abstraction of Table 3 using the
mapping defined in Example 2

Γ\E Connect
ε Ack
(Connect,Ack) Ack,Closed

Niese [15]. We define that T A′
is consistent if for every γ, γ′ ∈ Γ , where γ ∼=A′ γ′

holds, no input/output pair (i, o) ∈ (ΣAI ×ΣAO ) exists where γ ·(i, o) �A′ γ′ ·(i, o).
Completeness The completeness check is different to other active learning

algorithms. Here we check, if we have added all necessary sequences to construct a
hypothesis. Since the final hypothesis contains the first level abstracted outputs,
but is constructed based on the second level abstraction outputs, it may be
necessary to add additional sequences to Γ . These sequences are required to
identify the target state of all observed input/output pairs. For this, we define
that two rows γ, γ′ ∈ Γ in the classic observation table are equal, denoted by
γ ∼= γ′, iff ∀e ∈ E, T (γ, e) = T (γ′, e). For each γ ∈ ΓS we select each γ′ ∈ ΓP
where γ ∼=A′ γ′ but γ � γ′ holds. We then check if Γ contains all sequences
pre(γ′ · (e, s+O)) where e ∈ E and T (γ, e) 6= T (γ′, e), and s+O ∈ T (γ′, e). If no such

sequence is required or all required sequences already exist, T A′
is complete.

If either the abstracted table T A′
is not closed or not consistent or not

complete, we continue our procedure in Line 7. Here, we make T A′
closed if

necessary. To make T A′
closed, we move every row γ′ ∈ ΓP to ΓS , where ∀γ ∈

ΓS : γ �A′ γ′ holds. Informally, we move every row from ΓP to ΓS where the
set of abstracted outputs for all e ∈ E is unique. This introduces a new state in
our hypothesis. If we have found such a γ′ ∈ ΓP , we have to add all observed
outputs in the mapping T from the row γ′ to ΓPS . For this, we concatenate γ′

with each observed input/output pair in that row, i.e. for each i ∈ ΣAI we add
for each observed output sequence o ∈ T (γ′, i) the concatenation γ′ · (i, o) to
ΓPS . Afterwards, we fill the table T according to the updated Γ in Line 8 and
in the next line we construct again T A′

.

Example 4 (Closed Abstracted Observation Table). Table 3 shows the observa-
tion table after the first output queries. We abstract the table using the mapping
function µ introduced in Example 2. The result of the abstraction is shown in
Table 4. According to Algorithm 1 we then check if the abstracted table is closed.
Since the row (Connect,Ack) is in ΓP and the produced outputs are not in ΓS ,
Table 4 is not closed. To make the table closed, we move (Connect,Ack) to ΓS
and add the corresponding sequences of the observed outputs to ΓP . The result
including the additionally performed output queries is shown in Table 1. We
then again abstract this table – shown in Table 2 – and check if the abstracted
table is closed. Our closed check on Table 2 is now satisfied. Note that we do
not bother that Table 1 is not closed.

After making the abstract table closed and performing the required queries to
fill the table, we add in Line 10 all necessary queries to make the table complete.
For this, we select for all γ ∈ ΓS every γ′ ∈ ΓP where γ ∼=A′ γ′. If then γ � γ′,
we select the input sequence e ∈ E where T (γ, e) 6= T (γ′, e) and the output
sequence where the observed outputs are different, i.e. s+O ∈ T (γ′, e) \ T (γ, e).
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Table 5. Final observation table of the
connection protocol of Example 1. The in-
put Connect is abbreviated by Conn.

Γ\E Conn
ε Ack
(Conn,Ack) Ack,Closed All
(Conn,Ack)(Conn,Ack) Ack,Closed
(Conn,Ack)(Conn,Closed All) Ack
(Conn,Ack)(Conn,Ack)(Conn,Closed) Ack,Closed All

Table 6. Final abstracted observation ta-
ble generated from Table 5 The input
Connect is abbreviated by Conn.

