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Free-Algebra Functors from a Coalgebraic

Perspective

H. Peter Gumm

Philipps-Universität Marburg, Germany
gumm@mathematik.uni-marburg.de

Abstract. We continue our study of free-algebra functors from a coal-
gebraic perspective as begun in [8]. Given a set Σ of equations and a
set X of variables, let FΣ(X) be the free Σ−algebra over X and V(Σ)
the variety of all algebras satisfying Σ. We consider the question, under
which conditions the Set-functor FΣ weakly preserves pullbacks, kernel
pairs, or preimages [9].
We �rst generalize a joint result with our former student Ch. Henkel,
asserting that an arbitrary Set−endofunctor F weakly preserves kernel
pairs if and only if it weakly preserves pullbacks of epis.
By slightly extending the notion of derivative Σ′ of a set of equations Σ
as de�ned by Dent, Kearnes and Szendrei in [3], we show that a func-
tor FΣ (weakly) preserves preimages if and only if Σ implies its own
derivative, i.e. Σ ` Σ′, which amounts to saying that weak indepen-
dence implies independence for each variable occurrence in a term of
V(Σ). As a corollary, we obtain that the free-algebra functor will never
preserve preimages when V(Σ) is congruence modular.
Regarding preservation of kernel pairs, we show that for n-permutable
varieties V(Σ), the functor FΣ weakly preserves kernel pairs if and only
if V(Σ) is a Mal'cev variety, i.e. 2-permutable.

1 Introduction

In his groundbreaking monograph �Universal Coalgebra � a theory of systems�[15]
Jan Rutten demonstrated how all sorts of state based systems could be uni�ed
under the roof of one abstract concept, that of a coalgebra. Concrete system
types � automata, transition systems, nondeterministic, weighted, probabilistic
or second order systems � can be modeled by choosing an appropriate functor
F : Set → Set which provides a type for the concrete coalgebras just as, on a
less abstract level, signatures describe types of algebras.

The (co)algebraic properties of the category SetF of all F−coalgebras are
very much dependent on certain preservation properties of the functor F . A
particular property of F, which has been considered relevant from the beginning
was the preservation of certain weak limits. In Rutten's original treatise[16],
lemmas and theorems were marked with an asterisk, if they used the additional
assumption that F weakly preserves pullbacks, that is F transforms pullback
diagrams in Set into weak pullback diagrams.



2 H. Peter Gumm

In our lecture notes [6], we were able to remove a large number of asterisks
from Rutten's original presentation, and in joint work with T. Schröder [9], we
managed to split the mentioned preservation condition into two separate con-
ditions, weak preservation of kernel pairs and preservation of preimages. These
properties were then studied separately with an eye on their structure theoretic
signi�cance.

It is therefore relevant and interesting to classify Set functors according to
the mentioned preservation properties.

We start this paper by showing that for arbitrary Set functors weak preser-
vation of kernel pairs is equivalent to weak preservation of pullbacks of epis, a
result, which was obtained jointly with our former master student Ch. Henkel.

Subsequently, we investigate Set functors FΣ which associate to a set X
the free Σ−algebra over X. It turns out that (weak) preservation of preimages
by FΣ can be characterized utilizing the derivative Σ′ of Σ, which has been
studied a few years ago by Dent, Kearnes, and Szendrei [3]. For arbitrary sets of
idempotent equations Σ, they show that the variety V(Σ) is congruence modular
if and only if Σ ∪Σ′ is inconsistent. Below, we extend their notion of derivative
to arbitrary sets of equations (not necessarily idempotent) and are able to show
that FΣ weakly preserves preimages if and only if Σ ` Σ′.

Regarding preservation of kernel pairs, we exhibit an algebraic condition,
which to our knowledge has not been studied before and which appears to be
interesting in its own right. If FΣ weakly preserves kernel pairs, that is if FΣ
weakly preserves pullbacks of epis, then for any pair p, q of ternary terms satis-
fying

p(x, x, y) ≈ q(x, y, y)

there exists a quaternary term s such that

p(x, y, z) ≈ s(x, y, z, z)
q(x, y, z) ≈ s(x, x, y, z).

