
HAL Id: hal-03239821
https://inria.hal.science/hal-03239821

Submitted on 27 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Vulsploit: A Module for Semi-automatic Exploitation of
Vulnerabilities

Arcangelo Castiglione, Francesco Palmieri, Mariangela Petraglia, Raffaele
Pizzolante

To cite this version:
Arcangelo Castiglione, Francesco Palmieri, Mariangela Petraglia, Raffaele Pizzolante. Vulsploit: A
Module for Semi-automatic Exploitation of Vulnerabilities. 32th IFIP International Conference on
Testing Software and Systems (ICTSS), Dec 2020, Naples, Italy. pp.89-103, �10.1007/978-3-030-64881-
7_6�. �hal-03239821�

https://inria.hal.science/hal-03239821
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Vulsploit: a module for semi-automatic
exploitation of vulnerabilities

Arcangelo Castiglione1[0000−0002−7991−2410], Francesco
Palmieri1[0000−0001−7100−9748], Mariangela Petraglia2, and Raffaele

Pizzolante1[0000−0001−5722−1179]

1 Dipartimento di Informatica, Università degli Studi di Salerno, Fisciano, Salerno,
84084, Italy

{arcastiglione,fpalmieri,rpizzolante}@unisa.it
2 Università degli Studi di Salerno, Fisciano, Salerno, 84084, Italy

m.petraglia9@studenti.unisa.it

Abstract. Penetration testing (PT) is nowadays one of the most com-
mon and used activities to evaluate a given asset’s security status. Pene-
tration testing aims to secure networks and highlights the security issues
of such networks. More precisely, PT, which is used for proactive defense
and information systems protection, is a structured process, made up of
various phases that typically needs to be carried out within a limited
period.
In this work, we first define a modular semi-automatic approach, which
allows us to collect and integrate data from various exploit repositories.
These data are then used to provide the penetration tester (i.e., the
pentester) with information on the best available tools (i.e., exploits) to
conduct the exploitation phase effectively. Also, the proposed approach
has been implemented through a proof of concept based on the Nmap
Scripting Engine (NSE), which integrates the features provided by the
Nmap Vulscan vulnerability scanner, and allows, for each vulnerability
detected, to find the most suitable exploits for this vulnerability.
We remark that the proposed approach is not focused on the vulnera-
bility mapping phase, which is carried out through Vulscan. Instead, it
is focused on the automatic finding of the exploits that can be used to
take advantage of the results achieved by such a phase.

Keywords: Penetration testing · Automation of security testing · Secu-
rity assessment · Security monitoring · Nmap · Nmap Scripting Engine
(NSE).

1 Introduction

The increasing diffusion of hardware and software technologies have significa-
tively extended the attack surface available to malicious users since such tech-
nologies are not perfect and can be affected by bugs, vulnerabilities, and other
security issues. An attack could damage an organization, impacting the eco-
nomic, social, and image aspects of such an organization. Attacks are typically



2 A. Castiglione et al.

carried out by finding a weakness in the systems and then exploiting it. Thus,
this is the reason why this weakness is called vulnerability.