Γ\E Conn
ε Ack
(Conn,Ack) Ack,Closed
(Conn,Ack)(Conn,Ack) Ack,Closed
(Conn,Ack)(Conn,Closed All) Ack
(Conn,Ack)(Conn,Ack)(Conn,Closed) Ack,Closed

The sequences pre(γ′ · (e, s+O)) are added to ΓP ′ , if the sequence is not already
part of Γ . Therefore, ΓP ′ only contains sequences that are added to fulfill the
completeness of the abstracted observation table.

Example 5 (Complete Abstracted Observation Table). We continue the learning
procedure of Example 4 by checking if the observation table is complete. For
this, we consider Table 1 and the abstracted Table 2. We see that the row
(Connect,Ack) is equal to (Connect,Ack), (Connect,Ack) in the abstracted table.
However, in Table 1 we see that the outputs Closed All and Closed are different.
Hence, we add the sequence (Connect,Ack), (Connect,Ack), (Connect,Closed) to
the classic observation table (Table 5). After making Table 5 complete, we ab-
stract the table (Table 6). Table 6 is now closed and complete.

If the table is closed and complete, we make in Line 13 the abstracted ob-
servation table consistent. For each two rows γ, γ′ ∈ Γ where γ ∼=A′ γ′ and an
input/output pair (i, o) ∈ (ΣAI ×ΣAO ) where γ · (i, o) �A′ γ′ · (i, o) exists, we add
i · e to E, where e ∈ E and T (γ · (i, o), e) 6= T (γ′ · (i, o), e).

When the table is closed, complete and consistent, we construct a hypothesis
from our abstract observation table in Line 16 of Algorithm 1. Since we consider
two different levels of abstraction in our observation table, we have to modify the
classical construction approach from El-Fakih et al. [7]. Algorithm 2 describes
the process of generating an ONFSM M from the abstract observation table
T A′

. The initialization process in Line 2 and 3 of Algorithm 2 is equal to other
L∗-style algorithms. For this, the empty sequence ε indicates the initial state
q0 of M. In addition, the states are defined by the rows of ΓS . However, due
to the second level abstraction, not all observed outputs are represented in the
row γS ∈ ΓS . To consider these outputs in the hypothesis, we have to check

Algorithm 2 Hypothesis construction

Input: abstract obs. table T A′
= 〈Γ = ΓS ∪ ΓP , E, T, TA′

, µ〉, input alphabet ΣA
I

Output: ONFSMM = 〈ΣA
I , Σ

A
O , Q, q0, h〉

1: function ConstructHypothesis
2: q0 ← ε ∈ ΓS
3: Q← ΓS
4: for all γS ∈ ΓS do
5: QγS ← {γ|γ ∈ Γ ∧ γ ∼=A′ γS}
6: for all γ ∈ QγS do

7: for all i ∈ ΣA
I do

8: for all o ∈ T (γ, i) do
9: γ′ ← γ · (i, o)
10: if γ′ ∈ Γ then
11: h← h ∪ (γS , i, o, γ

′
S) where γ′

S ∈ ΓS ∧ γ
′
S
∼=A′ γ′

returnM
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also the observations in the mapping T . For this, we filter in Line 5 the equal
rows of γS in Γ according to the second level abstraction and then add all
transitions with the corresponding observations in the Lines 6 to 11. In Line 9 we
concatenate the currently considered sequence γ with the observed input/output
pair. If this sequence is part of Γ , we have to find the correct destination state
of the transition. For this, we select the equal state according to the second level
abstraction in ΓS . In Line 11, we add the new transition to the transitions h.

Example 6 (Hypothesis Construction). Table 5 and Table 6 are used to construct
a hypothesis of Example 1. The closed, complete and consistent Table 6 identifies
the states and Table 5 contains all observed outputs. ΓS includes two states

{q0, q1}. From the initial state q0 we create one transition q0
Connect/Ack−−−−−−−→ q1. In

the second state we consider three different outputs, {Ack,Closed,Closed All},
where Closed and Closed All belong to the equivalence class Closed. Therefore,

we create three different edges q1
Connect/Closed All−−−−−−−−−−−→ q0, q1

Connect/Closed−−−−−−−−−→ q1 and

q1
Connect/Ack−−−−−−−→ q1. The hypothesis is equal to the ONFSM shown in Fig. 3.