Applying this to the description of n−permutable varieties given by Hage-
mann and Mitschke [10], we �nd that for an n−permutable variety V(Σ), the
functor FΣ weakly preserves kernel pairs if and only if V(Σ) is a Mal'cev variety,
i.e. there exists a term m(x, y, z) such that the equations

m(x, y, y) ≈ x
m(x, x, y) ≈ y

are satis�ed.

2 Preliminaries

For the remainder of this work we shall denote function application by juxtapo-
sition, associating to the right, i.e. fx denotes f(x) and f g x denotes f(g(x)).
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If F is a functor, we denote by F (X) the application of F to an object X
and by Ff the application of F to a morphism f.

Given a Set-functor F, an F -coalgebra is simply a map α : A→ F (A), where
A is called the base set and α the structure map of the coalgebra A = (A,α).
A homomorphism between coalgebras A = (A,α) and B = (B, β) is a map
ϕ : A→ B satisfying

β ◦ ϕ = Fϕ ◦ α.

The functor F is called the type of the coalgebra. The class of all coalgebras of
type F together with their homomorphisms forms a category SetF . The structure
of this category is known to depend heavily on several pullback preservation
properties of the functor F.

A pullback diagram

A1
f1 // C

P

p1

OO

p2
// A2

f2

OO

is called a kernel pair, if f1 = f2 and it is called a preimage if f1 or f2 is mono.

A functor F is said to weakly preserve pullbacks if F transforms each pullback
diagram into a weak pullback diagram. F weakly preserving kernel pairs, resp.
preimages are de�ned likewise.

In order to check whether in the category Set a diagram as above is a weak
pullback, we may argue elementwise: (P, p1, p2) is a weak pullback, if for each
pair (a1, a2) with ai ∈ Ai and f1a1 = f2a2 there exists some a ∈ P such that
p1a = a1 and p2a = a2.

Hence, to see that a Set−functor F weakly preserves a pullback (P, p1, p2),
we must check that for any pair (u1, u2) with ui ∈ F (Ai) and (Ff1)u1 = (Ff2)u2

we can �nd some w ∈ F (P ) such that(Fp1)w = u1 and (Fp2)w = u2.

One easily checks that a weak preimage is automatically a preimage. Hence, if
F preserves monos, then F preserves preimages if and only if F weakly preserves
preimages.

Assuming the axiom of choice, all epis in the category Set are right invertible,
hence F preserves epis. Monos are left-invertible, except for the empty mappings
∅X : ∅ → X when X 6= ∅. Hence F surely preserves monos with nonempty
domain.

Most Set-functors also preserve monos with empty domain. This will, in
particular, be the case for the free-algebra functor FΣ , which we shall study in
the later parts of this work.

For Set-functors F which fail to preserve monos with empty domain, there is
an easy �x, modifying F solely on the empty set ∅ and on the empty mappings
∅X : ∅ → X, so that the resulting functor F ? preserves all monos. The details can
be found in [1] or in [7]. This modi�cation is irrelevant as far as coalgebras are
concerned, since it a�ects only the empty coalgebra. Yet it allows us to assume
from now on, that F preserves all monos and all epis.
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If f1 and f2 are both injective, then their pullback is called an intersection.
It is well known from [18] that a set functor automatically preserves nonempty
intersections, and, after possibly modifying it at ∅ as indicated above, preserves
all �nite intersections.

3 Weak preservation of epi pullbacks

The following lemma from [9] shows that weak pullback preservation can be split
into two separate preservation requirements.

Lemma 1 For a Set-functor F the following are equivalent:

1. F weakly preserves pullbacks.
2. F weakly preserves kernels and preimages.

A special case of a preimage is obtained if we consider a subset U ⊆ A as the
preimage of {1} along its characteristic function χU : A→ {0, 1}.

A
χU // {0, 1}

U
?�

OO

!U // {1}
?�

OO

Such preimages are called classifying, and we shall later make use of the following
lemma from [9]:

Lemma 2 A Set-functor F preserves preimages if and only if it preserves clas-
sifying preimages.

