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Abstract. The fairness of secret sharing guarantees that, if either par-
ticipant obtains the secret, other participants obtain too. The fairness
can be threatened by cheaters who was hidden in the participants. To ef-
ficiently and accurately identify cheaters with guaranteeing fairness, this
paper proposes a fair (t, n)-threshold secret sharing scheme with an effi-
cient cheater identifying ability. The scheme consists of three protocols
which correspond to the secret distribution phase, secret reconstruction
phase, and cheater identification phase respectively. The scheme’s secret
distribution strategy enables the secret reconstruction protocol to detect
the occurrence of cheating and trigger the execution of the cheater iden-
tification protocol to accurately locate cheaters. Moreover, we prove that
the scheme is fair and secure, and show that the cheater identification
algorithm has higher efficiency by comparing with other schemes.

Keywords: Secret sharing · Cheater identification · Fairness · Attack
model.

1 Introduction

In the reconstruction phase of a (t, n)-threshold secret sharing scheme, dishon-
est participants can reconstruct the real secret because of receiving the valid
secret shares. It’s unfair for honest participants that they gain the wrong secret
because of accepting the invalid secret shares[1]. To address this issue, many
researchers have come up with their solutions. Laih and Lee[2] proposed a v-
fair (t, n)-threshold secret sharing scheme, in which all participants do not have
to show their secret shares simultaneously to recover the secret with the same
probability, even if there are v(< t/2) dishonest participants. [3] and [5] fur-
ther improved Laih scheme[2]. In 2003, Tian[6] utilized the consistency of secret
shares to detect attackers, and constructed a fair (t, n)-threshold scheme with
the help of the schemes of Tompa and Woll[7]. Harn and Lin[8] also used the

? Supported by the National Natural Science Foundation of China (61702168,
61672010), Hubei Provincial Department of Education Key Project (D20181402),
the open research project of Hubei Key Laboratory of Intelligent Geo-Information
Processing (KLIGIP-2017A11).



2 H. Shen et al.

consistency of secret share to design an algorithm to detect cheating behavior
and identify cheaters. In 2014, Harn[9] pointed out that the research on asyn-
chronous attack in scheme [6] was incorrect. In 2015, Harn[10] proposed a scheme
that can resist asynchronous attacks of external attackers and internal attack-
ers. In 2016, Liu[11] presented a Linear (t, n)-threshold secret sharing scheme
in which there is only one honest participant can detect cheaters. Lin[12] con-
structed a secret sharing scheme which focuses on preventing cheating behavior
rather than cheating detection. With the same purpose, in 2018 Liu[13] proposed
a (t, n)-threshold secret image sharing scheme. In order to improve the efficiency
of the verifiable secret sharing scheme, Mashhadi[14] and Cafaro[15] put forward
their schemes respectively, but none of their schemes are unconditionally safe.
In 2018, Liu and Yang[17] proposed a cheating identifiable secret sharing scheme
by using the symmetric bivariate polynomial, but the scheme does not achieve
fairness requirement of secret sharing.

In order to not only identify deception behavior but also efficiently and ac-
curately locate cheaters, this paper propose a fair (t, n)-threshold secret sharing
scheme which realizes the fairness through Distribution protocol and Reconstruc-
tion protocol, and achieves the efficiently cheaters identification through Cheater
identification protocol. Moreover, the presented scheme is unconditional security
because of not depending on any security assumptions, and is fair and secure
based on four attack models.

The remainder of this paper is organized as follows. We introduce some pre-
liminaries, in Section 2. In Section 3, we present a fair (t, n)-threshold secret
sharing scheme with an efficient cheater identifying algorithm. In Section 4, we
describe the fairness and security of the proposed scheme, followed by the per-
formance analysis in Section 5. Finally, we conclude this paper.

2 Preliminaries

In this section, we briefly recall some fundamental backgrounds which are used
in our scheme and then introduce the attack models of our scheme.

2.1 Shamir’s (t, n)-secret sharing scheme

Shamir’s (t, n)-threshold secret sharing scheme [16] is based on Lagrange inter-
polating polynomial, in which there are n participants P={P1,· · · ,Pn}, and a
mutually trusted dealer D. The scheme consist of two algorithms:

– Distribution algorithm: The dealer D first randomly generates a polynomial:
f(x) = a0 + a1x+ a2x

2 + · · ·+ at−1x
t−1, in which the secret is s=a0 and all

the other coefficients a1, · · · , at−1 are chosen from a finite field F, and then
D computes the secret share si = f(i) and sends it to the participant Pi,
where i = 1, 2, · · · , n.