Conformance Testing After the construction of the hypothesis (Algorithm
1, Line 16), we have to check in Line 17 whether our constructed hypothesis
conforms to the SUT. Usually, in automata learning we assume that two systems
are equal if the behavior of the learned hypothesis and the SUT are equal. For
an ONFSM we could say that two systems are equal if all observable traces are
equal. However, due to our second level abstraction, the learned model has a more
generic behavior than the SUT. Therefore, the trace equivalence assumption does
not hold. Instead we have to check trace inclusion, i.e., every trace produced by
the SUT must also be observable in our learned hypothesis. Let I be our SUT
and H the learned hypothesis. Further we define the function Traces(M) that
returns all observable traces, starting at the initial state q0 of an ONFSMM. The
generated traces contain input and output symbols on the first level abstraction.
Formally, we can define the conformance relation as follows:

Traces(I) ⊆ Traces(H). (1)

This relations implies that the more generic the hypothesis the better the confor-
mance. However, a completely generic model would not be useful, e.g. for further
testing purposes. The learning of a too generic hypothesis is prevented by the
mere consideration of observed outputs from the observation table. Therefore,
the hypothesis only includes outputs that can be observed on the SUT.

According to the framework depicted in Fig. 1, the teacher either responds
yes if the conformance relation in Eq. 1 is fulfilled or reports a counterexample.
The counterexample is a trace that contains an output that is not included in
our hypothesis H. Note that since the model is input-enabled only outputs may
lead to the violation of trace inclusion. We replace the conformance oracle by
conformance testing to make the conformance check feasible. For this, a finite
number of test cases is generated and then executed on the SUT. Since the test
cases contain inputs and outputs on the first level abstraction, we again need a
mapper that abstracts and concretizes inputs and outputs for the execution on
the SUT. A test case passes if the trace generated by the SUT is also observable
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in the hypothesis, otherwise the test case fails. Therefore, the teacher answers
with yes, if all traces pass, otherwise a failing trace is returned. In Algorithm 1
Line 17 the return of an empty sequence ε is equal to the answer yes. A practical
implementation of the conformance testing approach is discussed in Sect. 4.

If no counterexample is found our algorithm terminates and returns the cur-
rent hypothesis in Line 21, otherwise we add the counterexample to the obser-
vation table in Line 19. Note that every returned counterexample is cut off after
the first non-conforming input/output pair.

The adding of a counterexample in Line 19 distinguishes two different types
of counterexamples. The first type reveals an unobserved output in a state of the
hypothesis where an output of the same equivalence class is also observable. To
check if the counterexample belongs to this type, we execute all input/output
pairs except the last one of the sequence on H. This leads us to the failing state
prior to the wrong observation. We then check if executing the remaining in-
put generates an output of the same equivalence class. If the output is in the
same equivalence class, we want to add the missing input/output transition to
the state. In this case, we add any not already existing prefix of the found coun-
terexample to ΓP . The second type of a counterexample reveals an input/output
pair, where no equivalent output is observable in the failing state. In this case,
we perform the counterexample processing as proposed by El-Fakih et al. [7],
since we want to introduce a new state in our hypothesis. This is done by firstly
removing the longest matching prefix γ ∈ Γ of the counterexample and secondly
adding the suffixes of the remaining input sequence of the found counterexample
to E. In both cases, we then jump back to Line 3 and continue to fill the obser-
vation table by asking membership queries. This procedure is repeated until no
counterexample can be found.

4 Case Study

We evaluated the Message Queuing Telemetry Transport (MQTT) protocol.
MQTT defines a publish/subscribe protocol, where clients can subscribe to top-
ics and publish messages to a topic. Tappler et al. [23] already presented work
on model-based testing of the MQTT protocol via active automata learning.
However, in their work they only consider one or two clients interacting with
the broker. Due to the proposed abstraction technique used in our learning al-
gorithm for ONFSMs, we can deal with a multi-client setup. In this section, we
first discuss technical aspects of the implementation of our learning algorithm
and then present the results of the case study on five different MQTT brokers.