Nowadays, information is more vulnerable than ever. Every technological
advance raises new security threat that requires new security solutions. For ex-
ample, Internet of Things (IoT) objects offer new services and pose new security
threats. The IoT paradigm application to smart communities, smart cities, and
smart homes, connecting objects to the Internet, brings to light new security
challenges [11, 12, 20, 4]. These challenges make smart communities/cities/homes
extremely vulnerable to several kinds of attacks [2]. Again, cloud and mobile
cloud computing (MCC) enables mobile devices to exploit seamless cloud services
via offloading, offering several advantages but increased security concerns [7, 8,
1]. More precisely, one of the most critical issues for the security assessment of
cloud-based environments is the lack of control over the involved resources. Be-
sides, this kind of assessment requires knowledge of the possible security tests
to carry out and the hacking tools used for the analysis. To address this issue,
in [8, 7] the authors propose a methodology that allows them to efficiently carry
out a security assessment of cloud-based applications, by automating the set-up
and execution of penetration tests. This methodology is based on the knowledge
of the application architecture and security-related data collected from multiple
sources. However, unlike the method proposed by us, the authors’ methodology
focuses more on coarse-grained architectural aspects, rather than on host-based
scans. Besides, security threats are increasing in mobile payment environments,
and in particular, in mobile banking applications (MBAs) since such applications
store, transmit, and access sensitive and confidential information [6]. Moreover,
many everyday life activities are based on interconnected electronic devices. Most
of such devices are based on Third-Party Intellectual Property (3PIP) cores that
could not be trustworthy. Therefore, if one of these 3PIP cores is vulnerable,
the security of the device could be affected [14]. Finally, the rapid growth of
Artificial Intelligence (AI) has made this even more challenging since machine
learning algorithms are now used to attack such systems. On the other hand,
the current defense mechanisms protect such systems by using traditional se-
curity facilities [10]. In detail, the primary use of AI in the penetration testing
field concerns using reinforcement learning (RL) techniques [10, 16, 15, 25, 29] to
perform regular and systematic security testing, saving human resources. Using
RL techniques, penetration testing systems can learn and reproduce average and
complex penetration testing activities. We point out that the system proposed
by us does not use intelligent techniques, even if, as future developments, we aim
to integrate these techniques in our proposal.

Penetration testing (PT) is an activity carried out to assess the security pos-
ture of an organization by safely exposing its vulnerabilities [9]. PT also helps
evaluate the efficiency of the defense methodologies, policies, and tools used by
an IT organization (or IT asset). Penetration testing is conducted regularly to
identify risks and manage them to achieve higher security standards. Nowadays,
penetration testing is one of the most common and used activities to assess
the health of a given IT asset in terms of security. This activity deals with de-



Vulsploit: a module for semi-automatic exploitation of vulnerabilities 3

tecting the vulnerabilities of a given asset in a completely legal and structured
way, trying to exploit them by mimicking an attacker (i.e., a black hat hacker).
The attacker could be driven by various malicious objectives, such as compro-
mising or disabling the system, stealing data from it, etc [13]. The penetration
tester (pentester) takes care of detecting potential vulnerabilities existing in the
system, trying to fix them. The main aim of PT is to provide the most appropri-
ate solutions to fix or mitigate the consequences deriving from the exploitation
of vulnerabilities found, thus increasing the security posture of the organiza-
tion. Furthermore, due to the recent regulations introduced by the General Data
Protection Regulation (GDPR), [28], and the Cybersecurity Act [21], penetra-
tion testing activity finds an ever-increasing application in the context of the
so-called cyber-physical systems and, in particular, in cyber-physical critical in-
frastructures [2].

We remark that PT is a structured process, made up of various phases,
typically conducted over a limited time [24]. The success of this process depends
mainly on two factors: the skills of the person who conducts it, typically called
penetration tester or pentester for short, and the information available to him.
On the other hand, one of the main problems with this process is that the data
needed to conduct it often lies in distinct and heterogeneous sources. Therefore,
these data must first be collected, then integrated, and finally used appropriately.
This problem assumes great importance, especially in the vulnerability mapping
and exploitation phases of the penetration testing process. Through these phases,
the pentester, given a vulnerability, tries to find the most appropriate tools to
exploit it [26], typically called exploits.

However, PT is a very time- and money-consuming activity that needs spe-
cialized security skills and tools. More precisely, penetration testing is a typically
human-driven procedure that requires an in-depth knowledge of the possible at-
tack methodologies and the hacking tools available to carry out the security
assessment. Therefore, automated tools to assist the pentester in his activity are
increasingly needed, and often become crucial to the success of the PT activ-
ity [3].

It is essential to point out that our approach is not focused on the vulnerabil-
ity mapping phase, which is carried out through Vulscan. However, it is focused
on the automatic finding of the exploits that can be used to take advantage of
the results achieved by such a phase.

