
HAL Id: hal-03231363
https://inria.hal.science/hal-03231363

Submitted on 20 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Role-Based Capability Modeling Approach for
Adaptive Information Systems

Hendrik Schön, Jelena Zdravkovic, Janis Stirna, Susanne Strahringer

To cite this version:
Hendrik Schön, Jelena Zdravkovic, Janis Stirna, Susanne Strahringer. A Role-Based Capability Mod-
eling Approach for Adaptive Information Systems. 12th IFIP Working Conference on The Practice
of Enterprise Modeling (PoEM), Nov 2019, Luxembourg, Luxembourg. pp.68-82, �10.1007/978-3-030-
35151-9_5�. �hal-03231363�

https://inria.hal.science/hal-03231363
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Role-based Capability Modeling Approach for
Adaptive Information Systems

Hendrik Schön1, Jelena Zdravkovic2, Janis Stirna2, and Susanne Strahringer1

1 Business Informatics, esp. IS in Trade and Industry, TU Dresden, Dresden, Germany
{hendrik.schoen,susanne.strahringer}@tu-dresden.de

2 Department of Computer and System Sciences, Stockholm University, Stockholm, Sweden
{jelenaz,js}@dsv.su.se

Abstract. Most modeling approaches lack in their ability to cover a full-fledged
view of a software system’s business requirements, goals, and capabilities and
to specify aspects of flexibility and variability. The modeling language Capabil-
ity Driven Development (CDD) allows modeling capabilities and their relation
to the execution context. However, its context-dependency lacks the possibility
to define dynamic structural information that may be part of the context: per-
sons, their roles, and the impact of objects that are involved in a particular exe-
cution occurrence. To solve this issue, we extended the CDD method with the
BROS modeling approach, a role-based structural modeling language that al-
lows the definition of context-dependent and dynamic structure of an infor-
mation system. In this paper, we propose the integrated combination of the two
modeling approaches by extending the CDD meta-model with necessary con-
cepts from BROS. This combination allows for technical development of the in-
formation system (BROS) by starting with capability modeling using CDD. We
demonstrate the combined meta-model in an example based on a real-world use
case. With it, we show the benefits of modeling detailed business requirements
regarding context comprising environment- and object-related information.

Keywords: Capability Modeling, Roles, Context, Business Requirements.

1 Introduction

Organizations need a rapid response to changes in the business environment in terms
of new legislation, changes in customer and supplier behavior, new and often adverse
events. Such change cannot always be foreseen at the time of information system (IS)
development and hence the current approach that is based on implementing change by
redesigning and redeploying applications is no longer sufficient. A strand of ap-
proaches aims at continuous development and tightening the gap between develop-
ment and operations [1]. This is, however, not suitable for developing and customiz-
ing enterprise applications that need to respond to change both on the business and IS
level. That is, a congruent approach that supports responsiveness to changes in the
application context and facilitates the responses to transcend from the business to the
information system is needed. Sandkuhl and Stirna [2] contributed to making IS more

2

flexible with respect to the adaptation to context. The concept of capability was used
for this purpose because it unifies the business aspects traditionally used in areas such
as enterprise modeling like goals and processes with execution context [3]. Further-
more, it connects context with the specification of algorithms for adjusting the IS
once the context changes. The stance of CDD is that any information that influences
the IS is to be modeled as context.

BROS (Business Role-Object Specification) [4] is a structural modeling language
for design time specification of business objects concerning a domain model as well
as specific business logic. Role-fulfilling objects cover the static specification part
regarding the separation of concerns, whereas the dynamic specification part of the
business logic is expressed via events. The final BROS model serves as a blueprint for
development and can be implemented in role-based modeling languages. BROS sup-
ports the specification of system-internal variability that is induced by, e.g., the
change of role fulfillment. In case of human or organizational roles, changes of this
kind often require adaptations in terms of business process variants because the same
roles can be fulfilled by several actors each of which having a different skill profile.
This aspect has not been elaborated in the CDD approach. Therefore, the objective of
this paper is to explore the integration of the CDD and BROS for the purpose of sup-
porting role-based capability modeling and IS design. Among the motivators for the
CDD [5] are the following goals, to which the proposed integration of the two ap-
proaches is set to contribute:

 To allocate resources to process execution tasks and to provision human resources
to process execution. The integrated proposal addresses this goal by explicitly
modeling skill profiles of actors and skill requirements of roles, which allows spec-
ifying the actor-role fulfillment by using the concept of scene in BROS.