– Reconstruction algorithm: In the reconstruction phase, at least t participants
submit their secret shares, the secret s can be reconstructed by calculating
the Lagrangian interpolation polynomial through these secret shares.
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2.2 Definitions of Consistency and Fairness

Definition 1. ( consistency): In a (t, n)-threshold secret sharing scheme, sup-
pose there are m (m ≥ t) participants reconstruct the secret. The m shares are
consistent if any t shares in them can reconstruct the same secret.

To check whether m shares are consistent or not, we only need to sequentially
execute three steps as follows [6]. (i) Reconstruct a polynomial g(x) using any t
shares of the m secret shares. (ii) Check whether the degree of g(x) is t − 1 or
not. (iii) Check whether the remainder m − t secret shares satisfy g(x) or not.
If (ii) and (iii) are satisfied, we can conclude that the m shares are consistent.

Definition 2. ( fairness): A (t, n)-threshold secret sharing scheme is fair if it
can guarantees that either each participant who takes part in reconstructing the
secret obtains the same secret, or knows nothing about the mystery.

Not difficult to find if the m secret shares are consistent, the corresponding
scheme is fair.

2.3 Attack models

The aim of our scheme is holding the fairness and secure under the following
four attack models. :

– Non-cooperative attack with synchronisation (NCAS): All participants sub-
mit the secret shares simultaneously, and that there are no cooperations
between dishonest parties.

– Non-cooperative attack with asynchronisation (NCAAS): All participants
present secret shares successfully and that there are no cooperations between
dishonest parties.

– Collusion attack with synchronisation (CAS): The malicious parties modify
their secret shares to deceive the honest parties. We assume that all partic-
ipants submit their secret shares at the same time. Under this assumption,
only when the number of malicious parties is more extensive than or equal
to the threshold value t, can the malicious parties successfully deceive the
honest parties.

– Collusion attack with asynchronisation (CAAS): The dishonest parties col-
laboratively modify their secret shares to deceive the honest parties. The
participants asynchronously release their secret shares. The best option for
dishonest participants is to submit their accordingly modified secret shares
after all honest participants have submitted their secret shares.

3 Our schemes

In this section, we introduce our fair (t, n)-threshold secret sharing scheme which
consists of three algorithms: distribution algorithm, reconstruction algorithm,
and cheater identification algorithm.
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3.1 Distribution

The dealer D wants to share a secret s among n participants P = {P1, · · · , Pn}.
D first randomly constructs an identifier sequence {a1, a2, · · · , av} from Zq, and
q is big prime integer. The sequence must satisfy: a1 > a2 > · · · > al−1 > al+1 >
· · · > av > al where l ∈ [1, v] is randomly determined by D, and al is related
to finally recover s. And then, based on the sequence, D generates v random
polynomials through which D calculates the secret share si = (si1 , · · · , siv ) for
the ith participant. The distribution protocol is shown as:

Distribution protocol
Input: the secret s, the parameter v.
Output: the secret shares s1, s2, · · · , sn.

1. Randomly pick an integer l ∈ [1, v];
2. Generate a1 > a2 > · · · > al−1 > al+1 > · · · > av > al;
3. Construct v polynomials of (t− 1)-degree, like as follows:
fk(x) = ak + ak,1x+ ak,2x

2 + · · ·+ ak,t−1x
t−1 mod Zq,

where k = 1, · · · , v, and ak,1, · · · , ak,t−1 are randomly picked from Zq;
4. Calculate d to satisfy: s = al · d;
5. Generate the secret share of ith (i = 1, · · · , n) participant by computing
si = (si1 , si2 , · · · , siv ) = (f1(i), f2(i), · · · , fv(i)).

3.2 Reconstruction

Suppose that m(≥ t) participants R = {P1, · · · , Pm} cooperate to reconstruct
s. Denoted by P−i = R/Pi. The reconstruction protocol is shown below:

Reconstruction protocol
Input: m(m ≥ t) secret shares {s1, s2, · · · , sm}.
Output: the set of cheaters A and the secret s.