1.1 Contribution

This paper defines a modular semi-automatic approach, which allows us to col-
lect and integrate data from various exploit repositories. These data will then
be used to provide the pentester with indications on the best available tools
(i.e., exploits) to conduct the exploitation phase effectively. We stress that since
potentially a broad set of automatic tools can support this phase, it could be
challenging to choose the most suitable one. Furthermore, the architecture of
the proposed approach has been implemented and integrated into a module for
the Nmap vulnerability scanner. In detail, this architecture has been realized



4 A. Castiglione et al.

through an NSE (Nmap Script Engine) script [23], which integrates the fea-
tures provided by the Vulscan vulnerability scanner. This script provides the
pentester with the most suitable tools to exploit these vulnerabilities for each
detected vulnerability. The experimental results obtained from the evaluation
of our proposal have shown its effectiveness. As a future development, we in-
tend to parallelize the proposed approach to improve performance in terms of
detection times and choose the most appropriate exploits. Again, we intend to
explore the potential of artificial intelligence to enhance penetration testing and
vulnerability identification in complex network scenarios.

1.2 Organization

The paper is organized as follows. In Section 2, we present the proposed semi-
automated approach and highlight its main characteristics and the motivations
behind it. In Section 3, we introduce the Vulsploit module, which is a Nmap
module implementing our semi-automated approach. In Section 4, we show and
discuss the preliminary test results achieved by evaluating the Vulsploit module.
Finally, in Section 5, we give some final considerations and draw future research
directions.

2 The proposed semi-automated approach

In this section, we show the reasons that led us to the introduction of our pro-
posal. Furthermore, we describe the architecture underlying the proposed ap-
proach.

2.1 Motivations

The Penetration Testing (PT) process is quite costly and takes a considerable
amount of time, ranging from days to weeks. The main phases of a typical PT
process are the following: information gathering, network scanning, target enu-
meration, vulnerability assessment, target exploitation, target post exploitation,
and final reporting. Since each phase takes time and may require procedures
usually carried out manually, our goal is to automate some of these phases. This
way, the whole process turns out to be faster and less prone to human error.
This paper aims to automate the phases ranging from the network scanning to
the exploitation as much as possible. Notice that when the target asset’s vul-
nerabilities are detected through the vulnerability assessment phase, the next
step is to understand if and how they can be exploited. More precisely, to take
advantage of a detected vulnerability, we need to look for an exploit that allows
us to exploit such vulnerability, typically gaining access to the vulnerable asset.
Nowadays, this process is mostly done manually. Besides, we remark that the
process described above should be done for all the vulnerabilities detected during
the vulnerability assessment phase. Therefore, when the vulnerabilities found are
few, the time taken to find all the possible exploits for such vulnerabilities is not



Vulsploit: a module for semi-automatic exploitation of vulnerabilities 5

relevant. However, when there are thousands of vulnerabilities, such a manual
approach becomes impractical. In fact, by calculating with hypothetical data,
we can obtain roughly the following time estimate:

– 1 minutes to search for the exploit of a given vulnerability;

– 1000 total vulnerabilities;

– 1 × 1000 = 1000 minutes ≈ 16.6 hours.

The semi-automated approach proposed in this paper is intended to signif-
icantly reduce the search time effort required to find suitable exploits for the
found vulnerabilities. In particular, the main objective of our approach is to
merge and automate, in a single phase, the following phases of a typical PT
process, so that they result in the eyes of the pentester as a single phase:

1. Network Scanning

2. Enumeration

3. Vulnerability Assessment

4. Mid-stage of Exploitation, because it searches for the exploit, but does not
execute it.

The idea behind our proposal is shown in Figure 1(a) and Figure 1(b).

Fig. 1. (a) Phases of the PT process with the automation; (b) The subphases of the
automation.

The benefits arising from the use of the proposed approach are twofold. First
of all, it allows an experienced pentester to save resources in terms of time and
costs, reducing the likelihood of making errors. On the other hand, our approach
allows inexperienced pentesters to conduct the penetration testing process more
efficiently and effectively since various stages of this process are automated [27].