In the following section we need to consider the action of a functor on pullback
diagrams where both f1 and f2 are surjective. Before stating this, we shall prove
a useful lemma, which is true in every category:

Lemma 3 Let morphisms f : A→ C and fi : Ai → C, for i = 1, 2 be given, as
well as ei : Ai → A with left inverses hi : A → Ai such that the diagram below
commutes. If (K,π1, π2) is a weak kernel of f then (K,h1 ◦π1, h2 ◦π2) is a weak
pullback of f1 and f2.

Ai

ei

��

fi

''

��

K
π1 //
π2

// A

hi

OO

f
// C

Proof. Assuming (K,π1, π2) is a weak kernel of f, then setting ki := hi ◦ πi we
obtain

f1 ◦ k1 = f1 ◦ h1 ◦ π1 = f ◦ π1 = f ◦ π2 = f2 ◦ h2 ◦ π2 = f2 ◦ k2.
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This shows that (K, k1, k2) is a candidate for a pullback of f1 with f2. Let
(Q, q1, q2) be another candidate, i.e.

f1 ◦ q1 = f2 ◦ q2,

then we obtain

f ◦ e1 ◦ q1 = f1 ◦ q1 = f2 ◦ q2 = f ◦ e2 ◦ q2,

which demonstrates that (Q, e1 ◦ q1, e2 ◦ q2) is a competitor to (K,π1, π2) for
being a weak kernel of f. This yields a morphism q : Q→ K with

πi ◦ q = ei ◦ qi.

From this we obtain

ki ◦ q = hi ◦ πi ◦ q = hi ◦ ei ◦ qi = qi

as required.

Theorem 4 Let C be a category with �nite sums and kernel pairs. If a functor
F : C → C weakly preserves kernel pairs, then it weakly preserves pullbacks of
retractions.

Proof. Given the pullback (P, p1, p2) of retractions fi : Ai → C, we need to show
that (F (P ), Fp1, Fp2) is a weak pullback. For that reason we shall relate it to
the kernel pair of f := [f1, f2] : A1 +A2 → C.

Since the fi are retractions, i.e. right invertible, we can choose gi : C → Ai
with

fi ◦ gi = idC .

Let ei : Ai → A1 +A2 be the canonical inclusions, then

f ◦ ei = [f1, f2] ◦ ei = fi.

De�ne h1 := [idA1
, g1 ◦ f2] and h2 := [g2 ◦ f1, idA2

], then hi : A1 + A2 → Ai
satisfy

hi ◦ ei = idAi

as well as

f1 ◦ h1 = [f1 ◦ idA1
, f1 ◦ g1 ◦ f2] = [f1, f2] = f2 ◦ h2.

Thus we have established commutativity of the right half of the following dia-
gram.

P
��

p

��

pi // Ai
��

ei

�� fi
((

K

k

OO
ki

66

π1 //
π2

// A1 +A2

hi

OO

[f1,f2]
// C

tt

gi
oo
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We add the kernel pair (K,π1, π2) of f := [f1, f2] and the pullback (P, p1, p2)
of f1 and f2. Now, the previous lemma asserts that (K, k1, k2) is a weak pullback
of f1 and f2, therefore we obtain a morphism p : P → K with ki ◦ p = pi.

On the other hand, (P, p1, p2) being the real pullback, earns us a unique
morphism k : K → P with pi ◦ k = ki and k ◦ p = idP by uniqueness.

Next, we apply the functor F to the above diagram. The requirements of
Lemma 3 remain intact for the image diagram, and assuming that F weakly
preserves the kernel (K,π1, π2), we obtain that (F (K), Fk1, Fk2) is a weak pull-
back of Ff1 with Ff2. Since furthermore F (P ) remains being a retract of F (K)
by means of Fk ◦ Fp = FidP = idF (P ), we see that (F (P ), Fp1, Fp2), too, is a
weak pullback of Ff1 and Ff2, as required.