1. 1th round: Pi sends si1 to P−i, and then performs Receive share(k).
2. kth (k from 2 to v) round: If Pi receives all (k − 1)th items of secret

shares sent by P−i, then uses {s1k−1
, s2k−1

, · · · , smk−1
} to calculate a

Lagrange interpolating polynomial fk−1(x). If fk−1(x) is t − 1 degree,
then all participants send the kth items of their secret shares and then
perform Receive share(k). Otherwise, all participants utilize the cheater
identification protocol and obtain the set A. If |P/A| ≥ t, then all par-
ticipants ∈ P/A send the kth items of their secret shares and performs
Receive share(k); otherwise, protocol is terminated.
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Procedure Receive share(k): Receiving the kth item of secret share

1. When Pi has received all kth items of secret shares sent by P−i, he
utilizes all these items {s1k , s2k , · · · , smk

} to compute the Lagrange in-
terpolating polynomial fk(x). If the degree of fk(x) is t − 1, then Pi

performs step (b). Otherwise, all participants invoke the cheater identi-
fication protocol to identify the cheaters, and put them into the cheaters’
set A. If |P/A| ≥ t, then the protocol turns to step b; otherwise, it is
terminated.

2. Calculate the identifier by using the secret share sent by all participants
in P/A, ak = fk(0). If ak > ak−1, then D sends d to all participants
in P/A, and these participants can calculate s = ak−1 · d, and then
the protocol is terminated; otherwise, all participants in P/A send the
(k + 1)-th items of secret shares.

3.3 Cheater identification

To identify the participants who input fake shares, We use a mark vector repre-
sents a kind of choice of selecting t participants from m participants, so there are

u =

(
m

t

)
mark vectors, denoted by C1, · · · , Cu. Each mark vector consists of m

items, of which the value is 0 or 1, denoted by Cj = (cj1 , · · · , cjm), j = 1, 2, · · · , u.
Therefore, each mark vector includes t 1′s and m− t 0′s.

Cheater identification protocol
Input: m, t, k, {s1k , s2k , · · · , smk

}.
Output: the set of cheaters A.
All the m reconstruction participants do:

1. Generate u mark vectors C1, C2, · · · , Cu.
2. Based on the mark vector Cj (j = 1, 2, · · · , u) (that is, based on S′k =
{si′k |cji′ = 1} (i′ = 1, 2, · · · ,m)), each participant yields the Lagrange

interpolating polynomial f jk(x). Therefor, each participant can obtain
f1k (x), f2k (x), · · · , fuk (x).

3. According to f1k (x), f2k (x), · · · , fuk (x), each participant can obtain u val-
ues of the identifier ak, that is a1k = f1k (0), a2k = f2k (0), · · · , auk = fuk (0).
These values might different or the same. Find the most frequently oc-
curring value in them, the value is the value of ak.

4. And then extract the corresponding mark vectors from {C1, · · · , Cu}.
Use Csucc denote the set of these corresponding mark vectors.

5. Perform Logic Or operation on Csucc, the participants corresponding to
the items whose values are 0 in the result mark vector are cheaters, and
then add these participants to A, finally return A.
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4 Security and correctness analysis

Theorem 1. In our proposed scheme, the probability that each participant suc-
cessfully guesses the secret s is 1/v.

Proof. The dealer D hides the secret s into the polynomial fl(x), where l ∈ [1, v]
is randomly chosen by D, therefore, the participants successfully guess the value
of l with the probability 1/v.

P = {P1, · · · , Pm} (t ≤ m ≤ n) denotes all participants who take part in the
secret reconstruction phase, PI = {Pi1 , · · · , Piα} ⊆ P denotes the set of cheaters
in P, P−I = P/PI denotes the set of honest participants in P.

Theorem 2. Under non-cooperative attack with synchronisation (NCAS), when
m > t, our scheme is secure and fair.

Proof. NCAS assumes that all participants present shares at the same time and
that there is no cooperation between cheaters. Suppose that in the k-round
reconstruction stage, the cheaters in PI send invalid secret shares. Since there
is no cooperation between the cheaters, their invalid secret shares can only be
random numbers in Zq. When m > t, these secret shares could not pass the
consistency test, and the attack is immediately detected. In order to restore s, the
attackers in PI need to guess in which polynomial s is hidden and which honest
participants are involved. According to Theorem 1, the maximum successful
probability is 1/v. If v is large enough, the probability can be ignored. Therefore,
under non-cooperative attack, when m > t, our scheme is secure and fair.

Theorem 3. Under non-cooperative attack with asynchronisation (NCAAS),
when {(m−α < t−1)∩(m > t)}∪{m−α≥t+ 1}, our scheme is secure and fair.

