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Abstract. Network traffic monitoring has become fundamental to ob-
taining insights about a network and its activities. This knowledge allows
network administrators to detect anomalies, identify faulty hardware,
and make informed decisions. The increase of the number of connected
devices and the consequent volume of traffic poses a serious challenge to
carrying out the task of network monitoring. Such a task requires tech-
niques that process traffic in an efficient and timely manner. Moreover,
it is crucial to be able to store network traffic for forensic purposes for
as long a period of time as possible.

In this paper, we propose CompactFlow, a hybrid binary format for ef-
ficient storage and processing of network flow data. Our solution offers
a trade-off between the space required and query performance via an
optimized binary representation of flow records and optional indexing.
We experimentally assess the efficiency of CompactFlow by comparing it
to a wide range of binary flow storage formats. We show that Compact-
Flow format improves the state of the art by reducing the size required
to store network flows by more than 24%.

Keywords: Networks - Binary Format - Cybersecurity Data Processing

1 Introduction

In recent years, we have witnessed an astonishing evolution of networks in terms
of complexity, variety, and versatility. An increasing number of devices have
started to embed networking capabilities and to require Internet connection to
provide their full functionalities. Hence, guaranteeing the connectivity of such
devices has become fundamental to the operation of the entire networking in-
frastructure. In order to carry out this task, network administrators have to
be provided with reliable tools to monitor traffic flowing through a network. In
addition to that, administrators have to be able to investigate past events by
retrospectively analyzing the state of a network at any given point in time. For
this reason, it is necessary to archive network traffic in a fast and space-efficient
way.

Monitoring networks at the granularity of packets offers perfect visibility
of their state but also requires overwhelming computing resources and storage
space to be devoted. While packet-level approach may have been possible in
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the early days of networking, it is infeasible in modern networks due to the in-
creasing number of interconnected devices and the volume of data produced by
them. Moreover, the ubiquitous adoption of encryption in network communica-
tion to protect user privacy has made packet-level traffic capturing obsolete since
encrypted payloads do not provide any meaningful information. Due to these
limitations, network monitoring has shifted toward a network flow as a more
coarse-grained representation of traffic data. A network flow comprises informa-
tion of a communication from a temporal perspective as a five-tuple: protocol,
source and destination IP addresses and ports. Differently from packet-level data,
flows capture only metadata, such as the overall number and size of exchanged
packets.

Flow exporters are devices in the flow creation process that capture and as-
sign network packets to flows based on their five-tuple and within a temporal
interval. Once flows are created, they are sent to a flow collector using a given ex-
port protocol. A flow collector is a device in charge of storing flow data for future
use. The most popular export protocol is Cisco’s NetFlow [9], which inspired the
creation of the open standard IPFIX [8].

Over the years, a number of flow collectors have been proposed by networking
companies and researchers. The main goal of such devices is to rapidly collect
and store flows in such a way that avoids blocking the next oncoming flows. More
importantly, they have to adopt a storage format that is efficient in terms of the
size required and indexing to process future queries. Network administrators are
constrained by the space available to store network traffic, thus older traffic has
to be periodically deleted. For this reason, a space-optimized format saves storage
space, which allows for keeping network traffic of longer periods for retrospective
analysis. Unfortunately, our investigation of open-source flow collectors showed
that they use an inefficient flow representation in their formats, even among the
ones that favor storage efficiency over processing speed.

In this paper, we present CompactFlow - a binary format to represent net-
work flows that favors storage and processing performance while supporting
indexing. In particular, the CompactFlow format relies on dynamic field sizes
and is based on a linked list to store the contents of flows. This accounts for
a significant reduction of storage size. In fact, experimental results show that
CompactFlow files are on average almost 3 times smaller than the ones using
binary formats of other flow collectors, and 24% smaller than the ones using
the binary format of the state-of-the-art System for Internet-Level Knowledge
(SiLK) collector [29].

CompactFlow can be considered a hybrid binary format since it allows for
customization according to administrators’ analysis purposes: (i) it supports
additional indexing methods to increase the speed of repetitive queries, and
(ii) it is possible to choose which flow fields or which specific values of a flow
field to index. Unlike database-based approaches, our solution allows for high-
speed saving of flows without the risk of dropping them or resorting to sampling
since the indexing can be done after successful storage. The design principles
of CompactFlow join two best practices of storage (binary files) and querying
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(indexing), to have a robust system for network monitoring and processing of
cybersecurity events.