 To customize services according to context. The integrated proposal allows design-
ing and monitoring changes in the context caused by actor-role fulfillment.

 To monitor process execution. The CDD approach supports model-driven genera-
tion of a monitoring application, Capability Navigation Application (CNA) for
overseeing context elements, KPIs, and triggering capability adjustments. The pro-
posal allows integration of actor-role fulfillment and skill monitoring in the CNA.

The remainder of the paper is structured as follows. Section 2 covers the related
background of our research. Section 3 provides a conceptual overview of the suggest-
ed role-based capability approach. Further, in section 4, the abstract and theoretical
part of our research is demonstrated via the introduction of the extended meta-model,
a core part of the paper. Section 5 demonstrates our new approach by applying it to a
real-world use case, a lecture management scenario in higher education, followed by
the conclusion in Section 6 with summary and outlook.

2 Background

The enterprise modeling discipline endeavors to support businesses by means of IS,
which imposes supporting some low-volatile business processes and concepts, but

3

lately even more is required – coping with dynamically changing business environ-
ments requiring adaptations of IS at execution time. In this regard, adaptability is seen
as an architectural property, enabling a system to efficiently adjust to different or
evolving operational or usage circumstances [6,7].

To achieve adaptability, organizations should be able to, by the support of model-
ing, master different variations of their businesses, such as user preferences, environ-
mental variations, changes on partners’ sides, legislations, and other [8]. This study
also investigates the area of dynamic adaptions of IS and finds that there is a plethora
of capability modeling approaches that depict adaptability elements in different ways.
Many of the existing approaches address capability delivery by means of, for exam-
ple, services, business processes, or actions. Nevertheless, the current state in capabil-
ity design does not offer a transition to tasks associated with IS development. The
CDD approach (section 2.1) relies on enterprise models for designing IS based busi-
ness capabilities with inbuilt support for adaptation to changing contexts at the execu-
tion time [2]. Amongst Enterprise Architecture frameworks and languages, including
TOGAF, Archimate, DODAF, NAF and MODAF, the NAF framework [9] is the
closest to CDD in its ability to define local conditions in design, but it does not have a
method for capability adjustments at run-time. Also, the work of Rodriguez et al. [10]
is related to CDD and includes context-dependency as well. However, this approach
focuses more on reliability modeling and transformation with replicas at design time.
The specifications of the other frameworks provide methods neither for the use of
capability at runtime nor for adjustments [3]. However, its methodology and the un-
derlying architecture for designing variability for the purpose of adaptation lack the
support for dynamic roles of the entities being involved in the implementation of the
capabilities, such as subjects (persons, organizations) and objects. The BROS lan-
guage (section 2.2) uses business scenarios as a fitting complement to support the
specification of system variability induced by the change of role fulfillment.

2.1 Capability-Driven Development (CDD)

The foundation for CDD is provided by the conceptual Capability Meta-Model
(CMM). CMM was developed on the basis of industrial requirements and related
research on capabilities. In brief, it consists of the three main parts of the meta-model:

 Enterprise model for representing organizational designs with Goals, KPIs, Pro-
cesses (with concretizations as Process Variants) and Resources;

 Context model for representing for which context a Capability is designed (repre-
sented by Context Set) and Context Situation at runtime that is monitored and ac-
cording to which the deployed solutions are adjusted; and

 Patterns and variability model for delivering Capability by reusable solutions for
reaching Goals under different Context Situations. Each pattern describes how a
certain Capability is to be delivered within a certain Context Situation and what
Process Variants and Resources are needed to support a Context Set.

The meta-model in Fig. 1 is a simplified version of CMM showing the key compo-
nents of CDD; the full version with complete element definitions is available in [11].

4

Fig. 1. A conceptual meta-model supporting Capability Driven Development

Table 1. Concepts of the core CDD meta-model

Concept Description
Capability Capability is the ability and capacity that enable an enterprise to

achieve a business Goal in a certain context (represented by
Context Set).

KPI Key Performance Indicators (KPIs) are measurable properties
that can be seen as targets for achievement of Goals.

Context Set Context Set describes the set of Context Elements that are rele-
vant for design and delivery of a specific Capability.

Context Ele-
ment Range

Context Element Range sets boundaries of permitted values for
a specific Context Element and for a specific Context Set.