From this we can obtain our mentioned joint result with Ch. Henkel. With an
elementwise proof this appears in his master thesis, which has been completed
under our guidance [11]:

Corollary 5 For a Set−endofunctor F the following are equivalent:

1. F weakly preserves kernel pairs.
2. F weakly preserves pullbacks of epis.

Proof. In Set, each map f can be factored as f = ι ◦ e where e is epi and ι is
mono. Therefore, the kernel of f is the same as the kernel of e. This takes care of
the direction (2 → 1). For the other direction, the axiom of choice asserts that
in Set epis are right invertible, so the conditions of Theorem 4 are met.

4 Free-algebra functors and Mal'cev conditions

Given a �nitary algebraic signature S = (fi, ni)i∈I , �xing a family of function
symbols fi, each of arity ni, and given a set Σ of equations, let V(Σ) be the
variety de�ned by Σ, i.e. the class of all algebras A = (A, (fAi )i∈I) satisfying all
equations from Σ.

The forgetful functor, sending an algebra A from V(Σ) to its base set A, has
a left adjoint FΣ , which assigns to each set X, considered as set of variables, the
free Σ-algebra over X. FΣ(X) consists of equivalence classes of terms p, which
arise by syntactically composing basic operations named in the signature, using
only variables from X.

Two terms p and q are identi�ed if the equality p ≈ q is a consequence of the
equations in Σ. This is the same as saying that p and q induce the same operation
pA = qA on each algebra A ∈ V(Σ). Instead of p we often write p(x1, ..., xn) to
mark all occurrences x1, ..., xn of variables in the term p.

FΣ is clearly a functor (in fact a monad), and its action on maps ϕ : X →
Y can be described as variable substitution, sending p(x1, ..., xn) ∈ FΣ(X) to
p(ϕx1, ..., ϕxn) ∈ FΣ(Y ).

Σ is called idempotent if for every function symbol f appearing in Σ we
have Σ ` f(x, ..., x) ≈ x. As a consequence, all term operations satisfy the
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corresponding equations, so Σ is idempotent i� FΣ({x}) = {x}. In this case, we
also call the variety V(Σ) idempotent. As an example, the variety of all lattices
is idempotent, whereas the variety of groups is not.

In [8] we have recently shown that for an idempotent set Σ of equations FΣ
weakly preserves products.

In 1954, A.I. Mal'cev [13,14] discovered that a variety has permutable con-
gruences, i.e. Θ ◦Ψ = Ψ ◦Θ holds for all congruences Θ and Ψ in each algebra of
V(Σ), if and only if there exists a ternary termm(x, y, z) satisfying the equations

x ≈ m(x, y, y) and m(x, x, y) ≈ y.

Permutability of congruences Θ and Ψ can be generalized to n-permutability,
requiring that the n-fold relational compositions agree:

Θ ◦ Ψ ◦Θ ◦ · · · = Ψ ◦Θ ◦ Ψ ◦ · · · .

Here each side is meant to be the relational composition of n factors.
J. Hagemann and A. Mitschke [10], generalizing the original Mal'cev result,

showed that a variety V is n−permutable if and only if there are ternary terms
p1, ..., pn−1 such the following series of equations is satis�ed:

x ≈ p1(x, y, y) (1)

pi(x, x, y) ≈ pi+1(x, y, y) for all 0 < i < n− 1

pn−1(x, x, y) ≈ y.

Ever since Mal'cev's mentioned result, such conditions, postulating the existence
of derived operations satisfying a (possibly n−indexed) series of equations have
been called Mal'cev conditions, and these have played an eminent role in the
development of universal algebra. They may generally be of the form

∃n ∈ N.∃ p1, ..., pn. Γ

where p1, ..., pn are terms and Γ is a set of equations involving the terms p1, ..., pn.
Such a condition is supposed to hold in a variety V of universal algebras if for
some n ∈ N there exist terms p1, ..., pn in the operations of V satisfying the
equations in Γ .

B. Jónsson [12] gave a Mal'cev condition characterizing congruence distribu-
tive varieties, i.e. varieties V in which the lattice of congruences of each algebra
A ∈ V is distributive. A Mal'cev condition characterizing congruence modular
varieties and involving quaternary terms was found by A. Day [2]. In 1981, em-
ploying commutator theory, we showed in [5], how to compose Jónsson's terms for
congruence distributivity with the original Mal'cev term m(x, y, z) from above
in order to characterize congruence modular varieties, while at the same time
obtaining ternary terms.