Contributions The contribution of this paper is twofold:

— We present a binary file format to store network flows using less space than
state-of-the-art approaches. Our format supports popular indexing methods
to allow faster data processing in the security context.

— We perform a thorough analysis of all open-source network flow collectors
and a popular data serialization library by analyzing their binary formats.

Organization The remainder of the paper is organized as follows. In Section 2, we
survey the state-of-the-art techniques for network traffic monitoring. We present
our CompactFlow format in Section 3 while we evaluate and compare its perfor-
mance to other formats in Section 4. In Section 5, we discuss the results. Finally,
we present conclusions in Section 6.

2 Related Work

In the last two decades, many approaches have been proposed to monitor net-
work traffic. This effort has been necessary to carry out management and se-
curity analyses on networks, such as identification of anomalies or failures, and
detection of attacks. Most of these analyses cannot be done in real-time, hence
network traffic has to be stored in persistent memory in order to make it avail-
able when needed. For this reason, it is necessary to store and query network
traffic efficiently. A first important distinction between storage approaches is
related to the granularity of traffic collection: packet- and flow-level.

2.1 Packet-level Traffic Collection

Collecting network data at packet-level provides fine-grained information about
traffic but it requires fast dedicated equipment. Desnoyers et al. in [12] propose
Hyperion, a system that relies on a log-structured file system that is optimized
for writing data streams to store packet-level network traffic. This system indexes
data stream segments via distributed multi-level Signature indexes. The authors
claim to be able to write and index up to 1M and 200K packets per second,
respectively.

Maier et al. in [25] propose to focus only on the part of the packet stream
that may be interesting for a network intrusion detection system (NIDS). Hence,
they present the TimeMachine system which applies a cut-off heuristic (i.e. it
only considers the first N bytes) to reduce the size of the data stream to store.

Fusco et al. in [15] present PcapIndex which extends Libpcap by supporting
rapid packet filtering via COMPAX compressed bitmap index [14]. Doing this,
Pcaplndex reduces the disk overhead and the response time of queries.

Unfortunately, the aforementioned methods are not suitable for large-scale
networks since they do not scale on the number of devices connected. Moreover,
such fine-grained information would require an overwhelming storage capacity.
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2.2 Flow-level Traffic Collectors

In order to cope with the shortcomings of packet-level traffic collection, the net-
working community has moved toward the collection of traffic information by
aggregating packets into flows. Compared to packet-level one, flow-level network
traffic is more privacy-preserving (i.e. packets are aggregated), and more scalable
over the amount of traffic and number of connected devices in modern networks.
The first standard for exporting network flow information was NetFlow [9]. Ini-
tially, Netflow version 5 was released by Cisco in 1996 and then extended to
version 9 in 2004. Subsequently, the Internet Engineering Task Force (IETF) in
2013 released the IP Flow Information eXport (IPFIX) Internet Standard [8]
which is a further enrichment of NetFlow v9. In what follows, we present various
solutions available to collect, store and access network flows.

Storage Formats Network flow collectors adopt several solutions to store flow-
level network traffic in persistent memory. Such solutions can be divided accord-
ing to the way they structure and index the data [20]. A popular data structure to
store flows is a database. The advantage of databases is that such data structures
automatically handle the information storage and indexing via a DataBase Man-
agement System (DBMS). Traditional DataBase Management Systems, such as
MySQL and PostgreSQL, store the information by rows (row-based databases).
In our case, a row represents an entire flow (i.e. all its fields). Two examples
of flow collectors that use a row-based database to store network traffic are
Vermont and pmacct. Regarding the queries, row-based databases offer good
flexibility but they have poor performance in terms of data retrieval and new
flow insertion time. Moreover, a row-based database is not storage-efficient since
it requires considerable indexing.

For this reason, column-based databases have been proposed for network flow
storage. Rather than to consecutively store entire flows, column-based databases
store them in columns by flow fields. Examples of column-based databases are
MariaDB ColumnStore [3] and bitmap indexing methods (e.g. FastBit [31], and
COMPAX [14]). Indexing by columns decreases data retrieval time for queries
while maintaining good flexibility and moderate insertion time. In particular,
FastBit is an order of magnitude faster than MySQL [11]. IPFIXcol is a collector
that relies on FastBit. It supports IPFIX, bidirectional flows, and variable length
fields. Unfortunately, the main shortcoming of column-based databases is poor
performance in retrieving flows in their entirety. Moreover, such databases still
have to maintain a reference to a specific flow (i.e. index) for each flow field
resulting in overhead in storage size.