Context Ele-
ment

A Context Element is representing any information that can be
used to characterize the situation of an entity.

Measurable
Property

Measurable Property is any information about the organiza-
tion’s environment that can be measured.

Context Ele-
ment Value

Context Element Value is a value of a specific Context Element
at a given the runtime situation. It can be calculated from sever-
al Measurable Properties.

Goal Goal is a desired state of affairs that needs to be attained. Goals
can be refined into sub-goals. Goals should typically be ex-
pressed in measurable terms such as KPIs.

Process Process is series of actions that are performed in order to
achieve particular result. A Process supports Goals and has
input and produces output in terms of information and/or mate-
rial. A process is perceived to consume resources.

Pattern Patterns are reusable solutions for reaching business Goals
under specific situational contexts. The context defined for the

Capability
Goal

Indicator

Context
Indicator

KPI

Context Set

ProcessProcess VariantCapability
Delivery
Pattern

Context
Element Range

Measurable
Property

Context
Element

Context
Type

ResourceContext
Situation

Context
Element Value

0..*

↑ supports

1..*

0..*

↑ measured by

0..1

1..*

← measured by

0..1

1 1..*

1..*
↓ influences

0..*

*

→ fulfills

1

0..*

↑ supports

1

1..*

↓ used for

1..*

1 *

1

↓ has

0..*

1..*

↓ motivates

1..*

1..*

↑ consists of

1

1

← designed for

0..*

1

↑ used for

0..1

11..*

1

↑ consists of

1..*

11..*

1

↓ has

1..*

1..*

→ measures

0..1

5

Capability (Context Set) should match the context in which the
Pattern is applicable.

Process Variant Process variant is a part of the Process using the same input and
delivers the same outcome as the Process in a different way.

The CDD methodology combines three interconnected cycles of working – design,

delivery, and feedback. Design starts with configuring existing or creating new enter-
prise goals and processes combined with captured business contexts and eliciting
required capabilities. This is followed by delivery of the capability requiring composi-
tion and integration of existing technologies and applications, such as ERP systems.
During the execution of the application, the changes of context are monitored, and
runtime adjustment algorithms are used to calculate if the context’s changes require
another capability pattern. Feedback is achieved by monitoring defined KPIs, which
enable capability refinement and pattern updating.

2.2 Business Role-Object Specification (BROS)

Roles and the related concepts were investigated in various research areas during the
last decades (e.g., theories [12], modeling languages [13], programming languages
[14,15], runtime environments [16], or enterprise modeling [17,18]). Roles extend the
established object-oriented paradigm by the ability to represent an object in different
contexts and by changing its behavior and characteristics accordingly. Roles qre de-
scribed in terms of (a) behavioral, (b) relational, and (c) context-dependent properties
[12, 13]. This serves a more accurate description of the domain’s entities with their
context-dependent structure and behavior. BROS uses this advantage of roles to mod-
el software based on required business needs.

The BROS modeling language [4] was originally developed for an easy adaptation
of (structural) reference models [19], it can also be used for creating role-based soft-
ware in general. It utilizes the role-paradigm to specify mainly structural models. Via
roles, however, BROS (in contrast to traditional modeling languages such as UML) is
able to include the behavior-aware specifications in structural models non-invasively.

 BROS does not focus on process modeling itself; it explicitly includes events in-
duced in the respective background processes, nevertheless. Via events, temporality,
and role-based context-dependent behavior, BROS allows for behavioral modeling
constructs within a mainly structural modeling language. Thus, BROS benefits from
CDD due to its ability to define the complex business constraints (i.e., when to choose
a scene) as a background source of these events.

The main concepts of BROS are objects, roles, scenes, and events (Fig. 2). Objects
are selected from an underlying structural domain model and are the target of any use
case or enterprise-specific adaptation done by using the remaining concepts. BROS
utilizes roles as specific representations of objects in certain scenes (the role’s con-
text). The enterprise-specific processes are the main drivers of the adaptation and
serve two kinds of information: (a) the scene as an encapsulation context of a use case
or task, and (b) the events as certain points in time affecting the roles. The details of
the language, as well as an example, are described in [4], based on the research of

6

CROM [13]. For the purpose of this research, the BROS concepts were introduced in
the CDD meta-model with the knowledge implied by the BROS meta-model.