Notice, that all Mal'cev conditions mentioned above are idempotent, i.e. Γ `
pi(x, ..., x) ≈ x for each of their terms pi.
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5 Preservation of preimages

A few years ago, Dent, Kearnes, and Szendrei [3] invented a syntactic operation
on idempotent sets of equations Σ, called the derivative Σ′, and they showed
that an idempotent variety V(Σ) is congruence modular if and only if Σ ∪Σ′ is
inconsistent.

Subsequently, Freese [4] was able to give a similar characterization for n-
permutable varieties, using an order derivative, which was based on the fact
that a variety is n-permutable if and only if its algebras are not orderable, an
insight, said to have been observed already by Hagemann (unpublished), but
which �rst appears in P. Selinger's PhD-thesis [17].

It will turn out below, after generalizing the relevant de�nitions from [3]
to non-idempotent varieties, that the derivative also serves us to characterize
free-algebra functors preserving preimages.

We start by slightly modifying the de�nition of weak independence from [3]:

De�nition 6 A term p is weakly independent of a variable occurrence x, if there
exists a term q such that Σ ` p(x, v1, ..., vn) ≈ q(y) where x 6= y and v1, ..., vn are
variables. p is independent of x, if Σ |= p(x, z1, ..., zn) ≈ p(y, z1, ..., zn) where
x, y, and all variables z1, ..., zn are distinct.

As an example, consider the the variety of groups. The term m(x, y, z) := xy−1z
is weakly independent of its �rst argument, since m(x, x, y) = xx−1y ≈ y holds,
but it is not independent of the same argument, since m(x, z1, z2) = xz−1

1 z2 6≈
yz−1

1 z2 = m(y, z1, z2). The term p(x, y) := xyx−1 is independent of its �rst argu-
ment in the variety of abelian groups, but not in the variety of all groups, since
p(x, z) = xzx−1 6≈ yzy−1 = p(y, z). More generally, any Mal'cev term m(x, y, z)
is weakly independent of each of its arguments, but cannot be independent of
either of them.

Clearly, if p is independent of x then it is also weakly independent of x, since
p(x, z1, ..., zn) ≈ p(y, z1, ..., zn) entails p(x, y, ..., y) ≈ p(y, y, ..., y) =: q(y).

We now de�ne the derivative Σ′ of Σ as the set of all equations asserting
that a term which is weakly independent of a variable occurrence x should also
be independent of that variable:

Σ′ := {p(x,−→z ) ≈ p(y,−→z ) | p(x,−→w )weakly independent of x}.

We are now ready to state the main theorem of this section:

Theorem 7 FΣ (weakly) preserves preimages if and only if Σ ` Σ′.

Proof. Consider a term p which is weakly independent of a variable occur-
rence x, i.e. there exists a term q such that Σ ` p(x,w1, ..., wn) ≈ q(y) where
x, y, w1, ..., wn are occurrences of not necessarily distinct variables, but x 6= y.

We must show that p(x, z1, ..., zn) ≈ p(y, z1, ..., zn) for x, y, z1, ..., zn mutually
distinct variables.

Consider the map ϕ : {x, y, z1, ..., zn} → {x, y, w1, ..., wn} which �xes x and
y and sends each zi to wi. Then
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(FΣϕ)(p(x, z1, ..., zn)) = p(ϕx, ϕz1, ..., ϕzn)

= p(x,w1, ..., wn)

≈ q(y) ∈ FΣ({y}),

so p(x, z1, ..., zn) is in the preimage of FΣ({y}) under FΣϕ.
The preimage of {y} ⊆ {x, y, w1, ..., wn} under ϕ does not contain x, so

ϕ−1({y}) ⊆ {y, z1, ..., zn}. Assuming that FΣ preserves preimages, we obtain

p(x, z1, ..., zn) ∈ FΣ({y, z1, ..., zn}),

so there exists a term r with

p(x, z1, ..., zn) ≈ r(y, z1, ..., zn).