6 A. Castiglione et al.

2.2 Architecture

In Figure 2, we show abstraction and generalization of our proposal. We first
provide an abstract architectural view of our proposal, which abstracts the ap-
proach we have introduced from the relative implementation details. In this way,
the proposed approach can be adapted according to the evolution of technolo-
gies and methodologies and based on the specific operational requirements of
the context in which this approach will operate.

Fig. 2. The architecture of the proposed approach.

As shown in Figure 2, the main functional units of the architecture of the
proposed module are the following:

– I/O. The Input/Output unit is the component that allows us to send and re-
ceive data. More precisely, this unit is responsible for managing the standard
input (stdin), standard output (stdout) and standard error (stderr).

– Host. Hosts are the target machines (i.e., the asset) scanned to find vulner-
abilities.

– Scanner. The scanner is the unit that deals with finding and analyzing
vulnerabilities on the asset.

– Data Aggregator. The Data Aggregator is the unit that takes care of
collecting, aggregating, and transferring data to the I/O unit.

– Interactor. This unit takes care of interacting with the Repository.
– Repository. The Repository is the unit that contains a list of vulnerabili-

ties, categorized by port, service, and service version.

The information flow between the functional units is shown in Figure 2 and
can be characterized as follows:



Vulsploit: a module for semi-automatic exploitation of vulnerabilities 7

1. The Scanner is started using the I/O unit.

2. Once started, the Scanner interacts with the Hosts and finds vulnerabilities
for each of them.

3. These vulnerabilities are then sent to the Data Aggregator, which deals with:

– Collecting the data achieved through the searches carried out to find
vulnerabilities;

– Aggregating them in a structured way, for example, through JSON struc-
tures;

– Showing them to the user through the I/O unit.

More precisely:

– Each Repository interacts with a dedicated Interactor, the output of each
Interactor is then passed to a Data Aggregator once the processing is finished.

– The Data Aggregator aggregates the outputs of all the Interactors and then
returns the output to the user.

– Interactors can be distributed, and their execution can be parallelized.

– The primary role of the Interactors is to mitigate the performance issues
deriving from the massive query execution for each detected vulnerability.

3 The Vulsploit Module

This section shows the design and implementation choices that led us to create
the proposed Nmap module (script), called Vulsploit, implementing our semi-
automated approach. Vulsploit has been realized through an NSE (Nmap Script
Engine) script, called “vulsploit.nse”, which integrates the features offered by
the Vulscan vulnerability scanner. This script provides the most suitable tools
for the exploitation of the detected vulnerabilities.

In Figure 3 we show an overview of the Vulsploit module.

Fig. 3. An overview of the logical functioning of the proposed module.



8 A. Castiglione et al.

Vulsploit automatically provides the exploits available for the vulnerabilities
detected on a given asset. In detail, the general functioning of Vulsploit can be
summarized as follows.

– We have a network scenario composed of N + 1 connected hosts.
– The component represented on the left side of Figure 3 is the host where the

Nmap scanner is running. This scanner will start the execution of Vulsploit.
More precisely:
1. Nmap scans the asset (i.e., the hosts);
2. The Nmap Scripting Engine (NSE) executes Vulsploit.

– On the right side of Figure 3 there is the asset (i.e., the N hosts) on which
the target enumeration phase is carried out through Nmap. More precisely,
Nmap
1. using Vulscan searches for vulnerabilities of each port/service returned

by Nmap;
2. using Vulsploit searches for exploits related to the vulnerabilities found

on each host.

3.1 Execution Flow

Vulsploit is composed of several logic components that interact with each other
to carry out its duties. The actions performed by Vulsploit can be summarized
as follows:

1. Execution of Vulscan, whose output is redirected to a file. Each line of this
file roughly characterizes a vulnerability;

2. For each vulnerability present in this file, Vulsploit searches the relative
exploits, making calls to local and/or remote repositories.