Fig. 2. The basic BROS meta-model [4]

3 Conceptual Approach

According to the motivation for this research, we strive for a framework that extends
the CDD approach with the role-based paradigm provided by the BROS approach.
Although both approaches are settled on different levels and phases of the software
development stack (see Fig. 3), the role concepts introduced by BROS are suitable to
be used for fine-grained capability design. CDD and BROS have been developed
independently of each other. Nevertheless, they share a common concept of “dedicat-
ed context”: the process variant in CDD and the scene in BROS. Both are representa-
tives of a special, single task or execution, dependent on the chosen environment.

Fig. 3. The connection between both areas

This task may change during runtime since one or more requirements from the giv-
en environment is dropped. In CDD, a process variant is derived from a general pro-
cess description (e.g., giving a lecture). The concrete process variant is then chosen by

7

variation points based on the environment requirements. Thus, CDD focuses on the
conceptual view of the requirements, capabilities, and goals of the respective IS. In
contrast, BROS utilizes scenes to describe the behavior of roles for certain tasks or
executable procedures. The scene defines the context-dependent boundary of a role’s
validity (e.g., the role “Teacher” is only valid in the context of the scene “Giving
Lecture”) in combination with a start and an end as specific points in time.

Fig. 4. The set of common concepts

BROS is intended to be an extension to CDD, hence, we integrated its concepts
(see Fig. 4) into the already existing CDD methodology. We state that, with the
BROS concepts, it is possible, to describe the capabilities of an enterprise with regard
to performers that are able to play certain roles (or not). CDD, as presented in [2], is
able to model the capability dependence on static environment information (e.g., re-
source utilization, calendar time or the weather condition), while including BROS
enables the modeling of capabilities that depend on the participating performers (that
is, actors and objects with abilities), illustrated in Fig. 5.

Technically, our proposal is realized as a meta-model extension to the CDD meta-
model. Extending the meta-model also allows maintaining the adaptation and decision
mechanisms of CDD. Thus, we strived for a non-invasive adaptation to implement the
BROS features for two reasons: (a) to use CDD as a new source of business
knowledge usable in BROS, and (b) to include the structural modeling concepts
(scenes, roles, and objects) into CDD to provide a more powerful modeling approach.

Fig. 5. Adding BROS to CDD

4 Meta-model Extension

This section introduces the full (extended) meta-model, describes the respective mod-
el elements as well as their relationships and purposes.

To achieve the envisioned integration of CDD and BROS and keep the existing
CDD method components and method extensions intact, the meta-model has been
extended “non-invasively” (c.f. [2] for more information about CDD methods com-
ponents). The CDD-BROS integration is intended as a method extension. For this
purpose, we extended the complete CDD meta-model with a set of new meta-model
elements that override or extend already defined elements. As a result, the CDD meta-

8

model ensures that the new extension is compatible with the CDD environment and
other CDD extensions. The meta-model depicting CDD with the BROS extension is
shown in Fig. 6. The set of BROS elements contains the newly developed elements.
While ProcessVariant and ProcessVariantVariationPoint are overridden (i.e., marked
as abstract) and not usable together with the BROS extension, the ContextElement and
MeasurableProperty are extended and can be used simultaneously with the related
BROS elements. Apart from the inherited elements, several new elements are used to
model the BROS part of the combined approach.

Fig. 6. The small CDD meta-model with the BROS extension

The newly introduced BROS elements are responsible for dedicated context decisions
based on provided skills by entities. For that reason, we use the semantics of roles,
objects, and scenes established in BROS.

A Performer is an entity (type) of the real world that is allowed to take over a Role
in a Scene via Fulfillment to provide certain Abilities. For example, the performer
“professor” is able to fulfill the role “teacher” in the scene “giving lecture” to achieve
the ability (and responsibility) of “teaching”. This is also possible for non-human
objects like, e.g., the entity “room” that may fulfill the role “lecture hall.” However,
the performer and its roles depend on the use case that has to be modeled. With the
meta-model extension, it is stated that the scene (a BROS concept) replaces the Pro-
cessVariant. Thus, the process defined by CDD now uses scenes to describe different
flows dependent on the chosen context. Scenes contain roles that are determined for a
specific temporal execution (e.g., the “giving lecture” scene requires the role “teach-
er”). The variation mechanisms in CDD then do not point to process variants but spe-
cific scenes with roles. The roles are fulfilled by performers (real-world entities). The
fulfillment between a performer and a role is annotated with the fulfillment value that
quantifies the ability of the performer to fulfill a specific role. E.g., various instances
of a performer “professor” fulfill the “lecturer” role in the scene “giving lecture” with
their own specific FulfillmentValue in term of a skill profile. This value is inherited
from MeasurableProperty, i.e., the fulfillment value is given by, e.g., a database in