Another solution that aims to reduce storage space is to rely on flat files.
A flat file typically stores data sequentially and does not embed any hierarchy
nor indexing by default. For this reason, flat files do not offer query flexibility
but they occupy much less space than a database [19]. Data in flat files can be
represented in a text or binary format. Despite the portability of a flat file in
text format, representing data in a binary format further reduces the storage
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Storage Formats
Database Flat Files
Row- | Column- | Binary Text
Collectors based based format | format | Bidirectional
Argus [4] v v v v
flowd [1] v
IPFIXcol [30] v v
nfdump [17] v
pmacct [24] v v 4
SiLK [29] v
Vermont [21] v v

Table 1. Comparison of open-source flow collectors.

size and the query response time. Examples of flow collectors that save network
traffic in a binary format are Argus, flowd, nfdump, and SiLK.

In Table 1, we report several open-source network flow collectors and we
compare them according to storage formats supported and whether they can
represent bidirectional flows. It is worth noting that some collectors can use
more than one storage format (e.g. Argus, and pmacct) and that the majority
use flat file formats.

To perform a thorough comparison between our proposal and the state of the
art, we analyze the binary formats used by collectors that allow storing network
flows in flat files (i.e. Argus, flowd, nfdump, and SiLK). In Section 4, we show
that our compact format outperforms all of them in terms of space efficiency.

Indexing Methods Flat file formats are optimal for network flow storage be-
cause they save space and have a negligible computational overhead in inserting
new flows. However, the limitation of this format is that it does not provide in-
tegrated indexing of the flows, thus it lacks in query performance and flexibility.
To cope with this shortcoming, researchers propose solutions to build indexes
which offer a low retrieval time and require little storage. Typically, storing net-
work flows from a flow exporter consists of two aspects: writing the flows to a
flat file and building indexes of those flows. For this reason, most solutions rely
on the multi-processing capabilities of modern computers [13,22].

In the literature, researchers use different data structures to organize flow
(or query) indexes [7]. For example, TelegraphCQ [5] stores indexes and results
of queries via a modified version of PostgreSQL. Three other examples, GigaS-
cope [10], MIND [23], and FloSiS [22] arrange indexes into trees, multi-level
hashing tables, and Bloom filters, respectively. However, the most popular and
best-performing approach leverages bitmap indexing. As an example, Reiss et al.
in [28] and Chen et al. in [6] applied the concept of bitmap indexing (i.e. Fast-
Bit [31]) to improve the performance of TelegraphCQ [5] and TimeMachine [25]
(applied on network flows), respectively. More recently, Xie et al. in [32] present
Index-trie, a novel data structure to index flows that combines trees and bitmaps.
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Our CompactFlow format is designed to be hybrid. This means that it is able
to support a variety of flow indexing methods.

Several approaches also propose fast compression/decompression algorithms
to be applied to both stored flow data and indexing data structures to further
reduce the storage size. Fusco et al. propose NET-Fli [14] and RasterZip [16]
systems that compress on-the-fly flow data streams via compression algorithms,
e.g. Lempel-Ziv-Oberhumer (LZO) [26], and Run-Length Encoding (RLE) [18].
Unfortunately, even the fastest compression algorithms generate computational
overhead which translates to increased processing time.

3 CompactFlow Format Design

Network flow data is comprised of information relating to communication be-
tween two hosts on a network. Every flow consists of core fields (traditionally
called a five-tuple) and additional fields that contain volumetric and temporal
information pertaining to communications. A five-tuple includes protocol, source
IP address, source port, destination IP address and destination port. The ba-
sic additional fields of a flow are the timestamp of the first packet, the overall
duration, the number of packets and the total size of packets.

In this section, we introduce CompactFlow, a new format specifically de-
signed to provide more efficient storage and fast processing of network flow data.
Our proposal relies on a new binary file format, which supports both unidirec-
tional and bidirectional flows. In Figure 1, we show the general structure of a
CompactFlow file. In what follows, we describe all of its components and discuss
our design choices.