The following diagram outlines the detailed execution flow of vulsploit.nse.
As shown in Figure 4, the general execution flow of Vulsploit can be sum-

marized by the following main actions:

1. Vulsploit runs Vulscan to find the vulnerabilities on a given host, and
redirects the output to a file.

2. After running Vulscan, the output file is read, row by row, by Vulsploit.
3. For each row:

– If the row does not characterize a vulnerability but just a port number,
a service, and a service version, this row is printed without performing
any other action.

– If the row corresponds to a vulnerability database:
• If the database is Exploit-DB, Vulsploit makes a local query and

returns the exploits.
• If the database is OSVDB or MITRE CVE or any other database, Vulsploit

makes a remote query and returns the exploits.
– The exploits found by each local or remote query (or call) are eventually

manipulated, returned, and then printed.

We remark that in general, for each database that requires making a remote
query via API, the type of query to perform could change. In the following, we
focus on the main components of the Vulsploit module.



Vulsploit: a module for semi-automatic exploitation of vulnerabilities 9

Fig. 4. vulsploit.nse execution flow.

3.2 Main Components

Scan and search for vulnerabilities In detail, the first step performed by
Vulsploit during its execution is searching for vulnerabilities. This search, whose
output is redirected to a file, is performed through a script, called Vulscan, that
provides the vulnerabilities found for a given host (or asset). An example of this
step is shown in Figure 5.

Fig. 5. Initial output of the Vulscan script.

Data parsing As mentioned above, for each database that requires making a
remote query via API, the type of query to perform could change. Therefore,
before searching for the exploits through the appropriate query, depending on



10 A. Castiglione et al.

how this query needs to be structured, Vulsploit performs a different type of
parsing of the data generated by Vulscan:

– Vulnerability ID : get the number in the square brackets, such as “17491 ”,
as shown in Figure 6.

Fig. 6. Vulnerabilities characterized by an ID.

– Phrase identifying the vulnerability (Figure 7): eliminates all the special char-
acters, such as parentheses and quotes, since they could cause problems in
requests, and removes all words whose length is less than two characters
since they may be irrelevant. In detail, the processing of the strings shown

Fig. 7. Vulnerabilities characterized by a phrase.

in Figure 7 produces the following strings:

• ‘‘linux/x86 overwrite MBR/dev/sda with LOL43 bytes’’

• ‘‘Linux linux/x86 execve 51bytes’’

– CVE, if present: The processing of the string shown in Figure 8 produces

Fig. 8. Vulnerabilities characterized by CVE.

the following string: CVE-2011-0762.

Also, regarding the parsing of the other rows of the file which are not vulnera-
bilities:

– if it is a row of the type shown in Figure 9 this line is printed;
– if instead it is a row of the type shown in Figure 10 this line is ignored.



Vulsploit: a module for semi-automatic exploitation of vulnerabilities 11

Fig. 9. Row of type:PORT STATE SERVICE VERSION

Fig. 10. Initial script output.

Vulnerability analysis and exploit research After the parsing of each row
of the file, local and/or remote queries are performed by Vulsploit to search for
exploits related to detected vulnerabilities.

Data presentation We use the JSON format for the presentation of the data.
More precisely, the result of both local and remote calls is returned in JSON
format.

In detail, for remote calls, since no other manipulation of the result of such
calls is performed, this result is printed. On the other hand, for local calls, the
result is manipulated as follows:

1. Check if there are any working exploits, or if the response is empty or con-
tains only the payloads of the found exploits.

2. Isolate the result if there are multiple exploits in the response. Notice that
for each request, there may be multiple exploits that contain the ID between
the fields, for example, in the date, in the title, etc.

3. Retrieve the exploit which matches the vulnerability.

Fig. 11. Vulnerability and related exploit (partial output).

3.3 Vulsploit usage

The Vulsploit script can be executed with the following command:
nmap --script vulsploit/vulsploit.nse --script-args ‘‘IP = 10.0.2.6’’

10.0.2.6

where:



12 A. Castiglione et al.

– --script vulsploit/vulsploit.nse allows to execute the vulsploit.nse
script;

– --script-args ‘‘IP = 10.0.2.6’’ pass arguments to the script, ‘‘IP =

10.0.2.6’’ is the IP address of the scanned hots;
– 10.0.2.6 is the IP address passed to Nmap for network scanning.