9

the ERP system that lists the employees with their skill profiles and may be time-
dependent. There must be at least one role (provided by a scene) that is responsible
for providing the necessary abilities. However, at runtime, the concrete AbilityValue
for the abilities is derived via ContextCalculation from the fulfillment value, i.e.,
dependent on the entity that takes over the specific role. Since the ability is inherited
from ContextElement, the ContextElementRange (from CDD) is assigned to the abili-
ties to limit the possible value range for the context. At runtime, those are concrete
value boundaries. If the range is violated (due to not fitting ability values) the adapta-
tion part of CDD uses the SceneVariationPoint to define another scene that is able to
be used for the new context. However, this paper does not focus on the adaptation
part, which is defined in the full CDD meta-model. In the proposed meta-model, we
use Events since the BROS scene definition includes, inter alia, a start and end via an
event. Thus, we use an event as an interface from the scene variation point towards
the scene. This allows the start of multiple scenes with triggering a single start event.

The new meta-model elements are listed in Table 2. The M1 level is used for capa-
bility design, e.g., specifying that a lecturing capability is based on performers such as
professors and roles such as teachers, students, and course assistants. The M0 level of
a capability model materializes once the lecturing capability is executed and runtime-
specific professors, e.g., “John” and “Alice”, perform specific roles for specific
scenes. An M1 instantiation example for the new elements in this meta-model is given
in the next section. Due to the non-invasive changes to the original meta-model, all
mechanisms of CDD, like the capability adjustment algorithms and calculations of
KPIs and context, are still operational.

Table 2. New meta-model elements within the BROS method component

Concept Description M1 Example M0 Example
Performer A real-world entity on

type-level that is able to
do something

Person, Room,
Computer

Alice, INF003

Role A context-specific be-
havior that may be
adopted by a performer

Attendant, Teacher,
Lecture Hall

Alice’s Teacher
role, INF003’s
Lecture Hall role

Scene A contextual boundary
that denotes a temporal
execution

Giving Lecture,
Checking Exams

Lecture ID 5

Fulfillment The process of a per-
former playing a role

Employee-Teacher-
Fulfillment

Alice playing the
Teacher

Fulfillment
Value

A runtime value that is
related to the profile of a
role.

-- Profile of room
INF003 when
fulfilling Lecture
Hall

Event A type of point in time
when something may
happen

Start, End, Interrup-
tion

9am at 24. Dec
2019, Incoming
Call ID 42

10

Scene
Variation
Point

A mechanism that de-
cides the triggering of
events to start a certain
scene

-- --

Ability An action related to the
possibilities of a per-
former

Heating up, Having
capacity, Teaching

Teaching ability
of Alice

Ability
Value

A runtime value that
denotes the quantity of a
certain ability

-- 42, 1337, yes

5 Use Case – Provisioning of Subjects in Higher Education

This section demonstrates the proposed CDD and BROS integration with an example
case of the teaching environment at a large university in Sweden.

5.1 Use Case Description

The provisioning of the subjects in Higher Education requires substantial planning
and effort. That includes organizing the lecturers’ team, scheduling, admission of
students, and publishing course materials. Once a course starts, the major activities
are teaching sessions, exercises, supervision, and examinations.

Requirements Engineering is a standard subject offered at both the undergraduate
and graduate levels to about 250 students in total. The course is given in Swedish at
the undergraduate level, and in English at the graduate level. The team of teachers
includes several roles: lectures and Q&A seminars are given by professors; exercises
are supervised by teaching assistants, PhD students, and professors; tool tutoring and
supervision is done in the computer labs and led by teaching assistants, PhD students,
and research assistants. The course material includes lectures, tutorials, reading mate-
rial, and media. It is published on the Moodle online education portal. The platform is
managed by the whole teaching team according to the assigned roles and responsibili-
ties. During the course execution, the portal is also used for managing communication
among the students and the teachers, management of quizzes, grading of exercises, as
well as other activities. Since we investigate a Swedish university, there is the possi-
bility of a sudden and severe snowfall in colder seasons. Hence, the local traffic in-
formation system and the weather forecast are analyzed for possible general delays. If
severe delays throughout the city are to be expected or are occurring, the course
events might be cancelled, rescheduled, repeated, and/or switched to online delivery.