Since x, y /∈ {z1, ..., zn}, by substituting y for x in this equation, we also �nd
p(y, z1, ..., zn) ≈ r(y, z1, ..., zn), so

p(x, z1, ..., zn) ≈ p(y, z1, ..., zn)

by transitivity.
Conversely, assume that Σ ` Σ′, then we need to verify that FΣ preserves

preimages. According to Lemma 2, we need only verify that FΣ preserves clas-
sifying preimages. Let X and Y be disjoint sets and let ϕ : X ∪ Y → {x, y} be
given, sending elements from X to x and elements from Y to y. Then Y ⊆ X∪Y
is the preimage of {y} under ϕ. We must show that the following is a preimage
diagram:

FΣ(X ∪ Y )
FΣϕ // FΣ({x, y})

FΣ(Y ) //
?�

OO

FΣ({y})
?�

OO

Given an element p ∈ FΣ(X ∪ Y ) with (FΣϕ)p ∈ FΣ({y}) we must show that
p ∈ FΣ(Y ).

Let x1, ..., xn, y1, ..., ym be all variables occurring in p where xi ∈ X and
yi ∈ Y . The assumption yields

p(ϕx1, ..., ϕxn, ϕy1, ..., ϕym) = p(x, ..., x, y, ..., y) ∈ FΣ(y),

i.e. p(x, ..., x, y, ..., y) ≈ q(y) for some term q ∈ FΣ({y}). This means that p is
weakly independent of each of its occurrences of x, so our assumption Σ ` Σ′
says that V also satis�es the equations

p(x1, x2, ..., xn, y1, ..., ym) ≈ p(z1, x2, ..., xn, y1, ..., ym)

≈ p(z1, z2, ..., xn, y1, ..., ym)

≈ ...
≈ p(z1, z2, ..., zn, y1, ..., ym)
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In particular, by choosing y arbitrarily from {y1, ..., ym}, we obtain

p = p(x1, ..., xn, y1, ..., ym) ≈ p(y, ..., y, y1, ..., yn) ∈ FΣ(Y )

as required.

Whereas Dent, Kearnes and Szendrei have shown that congruence modular va-
rieties are characterized by the fact that adding the derivative of their de�ning
equations yields an inconsistent theory, we have just seen that FΣ preserving
preimages delineates the other extreme, Σ ` Σ′. Clearly, therefore, for modular
varieties V(Σ), the variety functor FΣ does not preserve preimages.

6 Preservation of kernel pairs

We begin this section with a positive result:

Theorem 8 If V(Σ) is a Mal'cev variety, then FΣ weakly preserves pullbacks
of epis.

Proof. According to Corollary 5, it su�ces to check that FΣ weakly preserves
kernel pairs of a surjective map f : X → Y. The kernel of f is

K = {(x, x′) | f(x) = f(x′)}

with the cartesian projections π1 and π2.
Given p := p(x1, ..., xm) ∈ FΣ(X) and q := q(x′1, ..., x

′
n) ∈ FΣ(X), and

r := r(y1, ..., yk) ∈ FΣ(Y ) with

(FΣf)p = r = (FΣf)q,

we need to �nd some m̄ ∈ FΣ(K) such that (FΣπ1)m̄ = p and (FΣπ2)m̄ = q.

FΣ(K)
FΣπ1 //
FΣπ2

// FΣ(X)
FΣf // FΣ(Y )

•m̄

XX
p

OO
q

OO

r

FF

Choose g as right inverse to f , i.e. f ◦ g = idY , and de�ne:

p̄ := p((x1, gfx1), ..., (xm, gfxm)),

r̄ := r((gy1, gy1), ..., (gyk, gyk)),

q̄ := q((gfx′1, x
′
1), ..., (gfx′n, x

′
n)),

then it is easy to check that p̄, r̄, and q̄ are elements of FΣ(K), hence the same
is true for m̄ := m(p̄, r̄, q̄), where m(x, y, z) is the Mal'cev term. Moreover,
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(FΣπ1)m̄ = (FΣπ1)m(p̄, r̄, q̄)

= m((FΣπ1)p̄, (FΣπ1)r̄, (FΣπ1)q̄)

= m(p(x1, ..., xm), r(gy1, ..., gyk), q(gfx′1, ..., gfx
′
n))

= m(p, (FΣg)r(y1, ..., yk), (FΣg)(FΣf)q(x′1, ..., x
′
n))

= m(p, (FΣg)r, (FΣg)r)

= p,

and similarly, (FΣπ2)m̄ = q.