We weaken the all-weather assumption [13] for the observation of outputs,
and assume like other learning algorithms for non-deterministic systems [16,11,26]
that all outputs are observable after performing a query n times. Regarding the
challenge that not all outputs are observable at once, we discuss three techni-
cal aspects of our implementation: (1) repeated execution of output queries, (2)
stopping criterion for output queries, and (3) shrinking of the observation table.

(1) We need to repeat an output query since the abstraction done by the
mapper introduces non-determinism. The mapper takes an abstract input and
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randomly chooses an input from a set of corresponding concrete inputs. There-
fore, the observed outputs may differ. The number of repetitions nq ∈ N depends
on the SUT, e.g. for the multi-client setup on MQTT we executed each query
at least as often as the number of used clients.

(2) Repeating every output query each time the table is filled leads to a vast
amount of queries. In practice, performing queries on the SUT can be expensive,
e.g. due to the latency of the response. Thus, we want to reduce the number of
performed queries. In our implementation, we extended each cell of the obser-
vation table by a score s ∈ R≥0 that indicates how often the outputs in the cell
change. The value of s is between 0.0 and 1.0, and each time we perform the
output queries and no new output is observed, s increases by a value si ∈ R≥0.
If at least one new output is observed, the score decreases by sd ∈ R≥0. Note
that s cannot increase above 1.0 and decrease below 0.0. If s = 1.0, we do not
perform the output query again. The initial value of s and the values of si and
sd depend on the SUT and how often output queries are repeated in general.

(3) The size of the observation table significantly influences the runtime of the
learning algorithm. Our abstraction techniques keep the size of the observation
table small. However, due to the assumed non-determinism, it may happen that
rows become equal after repeating output queries. For this, we remove equal
rows in ΓS and the corresponding suffixes in ΓP . The shrinking of the table is
performed before the closedness, consistency and completeness check.

In Sect. 3.4, we explained that the equivalence oracle is replaced by confor-
mance testing. Due to our conformance relation defined in Eq. 1, we cannot check
if the outputs of all traces are equivalent, since our hypothesis is more generic
than the SUT. We generate input sequences by randomly walking through the
hypothesis model. The random walk selects outgoing transitions from the current
state uniformly at random and append the input of the transition to the input
sequence. This input sequence is then executed once on the SUT to generate an
input/output sequence. We then check if the generated sequence is observable
on our hypothesis. When we execute the input sequence on the SUT, we use the
mapper to translate the abstracted inputs to concrete inputs. Since the number
of possible concrete inputs is extremely large and executing all possible inputs
would be infeasible, we limit the number of executed test cases to a finite number
ntest ∈ N. Due to the assumption of non-deterministic behavior, we may observe
different sequences if we repeat the execution on the SUT. Instead of repeating
each input sequence several times, we assume that the generation via random
walk reflects the non-deterministic behavior sufficiently.

In this case study, we learned the ONFSMs of MQTT brokers. In the MQTT
protocol, a client can connect to a broker. A connected client can subscribe to
a topic and/or publish a message on a topic, which is then forwarded by the
broker to the subscribed clients. The task of the MQTT broker is to handle
the connection/disconnection of the clients and to forward publish-messages to
subscribed clients. The five learned MQTT brokers are listed in Table 7. All of
them implement the current MQTT standard version 5.0 [14]. To communicate
with the different brokers, we used our own client implementation.
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Table 7. Learning setup and results of our case study on MQTT brokers