Concerning course scheduling, each classroom has a limit for the maximum num-
ber of persons. Because the classrooms are a resource constraint, they need to be
booked well in advance. If the number of students exceeds the size of the classroom,
it is possible to stream a lecture to another classroom in real-time. This, however,
poses additional tasks related to the management of the teaching process. It is not easy
to re-schedule the rooms in cases when more students than estimated register for the

11

course (the deadline is the day when the course starts), as well as when additional
tutoring (and thereby rooms) becomes needed. The final exam is classroom-based and
as such requires a sufficient number of places and invigilators for each of the exami-
nation rooms, which requires engaging both the teachers as well as additional staff.

5.2 Meta-model Instance Design

According the defined schema of model layers by Object Management Group [20,
21], the meta-model is on the M2 layer. An instance of this layer is the M1 layer,
which is a model that uses the M2 defined concepts to specify the targeted “real mod-
el.” An instance of M1 is on the layer M0, which represents “real items” like “Alice”
as a person or “INF003” as a room. However, since the CDD and BROS extensions
are on M2, we need to define the capability design on the M1 layer before considering
runtime items. However, not all M2 concepts need to be instantiated on the M1 level
because concepts that denote runtime concepts, like values of context elements or
ability values, belong to M0 (i.e., fulfillment, fulfillment value, ability value, and
event). For these values, we model the M1 pendants as a type that needs to be ex-
pressed at runtime. Thus, as elaborating the M0 is not our primary goal, we do not go
into detail of their runtime assignments.

Fig. 7. An example instance of the meta-model for the use case

12

Fig. 7 shows the M1 instance of the M2 meta-model, including the CDD part
(white background) and the new BROS concepts (gray background). We derived this
instance example from the use case as only one of many different possibilities. The
respective M0 types from the meta-model are annotated to the M1 model elements.

The use case requirements are encoded in the context set named “Req. Eng. Lec-
ture”, which serves the overall CDD capability of “Teach Req. Eng.” The ranges
(specified on M0 with concrete range boundaries later on) set the parameters of decid-
ing between different scenes. For this use case, there are several of such ranges as
parameters: a specific schedule delay, a required teaching language, a device that is
able to display the slides, and so forth. If something happens, e.g., there is too little
capacity available in the room for the lecture, the adaptation part of CDD (not shown
in the meta-model) adapts towards this new situation with triggering changes. By
using BROS, the capacity of a lecture room is modeled in Fig. 7 as an ability of a role
that is fulfilled by a performer, i.e., any room (e.g., “INF003”) that plays the role of
the lecture hall at runtime so that its capacity is used for the lecture’s capacity.

If at runtime this capacity is outside the range set in the capability design, the adap-
tation part has two options:

1. It uses a different performer (that is, a new room with higher capacity) that fulfills
the role in the same scene so that the scene does not change; or

2. If there is no other performer available, the scene is switched to another scene (e.g.,
a scene that streams the lecture to various locations) that meets the range require-
ments with possibly other roles (e.g., a stream receiving device).

If neither of the two possibilities can be applied, then an error occurs since there is
no available solution to the new context. The real-world entities, the performers, have
to fulfill the roles in a scene, i.e., the CDD environment is able to perform calcula-
tions deriving the ability value out of their profile since the real room “INF003” at
runtime does not know which abilities one wants to derive (e.g., its capacity or its
ability to be ready for exams). The CDD environment delivers the actual runtime
value for the ability (e.g., “15” for capacity) that gets checked against the range
boundaries, which can be Boolean, lists, formal expressions or simple number ranges
(e.g., “1 to 20”). The context set may also contain ranges that are not dependent on
entities but on environmental states. In Fig. 7, we modeled the traffic situation and the
weather forecast as measurable properties, so that the calculation results in the value
of expected delay. This is checked against the range in the context set to decide
whether it is possible to hold a lecture or whether one should start streaming (or skip
the lecture). This expected delay is an environment-based state and independent from
any concrete performers and roles (for demonstration purposes on how to model
BROS-independent context elements). Thus, when designing capabilities, one has to
decide between environment- or entity-based context elements and their ranges. Re-
garding the modeling complexity, we only designed a simple CDD-BROS model for
one capability with limited scene-based variability. There are plenty of options to
extend this design, e.g., multiple abilities or performers per role, performers that ful-
fill a set of roles in certain scenes, involving different IT supporting tools for teaching
and other variants.