Proof. NCAAS assumes that all participants present shared shares successively
without cooperation between attackers. A cheater’ ideal attack is to show the
secret share at the end, because he can obtain all the shares before others.
When m − α ≥ t+ 1, that is, there are no less than t + 1 honest participants,
who show the secret shares firstly. Therefore, the attackers can reconstruct the
correct polynomial fk(x) (suppose in k-round) based on t real secret shares, and
then obtain the ak. The attackers can show the real secret shares in the first
l rounds and show a fake secret share in (l + 1)th round. However, the fake
secret share cannot pass the consistency test, and the attack behavior can be
detected, which trigger the execution of cheater identification algorithm. The
right identifier al+1 can be reconstructed based on the m− α real secret shares,

because

(
m− α
t

)
> 1, the al+1 is correct identifier which can be used to identify

the attackers, therefore, the attackers could not gain d from the dealer to obtain
s. When m−α < t+ 1, for an attacker, even if he finally shows his secret share,
he can only obtain at most t − 1 real secret shares, so he can not reconstruct
any t− 1-degree polynomial, as a result he can not recover s. In order to detect
attacks, m should greater than t. In conclusion, when {(m − α < t − 1)∩(m >
t)}∪{m− α≥t+ 1}, the proposed scheme is secure and fair.
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Theorem 4. Under collusion attack with synchronisation (CAS), when {(α <
t) ∩ (m > t)} ∪ {(α ≥ t) ∩ (m− α > α+ t− 1)}, our scheme is secure and fair.

Proof. CAS assumes that all participants present secret shares simultaneously
and that multiple attackers conspire to attack the scheme. Suppose there are α
cheaters in k-round. (i) When α ≥ t, if the number of honest participants is less
than t, that is, m− α < t, then cheaters can cooperate to forge a set of invalid
secret shares which can pass consistency detection. The specific process is as fol-
lows: Cheaters first use their secret shares to recover an interpolation polynomial,
then utilize the polynomial to calculate the secret shares held by other honest
participants, and then generate their false secret shares based on the secret shares
of other honest participants. For example, α = t, m − α = t − 1, m = 2t − 1,
use {P1, · · · , Pt−1} denote honest participants, use {Pt, Pt+1, · · · , P2t−1} denote
cheaters. Cheaters can use their true secret share {stk , st+1k , · · · , s2t−1k} to cal-
culate the interpolation polynomial fk(x), so they can show the true secret shares
in the first l rounds, and in (l+ 1)th round, they can use fl+1(x) to obtain oth-
er honest participants’ secret shares {s1l+1

, · · · , st−1l+1
}, and calculate another

(t−1)-degree polynomial f ′l+1(x) by using secret shares {s1l+1
, s2l+1

, · · · , st−1l+1
}

and a random value s′tl+1
. And then, cheaters use f ′l+1(x) to calculate t−1 invalid

secret shares {s′tl+1
, s′t+1l+1

, · · · , s′2t−1l+1
}. Finally, the secret shares shown by

all participants as follows: {s1l+1
, s2l+1

, · · · , st−1l+1
, s′tl+1

, s′t+1l+1
, · · · , s′2t−1l+1

}.
These m secret shares can pass consistency detection when m−α ≥ t. The secret
shares forged by the above method in (l+1)th round cannot pass consistency de-
tection. By executing the identification algorithm, m real secret shares can used

to reconstruct the correct identifier al+1 at

(
m− α
t

)
times, while t−1 real secret

shares and an invalid secret share can be utilized to reconstruct a wrong iden-

tifier a′l+1 at

(
α+ t− 1

t

)
times. Therefore, we have

(
m− α
t

)
>

(
α+ t− 1

t

)
.

That is, m−α > α+ t− 1, under this condition, the invalid secret shares can be
detected, and cheaters cannot obtain d from the dealer and recover s. But the
honest participants can gain d and reconstruct s. (ii) If α < t, these α cheaters
can not use their real secret shares to forge the invalid secret shares that can
pass the consistency detection. When m > t, this attack can not pass the consis-
tency detection. If cheaters want to reconstruct s, they can only guess the value
of l, the probability of successfully guessing is only 1/v. From what has been
discussed above, when {(α < t) ∩ (m > t)} ∪ {(α ≥ t) ∩ (m − α > α + t − 1)},
our scheme is secure and fair.

Theorem 5. Under collusion attack with asynchronisation (CAAS), when m−
α > α+ t− 1, our scheme is secure and fair.