Preservation of kernel pairs for the functor FΣ leads to some interesting syntactic
condition on terms, which might be worth of further study:

Lemma 9 If FΣ weakly preserves kernel pairs, then for any terms p, q we have:

p(x, x, y) ≈ q(x, y, y)

if and only if there exists a quaternary term s such that

p(x, y, z) ≈ s(x, y, z, z)
q(x, y, z) ≈ s(x, x, y, z).

Proof. The if-direction of the claim is obvious. For the other direction consider
ϕ,ψ : {x, y, z} → {x, z} with ϕx = ϕy = ψx = x, and ϕz = ψy = ψz = z. Their
pullback is

P = {(x, x), (y, x), (z, y), (z, z)}.

Since ϕ and ψ are epi, according to Theorem 4, their pullback should be weakly
preserved, too. Now, given p and q with p(x, x, y) ≈ q(x, y, y), then (FΣϕ)p =
(FΣψ)q. Therefore, there must be some s ∈ FΣ(P ), with (FΣπ1)s = p and
(FΣπ2)s = q. We obtain:

p(x, y, z) ≈ (FΣπ1)s((x, x), (y, x), (z, y), (z, z)) = s(x, y, z, z), and

q(x, y, z) ≈ (FΣπ2)s((x, x), (y, x), (z, y), (z, z)) = s(x, x, y, z).

Using the criterion of this Lemma, we now determine, which n−permutable
varieties give rise to a functor weakly preserving kernel pairs:

Theorem 10 If V(Σ) is n−permutable, then FΣ weakly preserves kernel pairs
if and only if V(Σ) is a Mal'cev variety, i.e. 2-permutable.

Proof. Assuming that V(Σ) is n−permutable for n > 2, we shall show that it is
already (n− 1)−permutable.

Let p1, ..., pn−1 be the terms from the Mal'cev condition for n-permutability,
with the equations 1.
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According to Lemma 9, we �nd some term s(x, y, z, u) such that s(x, y, z, z) ≈
p1(x, y, z) and s(x, x, y, z) ≈ p2(x, y, z). We now de�ne a new term

m(x, y, z) := s(x, y, y, z),

and calculate:

m(x, y, y) ≈ s(x, y, y, y) ≈ p1(x, y, y) ≈ x

as well as

m(x, x, y) ≈ s(x, x, x, y) ≈ p2(x, x, y) ≈ p3(x, y, y).

From this we obtain a shorter chain of equations, discarding p1 and p2 and
replacing them by m :

x ≈ m(x, y, y)

m(x, x, y) ≈ p3(x, y, y)

pi(x, x, y) ≈ pi+1(x, y, y) for all 2 < i < n− 1

pn−1(x, x, y) ≈ y.

7 Conclusion and further work

We have shown that variety functors FΣ preserve preimages if and only if Σ ` Σ′
where Σ′ is the derivative of the set of equations Σ.

For each Mal'cev variety, FΣ weakly preserves kernel pairs. For the other
direction, if FΣ weakly preserves kernel pairs, then every equation of the shape
p(x, x, y) ≈ q(x, y, y) ensures the existence of a term s(x, y, z, u), such that
p(x, y, z) ≈ s(x, y, z, z) and q(x, y, y) ≈ s(x, x, y, z).

This intriguing algebraic condition appears to be new and certainly deserves
further study from a universal algebraic perspective. Adding it to Freese's char-
acterization of n-permutable varieties by means of his �order-derivative�, allows
to distinguish between the cases n = 2 (Mal'cev varieties) and n > 2, which
cannot be achieved using his order derivative, alone.

It would be desirable to see if this consequence of weak kernel preservation
can be turned into a concise if-and-only-if statement.
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