13

5.3 Use Case Discussion

With the modeled use case stated in Fig. 7, we argue that the modeling of entity-based
context elements receives more attention in the capability design. Previously, every
context element was handled as external. Thus, the modeling of capabilities is en-
hanced due to additional modeling constructs:

 The construct of scene allows the definition of concrete variations of an executa-
ble, providing a set of necessary roles;

 Roles (encapsulated in scenes) enable modeling the necessary entity-based context
elements (i.e., abilities of performers);

 Performers are the main constructs to define the concrete entities that are responsi-
ble for fulfilling a context element range (indirectly via roles).

This trinity of the role-based BROS paradigm (scene, roles, and performers) is the
tool for switching between contexts and related situations at runtime. When encoun-
tering an unmet range condition, the new possibility, to switch between fulfillments
instead of switching to a whole new scene, is an important improvement. As such, the
same context scene may be continued with only changing the performers, who are
fulfilling the needed roles and their abilities for the scene.

Fig. 8. An example BROS model with objects, roles, events, and a scene

The combination of CDD and BROS allows modeling on multiple levels, i.e., subse-
quent stages along the model-driven development lifecycle (as shown in Fig. 5). With
the usage of the BROS concepts in CDD, the transition towards implementation is
simplified. BROS, as intended to be on the technical level, is tightly connected to the
underlying software development. Assuming the fact that the CDD modeling would
define several scenes, roles, and performers for its contexts, these can also be used for
a related BROS model. Fig. 8 shows a possible BROS model for software construc-
tion that is derived from the CDD model in Fig. 7 with the same scene, its roles, and
the related performers. This interrelation of the different abstraction levels while de-
veloping IS via CDD and BROS benefits model-driven development.

14

6 Conclusion

We have shown two existing approaches, CDD and BROS, which were developed
independently and for different purposes, that have be combined to complement each
other. This was done by integrating the needed BROS elements into the CDD meta-
model as an extension. The combined approach was demonstrated with a use case and
allowed for a more realistic and fine-grained modeling of an enterprise’s capabilities.

The introduction of entity-based abilities, related to roles, grasp the nature of capa-
bility responsibility and liability. Thus the CDD-BROS integration contributes to an
enterprise modeling approach that can be used for early business-focused modeling as
well as for later specification of technical details in a seamless manner. The different
facets of adaptation and variation are covered through the combined approach encom-
passing adaptations at runtime due to resource allocation via performers. This, in
general, supports role-based capability modeling and IS design as stated in Section 1.

Comparing this overall contribution to Enterprise Architecture approaches, we
conclude that the suggested combination supports modeling on the level of detail that
is needed for seamless IS development even encompassing runtime aspects like ac-
counting for performers. However, in comparison to MDA-like approaches, which are
(by nature) aligned to seamless integration along the development lifecycle, our sug-
gestion is stronger when it comes to early capability driven modeling and context-
dependent adaptations. One limitation of our current work is that we cannot ensure
that other methodological enhancements in the enterprise architecture, enterprise
modeling, or MDA domain may have achieved comparable goals. Also, the CDD-
BROS-integration still needs to be fully implemented and supported with tools. This
will require that the BROS extension to the CDD meta-model is implemented as a
CDD method component. In the realm of a full-fledged integration, examples at the
level of complexity of our use case could then be used to demonstrate the full poten-
tial of using CDD with BROS – not only at the modeling level but also within the
accordingly developed IS.

Acknowledgements

This work is partially funded by the German Research Foundation (DFG) within the
Research Training Group „Role-based Software Infrastructures for continuous-
context-sensitive Systems” (GRK 1907).

References

1. Hüttermann, M.: DevOps for Developers. Apress. 10.1007/978-1-4302-4570-4 (2012).
2. Sandkuhl, K., Stirna, J.: Capability Management in Digital Enterprises. Springer Interna-

tional Publishing, Cham (2018).
3. Zdravkovic, J., Stirna, J., Grabis, J.: A Comparative Analysis of Using the Capability No-

tion for Congruent Business and Information Systems Engineering. Complex Systems In-
formatics and Modeling Quarterly. pp. 1–20 (2017).