– We remark that the IP passed to the script and the one passed to Nmap

must be the same, otherwise the Vulsploit script analyzes one machine and
Nmap another.

4 Preliminary test results

In this section, we show and discuss the preliminary experimental results ob-
tained from the evaluation of Vulsploit. In particular, the purpose of the testing
phase is twofold. First, we evaluate the effectiveness of Vulsploit in finding the
appropriate exploits for the detected vulnerabilities. Second, we assess the per-
formance of Vulsploit in terms of time when it deals with a large number of
vulnerabilities to analyze. Before showing and discussing the experimental re-
sults obtained from the evaluation of our proposal, we first define the hardware
and software environment used for the testing phase.

4.1 Hardware and software environment

To carry out the testing phase, we used Kali Linux, a distribution explicitly
designed for security analysis. Besides, we used Metasploitable 2, a vulner-
able by-design server distribution, which is based on Ubuntu (32- bit). This
distribution was created by the Rapid7 Metasploit team. Again, Kali Linux is
virtualized using VirtualBox, on the Microsoft Windows 10 operating system.
Vulsploit is executed by Kali Linux on the Metasploitable 2 distribution.

In detail, we assigned the following resources to the virtual machine:

– 4 GB of RAM DDR3;
– 2 virtual cores on Intel® Core™ i5 4200M;
– 20 GB of memory, out of 237 GB of SSD available.

4.2 Execution Times and Discussions

The execution of the Vulscan script on Metasploitable2 found 23 open ports
and roughly 220000 vulnerabilities.

Moreover, using the testing environment mentioned above, Vulsploit was able
to process about half (i.e., 113489 vulnerabilities) of the file produced by Vulscan,
containing the found vulnerabilities. The processing of such part of the file took



Vulsploit: a module for semi-automatic exploitation of vulnerabilities 13

considerable time, i.e., about 51 hours, that is, 2 days and 3 hours. Although
this is a large amount of time, it is nevertheless a tolerable amount. Notice that
the PT activity is generally not conducted in real-time, but periodically, at dates
typically not very close to each other.

However, we remark that manually searching for exploits would take a sig-
nificantly longer amount of time. The following rough calculation can show the
amount of time spent by the pentester using a manual approach. In detail, as-
suming that an exhaustive manual exploits search for each vulnerability takes
about 1 minutes, that search would take 113489 minutes ≈ 1891.48 hours ≈
78.81 days.

5 Conclusions and future work

The process of finding an exploit is a very time-consuming activity, even more
so when the vulnerabilities detected are many, and the pentester is not very
experienced or prepared. One of the most challenging tasks of this activity is
searching for exploits to take advantage of the detected vulnerabilities. This
activity becomes even more challenging when, for each detected vulnerability,
there could be many exploits.

First of all, this paper aimed to define a general approach that allows the
collection and integration of data from various exploit repositories. Any exploits
collected are then used to provide the pentester with indications on which exploit
to choose to conduct the exploitation phase of the Penetration Testing process
effectively.

We highlight that our approach is not focused on the vulnerability mapping
phase, which is carried out through Vulscan. On the other hand, our approach
is focused on the automatic finding of the exploits that can be used to take
advantage of the results achieved by such a phase.

A proof of concept of the proposed approach has been implemented and inte-
grated through a Nmap script. More precisely, our proposal has been implemented
through a NSE script. This script, called Vulsploit, is based on technologies such
as Nmap [19], the Lua language [17, 18], searchsploit, cURL, and the Shodan

API [5]. The information provided by the Shodan API is important and will be
increasingly important, given the ever-increasing diffusion and heterogeneity of
connected devices. In detail, Vulsploit makes use of another NSE script, which
is a vulnerability scanner provided by Nmap called Vulscan, to find the exploits
available for the vulnerabilities detected by this scan.