Broker ejabberd1 EMQ X2 HiveMq3 Mosquitto4 VerneMQ5

Version 20.3 v4.0.0 2020.2 1.6.8 1.10.0
Timeout 100 50 100 50 50

# Output Queries 18 315 18 375 15 950 13 975 14 800
# Equivalence Checks 1 1 1 1 1
Runtime (h) 11.28 5.48 9.04 3.98 4.30

We used an akin learning setup for all five MQTT brokers. The goal was
to learn the behavior of the MQTT broker that interacts with multiple clients.
In our experiments, we used five clients. We defined the abstract input alpha-
bet by ΣAI = {Connect,Disconnect,Subscribe,Unsubscribe,Publish}. The mapper
translates each abstract input to a concrete input for one of the five clients.
Furthermore, the clients can subscribe to one topic and publish a message to
this topic. For the second level abstraction we defined the following mapping
µ for the equivalence classes {Closed,Closed all,Closed Unsuback all} → Closed,
{Unsuback,Unsuback all} → Unsuback, and all other outputs map to an equally
named singleton equivalence class. To make the approach feasible for a large
number of clients, our mapper saves translations from the abstract sequences
in Γ to sequences with concrete input/output values, i.e., we cache concrete in-
put/output sequences of the sequences in Γ . For each of these saved translations,
we repeat the output query times the number of clients. Using this querying tech-
nique, we assume that we do not frequently observe new outputs when we repeat
the output queries. Therefore, we set the change indicator s = 0.9, si = 0.2 and
sd = 0.1. Furthermore, we assume that 2 000 input/output sequences sufficiently
represent this system. Thus, we set ntest = 2 000.

Figure 5 represents the learned ONFSM of an MQTT broker interacting with
multiple clients. The symbol “+” represents a wildcard for several inputs or out-
puts that are not critical for the behavior system and, therefore, are skipped to
keep the model clear. The three states of the MQTT model distinguish between
the state where no client is connected (q0), at least one client is connected, but
no client is subscribed (q1) and at least one client is connected and subscribed
(q2). Note that Fig. 5 represents a valid model for all setups where more than
two clients interact with the MQTT broker.

Table 7 shows the learning setup and the results of our case study. The first
three rows of the table define the MQTT broker, the tested version and the
required timeout on responses. The timeout defines the duration how long (in
milliseconds) the socket listens for incoming messages. An equal behavior of the
five brokers could only be achieved by the adaption of the timeouts. Selecting a
too low timeout, we may not receive all messages in time. Our proposed learning
algorithm can deal with such a non-deterministic behavior. For example, when
we learn the HiveMQ broker with a timeout of 50, we receive messages from
old sessions or some messages are not delivered in time. Therefore, we set the

1
https://www.ejabberd.im/

2
https://www.emqx.io/

3
https://www.hivemq.com/

4
https://mosquitto.org/

5
https://vernemq.com/

https://www.ejabberd.im/
https://www.emqx.io/
https://www.hivemq.com/
https://mosquitto.org/
https://vernemq.com/
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q0 q1 q2
Connect/Connack

+/Closed all

Connect/Closed all
Disconnect/Closed all

Connect/Connack

+/Closed,Unsub all

Publish/Puback
Subscribe/Suback

Unsubscribe/Unsuback all

Conclosed/Closed Unsuback all

Connect/Closed all Disconnect/Closed all

Publish/Puback Publish

Unsubscribe/Unsuback

Subscribe/Suback

+/+

Fig. 5. The ONFSM of an MQTT broker that interacts with multiple-clients.

timeout for the brokers individually. The last three rows of Table 7 represent the
learning results which state the number of performed output queries and equiv-
alence queries, and the required time to learn the MQTT broker. The timeout
directly affects the runtime of the learning algorithm, which can be seen in the
experiments for ejabberd and HiveMQ. The experiments were conducted with a
MacBook Pro 2019 with an Intel Quad-Core i5 operating at 2.4 GHz and with
8 GB RAM. All learned models correspond to the ONFSM presented in Fig. 5.

Furthermore, we compared our algorithm with a deterministic learning al-
gorithm. For this, we learn a deterministic model of the MQTT broker that
interacts with five clients. The experiment was performed with the tool Learn-
Lib [10] using the improved version of L∗ proposed by Rivest and Schapire
[19]. We only learned the model for the Mosquitto broker with a timeout of 50,
all other brokers of Table 7 showed non-deterministic behavior during learning.
The learning of the Mosquitto broker for five clients took more than two days
(58.29 h). The final model had 243 states and 6 075 transitions. The model size
shows that even if we learn a small part of a rather simple system the complexity
of the system increases significantly in a multi-client setup. To learn the deter-
ministic model, 151 900 output queries and one equivalence query were required.
These results stress that our algorithm enables a faster learning-based testing
technique and provides a simpler model of a large system.