15

4. Schön, H., Strahringer, S., Furrer, F.J., Kühn, T.: Business Role-Object Specification: A
Language for Behavior-aware Structural Modeling of Business Objects. In: Proceedings of
the 14th International Conference on Wirtschaftsinformatik. Siegen, Germany (2019).

5. Bērziša, S., Bravos, G., González Cardona, T., Czubayko, U., España, S., Grabis, J., Hen-
kel, M., Jokste, L., Kampars, J., Koç, H., Kuhr, J.-C., Llorca, C., Loucopoulos, P., Juanes
Pascual, R., Sandkuhl, K., Simic, H., Stirna, J., Zdravkovic, J.: Deliverable 1.4: Require-
ments specification for CDD, CaaS–capability as a service for digital enterprises. Riga
Technical University (2013).

6. Morin, B., Barais, O., Jezequel, J.-M., Fleurey, F., Solberg, A.: Models@Run.time to Sup-
port Dynamic Adaptation. Computer 42, pp. 44–51 (2009).

7. Engel, A., Browning, T. R., Reich, Y.: Designing Products for Adaptability: Insights from
Four Industrial Cases. In: Decis. Sci. 48(5), pp. 875–917 (2017)

8. Koutsopoulos G., Henkel M., Stirna J.: Dynamic Adaptation of Capabilities: Exploring
Meta-model Diversity. In: Enterprise, Business-Process and Information Systems Model-
ing. pp. 181–195. Springer, Rome, Italy (2019)

9. North Atlantic Treaty Organization: NATO Architecture Framework v4. North Atlantic
Treaty Organization (NATO) (2019).

10. Rodrigues, G.N., Roberts, G., Emmerich, W.: Reliability Support for the Model Driven
Architecture. In: de Lemos, R., Gacek, C., and Romanovsky, A. (eds.) Architecting De-
pendable Systems II. pp. 79–98. Springer Berlin Heidelberg (2004).

11. Grabis, J., Henkel, M., Kampars, J., Koç, H., Sandkuhl, K., Stirna, J., Valverde, F.,
Zdravkovic, J.: Deliverable 5.3: The Final Version of Capability Driven Development
Methodology (2016).

12. Steimann, F.: On the representation of roles in object-oriented and conceptual modelling.
Data Knowl. Eng. 35, 83–106 (2000).

13. Kühn, T., Leuthäuser, M., Götz, S.: A Metamodel Family for Role-Based Modeling and
Programming Languages. In: Combemale, B., Pearce, D.J., Barais, O., and Vinju, J.J.
(eds.) Software Language Engineering. pp. 141–160. Springer (2014).

14. Herrmann, S.: Programming with roles in ObjectTeams/Java. In: Proceedings of the 2005
AAAI Fall Symposium (2005).

15. Leuthäuser, M.: A Pure Embedding of Roles, http://nbn-resolving.de/urn:nbn:de:bsz:14-
qucosa-227624 (2017).

16. Taing, N., Springer, T., Cardozo, N., Schill, A.: A Dynamic Instance Binding Mechanism
Supporting Run-time Variability of Role-based Software Systems. In: Companion Pro-
ceedings of the 15th Intern. Conf. on Modularity. pp. 137–142. ACM (2016).

17. Almeida, J.P.A., Guizzardi, G., Santos, P.S.Jr.: Applying and extending a semantic foun-
dation for role-related concepts in enterprise modelling. In: Proceedings of the 12th IEEE
Intern. Enterprise Distributed Object Computing Conf., EDOC. pp. 31–40. IEEE (2009).

18. Frank, U.: Delegation: An important concept for the appropriate design of object models.
J. Object Oriented Program. 13, pp. 13–17 (2000).

19. Schön, H.: Role-based Adaptation of Domain Reference Models: Suggestion of a Novel
Approach. In: Drews, P., Funk, B., Niemeyer, P., and Xie, L. (eds.) Tagungsband Multik-
onferenz Wirtschaftsinformatik 2018. pp. 1447–1453. Leuphana (2018).

20. Object Management Group: Meta Object Facility (MOF) Core Specification v2.5.1. Object
Management Group (2016).

21. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation. IEEE
Softw. 20, 36–41 (2003).