The results obtained were quite satisfying since we could obtain the exploit
information on thousands of vulnerabilities in a tolerable amount of time, ob-
taining a substantial saving compared to the manual approach. This time im-
provement is a considerable advantage, especially if we consider that penetration
testing is a routine activity that is typically not conducted in real-time.

Although the results obtained are satisfactory, we could do better in future
work, considering more efficient approaches. A first improvement that could be
applied is to parallelize the execution of Vulsploit, in order to make calls to the



14 A. Castiglione et al.

various exploit repositories in parallel. Furthermore, after having parallelized
the script, it could be distributed across multiple hosts, using a distributed or
fully distributed paradigm. Besides, we want to improve the performance of Vul-
sploit through caching mechanisms. The three improvements mentioned above
could increase the efficiency of our proposal, reducing execution times. Besides,
some other data sources could be integrated to provide a broader set of available
exploits. Moreover, current PT practice is becoming repetitive, complex, and
resource-consuming despite automated tools. Therefore, since there is an ongo-
ing interest in exploring the potential of artificial intelligence (AI) to enhance
penetration testing and vulnerability identification of systems [22], we intend to
investigate AI techniques to enhance the automation of the PT process further.
In particular, we intend to investigate intelligent PT approaches using reinforce-
ment learning (RL) that will allow regular and systematic testing, saving human
resources [16, 15]. Using trained machine learning agents to automate this pro-
cess is an important research area that still needs to be explored. Moreover,
to decrease the time required by remote fetches, we want to use pre-fetching
techniques to get the full remote repositories and keeping them updated.

To conclude, we remark that despite all the extensions and improvements
described above to integrate and enhance our proposal, Vulsploit may still be
very useful at present to those who carry out PT activities.

References

1. Al-Ahmad, A.S., Kahtan, H., Hujainah, F., Jalab, H.A.: Systematic literature re-
view on penetration testing for mobile cloud computing applications. IEEE Access
7, 173524–173540 (2019)

2. Ali, B., Awad, A.: Cyber and physical security vulnerability assessment for iot-
based smart homes. Sensors 18(3), 817 (Mar 2018)

3. Almubairik, N.A., Wills, G.: Automated penetration testing based on a threat
model. In: 2016 11th International Conference for Internet Technology and Secured
Transactions (ICITST). pp. 413–414 (2016)

4. Ankele, R., Marksteiner, S., Nahrgang, K., Vallant, H.: Requirements and rec-
ommendations for iot/iiot models to automate security assurance through threat
modelling, security analysis and penetration testing. In: Proceedings of the 14th
International Conference on Availability, Reliability and Security. ARES ’19, As-
sociation for Computing Machinery (2019)

5. Bodenheim, R., Butts, J., Dunlap, S., Mullins, B.: Evaluation of the ability of the
shodan search engine to identify internet-facing industrial control devices. Inter-
national Journal of Critical Infrastructure Protection 7(2), 114–123 (2014)

6. Bojjagani, S., Sastry, V.N.: Vaptai: A threat model for vulnerability assessment
and penetration testing of android and ios mobile banking apps. In: 2017 IEEE
3rd International Conference on Collaboration and Internet Computing (CIC). pp.
77–86 (2017)

7. Casola, V., De Benedictis, A., Rak, M., Villano, U.: Towards automated penetra-
tion testing for cloud applications. In: 2018 IEEE 27th International Conference
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE).
pp. 24–29 (2018)



Vulsploit: a module for semi-automatic exploitation of vulnerabilities 15

8. Casola, V., De Benedictis, A., Rak, M., Villano, U.: A methodology for automated
penetration testing of cloud applications. int. J. Grid Util. Comput. 11(2), 267–277
(2020)

9. Ceccato, M., Scandariato, R.: Static analysis and penetration testing from the
perspective of maintenance teams. In: Proceedings of the 10th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement. ESEM
’16, Association for Computing Machinery (2016)

10. Chaudhary, S., O’Brien, A., Xu, S.: Automated post-breach penetration testing
through reinforcement learning. In: 2020 IEEE Conference on Communications
and Network Security (CNS). pp. 1–2 (2020)