Proof. CAAS assumes that all participants present secret shares successively and
that multiple cheaters conspire to attack the scheme. For cheaters, the ideal mode
of attack is to present the secret shares at the end, so that they can obtain the real
secret shares presented by previous honest participants. When m− α ≥ t, there
are not less than t honest participants, who first show the secret shares. Attackers
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use t − 1 real secret shares (according to the method of Theorem 4) to forge
α invalid secret shares. Because m − α ≥ t, these invalid secret shares cannot
pass consistency detection. By executing the identification algorithm, m − α

real secret shares can be used to recover the correct identifier al+1

(
m− α
t

)
times, while t − 1 real secret shares and an invalid secret share can be utilized

to reconstruct a wrong identifier a′l+1

(
α+ t− 1

t

)
times. Therefore, we have(

m− α
t

)
>

(
α+ t− 1

t

)
. Concretely, under m − α > α + t − 1, these invalid

secret shares can be detected, and cheaters cannot gain d from the dealer and
reconstruct s. But the honest participants can obtain d and recover s. Therefore,
when m− α > α+ t− 1, the proposed scheme is secure and fair.

Theorem 6. Under the conditions mentioned above, our cheater identification
algorithm is correct.

Proof. The key to prove the correctness of the cheater identification protocol is
to prove the most frequently occurring value in {a1k = f1k (0), · · · , auk = fuk (0)}
is the correct value of ak. In the cheater identification protocol, interpolating
polynomials are reconstructed only based on t secret shares, therefore, only when
the t secret shares are real can the correct value of ak be recovered. To guarantee
the most frequently occurring value in {a1k = f1k (0), · · · , auk = fuk (0)} is the
correct value of ak, the following condition must be satisfied:(

m− α
t

)
>

1

2

(
m

t

)
.

We have,

(m− α)!

(m− α− t)!t!
>

1

2
· m!

(m− t)!t!
=

1

2
· (m− α)!α!

(m− t)!t!

⇒ (m− α)!

(m− α− t)!
>

1

2
· (m− α)!α!

(m− t)!
=

1

2
· (m− α)!

(m− α− t)!

Since the inequality is always true, our cheater identification algorithm is correct.

5 Performance

The following two examples are given to respectively calculate the maximum
number of attackers αmax under the four types of attack models. Taking (7,
n) threshold scheme as an example, assuming m = 9 and m = 11, where m
is the number of participants who take part in the secret reconstruction phase.
Under NCAS, according to Theorem 2, when m > t our scheme is secure and
fair, so αmax = 9. Similarly, under NCAAS, according to Theorem 3, when
{(m − α < t − 1)∩(m > t)}∪{m − α≥t + 1} our scheme is secure and fair,
which means αmax = 9. From the analysis of Theorem 4, Under CAS, when
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{(α < t)∩ (m > t)}∪{(α ≥ t)∩ (m−α > α+ t−1)} the proposed scheme is safe
and fair, so αmax = 6. According to the analysis of Theorem 5, Under CAAS,
our scheme can defend at most 1 cheaters, as shown Table 1. Based on a similar
analysis process, when m = 11, the values of αmax are shown as in Table 1.

Table 1. (7,n)-threshold scheme, m = 9 or m = 11

Attack model Conditions αmax αmax

(m = 9) (m = 11)

NCAS m > t 9 11
NCAAS {(m− α < t− 1)∩(m > t)}∪{m− α≥t+ 1} 9 11

CAS {(α < t) ∩ (m > t)} ∪ {(α ≥ t) ∩ (m− α > α+ t− 1)} 6 6
CAAS m− α > α+ t− 1 1 2

Different from Tian and Peng’s[18] scheme, our scheme does not depend
on any security assumptions, it is a unconditional security scheme. Compared
to Tian’s[6], Harn’s[9], Harn-Lin’s[8] and Liu-Yang’s[17] secret sharing schemes,
our scheme achieves fairness but they do not have, as shown in Table 2.

Table 2. Security comparison

Scheme Tian[6] Harn-Lin[8] Liu-Yang[17] Tian-Peng[18] ours

Security assumption no no no ECDLP no
Fairness no no no no yes

In [8], Harn and Lin proposed a secret sharing scheme that can identify
cheaters. In their scheme, the correct secret needs to be confirmed and the se-
cret share of each participant needs to be verified. In our scheme, we removed
the process of validating each participant’s secret share but achieves the same
function of [8]. Therefore, our scheme has higher operating efficiency than [8].

6 Conclusion

In this paper, we study the cheater identification issue and the fairness problem in
the reconstruction phase of secret sharing, and propose a fair (t, n) secret sharing
scheme including a efficient cheater identification algorithm. By comparing with
the existing verifiable secret sharing schemes, it can be found that our scheme
achieves fairness. Compared with the fair secret sharing scheme, our cheater
identification algorithm has a lower computational complexity. Moreover, we
analyzed the security of our proposed scheme under four different attack models.
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