5 Related Work

Our proposed learning algorithm for ONFSM is based on Angluin’s L∗ [4]. In
the literature, the majority of learning algorithms for non-deterministic systems
[6,7,16,11,25,26] also follows the same principle. Bollig et al. [6] introduced a
learning algorithm for residual finite-state automata, which are a subclass of non-
deterministic finite automata. Using this modeling formalism, they can represent
a deterministic finite-state automaton by a more succinct non-deterministic au-
tomaton. However, they assume that the SUT behaves deterministically.

All Angluin-based algorithms for ONFSMs [7,16,11] basically follow the ap-
proach that was first proposed by El-Fakih et al. [7]. Their algorithm is based
on the all-weather assumption, i.e. all possible outputs are observable at once.
Pacharoen et al. [16] revise this assumption by assuming that all outputs are
observed, after executing a query n ∈ N times. Kahlili and Tacchella [11] also
considered more practical aspects and learned the non-deterministic model of
TFTP server. However, as explained in Sect. 3 these algorithms might not scale
well when an alphabet is abstracted by a mapper component.
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Volpato and Tretmans [25,26] introduced two learning algorithms for non-
deterministic input/output labelled transition systems. In their first work [25],
they posed the all-weather assumption on the observation of outputs and assume
an Angluin-style equivalence oracle. In their second work [26], they weakened
these assumptions and proposed a conformance relation based on the ioco-
theory [24] for an over- and under-approximation of the SUT. In contrast to
our algorithm, they try to improve the observation table by increasing it, which
leads to more states like in the previously mentioned algorithms for ONFSMs.

Petrenko and Avellaneda [18] proposed an algorithm for ONFSM that is not
based on Angluin’s MAT framework. Instead of a teacher they create a hypoth-
esis using a SAT solver. However, the algorithm is based on the assumption that
the final number of states of the ONFSM must be known in advance.

Tappler et al. [22] presented an L∗-based learning algorithm for Markov deci-
sion processes. For this, they also considered the observed frequencies of stochas-
tic events in their models. Their algorithm rather learns the stochastic behavior
instead of the non-deterministic behavior like our algorithm.

6 Conclusion

We presented an active automata learning algorithm for observable non-deter-
ministic finite state machines. Unlike previous work on L∗-based algorithms for
ONFSMs, our algorithm learns a more abstract model of the SUT by merging
akin states. For this, we defined two levels of abstraction and explained how
to combine them. Firstly, we showed how the mapper component proposed by
Aarts et al. [2] can be used in an active learning setup for ONFSMs. Secondly, to
further improve the scalability of our learning algorithm, we introduced a new
abstraction scheme for the observation table based on equivalence classes for
outputs. This abstraction technique made it possible to learn a more abstract
model of a system that has a large input/output alphabet. We showed the ap-
plicability of our implementation by learning the ONFSMs of different MQTT
brokers that interact with multiple clients.

Our proposed learning algorithm offers a more feasible technique to apply
learning-based testing in a broader field of applications. For future work, it
would be interesting to show a more elaborated case study, e.g. considering
more features of the MQTT protocol, so that our abstract model can reveal
unexpected behavior of the SUT. Currently, the abstraction refinement relies
on expert knowledge, but we assume that an automatic abstraction is possible.
Aarts et al. [1] proposed an automatic abstraction refinement for the abstracted
input/output alphabet that ensures deterministic learning. Following a similar
idea, we could refine the outputs for the first level-abstraction to ensure observ-
able non-determinism. Regarding the second level abstraction, an equivalence
measurement for states could support the definition of equivalence classes.
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“Dependable Internet of Things in Adverse Environments”. We would like to
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