11. Chen, C., Zhang, Z., Lee, S., Shieh, S.: Penetration testing in the iot age. Computer
51(4), 82–85 (2018)

12. Chu, G., Lisitsa, A.: Penetration testing for internet of things and its automation.
In: 2018 IEEE 20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City; IEEE 4th
International Conference on Data Science and Systems (HPCC/SmartCity/DSS).
pp. 1479–1484 (2018)

13. Denis, M., Zena, C., Hayajneh, T.: Penetration testing: Concepts, attack meth-
ods, and defense strategies. In: 2016 IEEE Long Island Systems, Applications and
Technology Conference (LISAT). pp. 1–6 (2016)

14. Fischer, M., Langer, F., Mono, J., Nasenberg, C., Albartus, N.: Hardware pene-
tration testing knocks your socs off. IEEE Design Test pp. 1–1 (2020)

15. Ghanem, M.C., Chen, T.M.: Reinforcement learning for intelligent penetration
testing. In: 2018 Second World Conference on Smart Trends in Systems, Security
and Sustainability (WorldS4). pp. 185–192 (2018)

16. Ghanem, M.C., Chen, T.M.: Reinforcement learning for efficient network penetra-
tion testing. Information 11(1), 6 (Dec 2019)

17. Ierusalimschy, R., De Figueiredo, L.H., Filho, W.C.: Lua - an extensible extension
language. Software: Practice and Experience 26(6), 635–652 (1996)

18. Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: The evolution of lua. In: Proceed-
ings of the third ACM SIGPLAN conference on History of programming languages.
pp. 2–1 (2007)

19. Lyon, G.F.: Nmap network scanning: The official Nmap project guide to network
discovery and security scanning. Insecure (2009)

20. Mahmoodi, Y., Reiter, S., Viehl, A., Bringmann, O., Rosenstiel, W.: Attack surface
modeling and assessment for penetration testing of iot system designs. In: 2018 21st
Euromicro Conference on Digital System Design (DSD). pp. 177–181 (2018)

21. Markopoulou, D., Papakonstantinou, V., de Hert, P.: The new eu cybersecurity
framework: The nis directive, enisa’s role and the general data protection regula-
tion. Computer Law & Security Review 35(6), 105336 (2019)

22. McKinnel, D.R., Dargahi, T., Dehghantanha, A., Choo, K.K.R.: A systematic lit-
erature review and meta-analysis on artificial intelligence in penetration testing
and vulnerability assessment. Computers & Electrical Engineering 75, 175 – 188
(2019)

23. Pale, P.C.: Mastering the Nmap Scripting Engine. Packt Publishing Ltd (2015)
24. Rahman, A., Williams, L.: A bird’s eye view of knowledge needs related to pen-

etration testing. In: Proceedings of the 6th Annual Symposium on Hot Topics in
the Science of Security. HotSoS ’19, Association for Computing Machinery (2019)

25. Schwartz, J., Kurniawati, H.: Autonomous penetration testing using reinforcement
learning. CoRR abs/1905.05965 (2019)



16 A. Castiglione et al.

26. Shebli, H.M.Z.A., Beheshti, B.D.: A study on penetration testing process and
tools. In: 2018 IEEE Long Island Systems, Applications and Technology Confer-
ence (LISAT). pp. 1–7 (2018)

27. Stefinko, Y., Piskozub, A., Banakh, R.: Manual and automated penetration testing.
benefits and drawbacks. modern tendency. In: 2016 13th International Conference
on Modern Problems of Radio Engineering, Telecommunications and Computer
Science (TCSET). pp. 488–491 (2016)

28. Voigt, P., Von dem Bussche, A.: The eu general data protection regulation (gdpr).
A Practical Guide, 1st Ed., Cham: Springer International Publishing (2017)

29. Zennaro, F.M., Erdodi, L.: Modeling penetration testing with reinforcement
learning using capture-the-flag challenges and tabular q-learning. arXiv preprint
arXiv:2005.12632 (2020)