3.1 CompactFlow File Header

A CompactFlow file is structurally divided into the header and body. The header
stores information about the format (i.e. binary file marker, format version, and
byte order) and contained flows (i.e. type, IP version, number of flows, and
timestamp) that are later encoded in the body of the file. The header of a
CompactFlow file contains a Marker as a first field by which the format can
be recognized. We designed its value to be 0x00434600, where the inner bytes
represent characters ’C’ and 'F’ and the outer bytes are non-character values to
avoid being misinterpreted by applications for text files. The Ver value represents
a version of the CompactFlow specification with the first byte being major and
the second minor versions (e.g. 0.3). The T value stands for the type of flow
in terms of its direction (unidirectional or bidirectional). Since CompactFlow
supports both IPv4 and IPv6, the version of IP is given by the IP parameter.
By design, IPv4 and IPv6 flows are stored in separate files. The Flow Count value
stores the total number of flows contained in the file. Instead of storing complete
timestamps in each flow, we only save the Timestamp (down to a precision of
an hour) in the header since each file represents up to one hour of traffic. This
allows for each flow record to store only the added time to that timestamp to
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o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Marker | Ver |T|IP|Flow Count|Timestamp

BOM Golay

Golay *Flow 1 | *Flow 2 | *Flow 3 Header

*Flow N-3|*Flow N-2[*Flow N-1| *Flow N

Flow 1

Flow 1 Flow 2

Flow 2 ‘ Body

Flow N ‘

Fig. 1. CompactFlow file format (in bytes).

reconstruct it fully. The Byte Order Mark (BOM) is used to clarify that the
CompactFlow file uses big-endian encoding. This decision is justified by the fact
that big-endian order is used by default in network communications, in fact to
such an extent that it is often referred to as the network order.

All fields described above constitute mandatory data in the header. Since
those fields carry high importance to the remainder of the file, we use the ez-
tended binary Golay code (Ga4) to detect and correct errors in them in the case
of corruption. Such code allows us to recover 3 bits for each 12-bit word at a
cost of doubling the size of data. Fortunately, we can afford it since the header
constitutes a minimal, almost negligible, percentage of the size of the whole file.

Our proposal uses dynamic field sizes to store flows, thus flow records can
vary in size. This means that given a current flow it is not possible to know in
advance where the next one starts. Typically this is not a problem in the con-
text of network security analysis since the way to process flows is to sequentially
traverse each one to get to the ones of interest [29], or to build more complex
network behavior profiles [27]. However, if CompactFlow is used in a network
administration context, the types of workflows could require running the same
queries to extract flows with a fixed set of parameters (e.g. given IP addresses).
One could speed up such queries by indexing data of interest and then accessing
it. This is described as random access and to enable this, CompactFlow pre-
computes an array of 4-byte pointers (offsets from the beginning of a file) to
each flow record. Additionally, one can opt to use one of the indexing methods
reported in Section 2.2. It is worth noting that this step is optional and such an
array is not contained in the format by default. Overall, the header without an
array of pointers takes 36 bytes of space.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

’$|@| s 1P | d1pP |timeA| pkts # |bytes# s prt|d prt| dur er‘
1 2 a 4 3 1-4 1-4 o/2 0/2 03 S5

(a) Unidirectional flow

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
]$| @ | s TP | d 1P timeA|Spkts#|Sbytes#|dpkts#|dbytes#‘
1 3 4 4 3 1-4 1-4 0-4 0-4
31 32 33 34 35 36 37 38 39 40
sprt|d prt| dur [PT ; | g ‘
™ o= o
0/2 0/2 -3 333
(b) Bidirectional flow
$=flow size field @=control field s=source d=destination
prt=port field dur=duration field  pr=protocol field = F=TCP flags field

Fig. 2. Binary schema of CompactFlow records (in bytes).

3.2 Flow Binary Representation

Flow records feature dynamic field sizes that are adjusted to the size of data that
needs to be accommodated. The use of dynamic fields makes the flow more com-
pact in cases where field values to be stored are small. As depicted in Figure 2a,
every flow record contains the following fields: flow size (in bytes), control, source
IP address, destination IP address, start time of the flow in terms of added mil-
liseconds to the timestamp in the header, total number of packets, and total
number of bytes. Optionally a flow can include a protocol, source and destina-
tion ports in the case of TCP or UDP protocols, duration and TCP flags. The
length and position of variable-size fields is given by interpreting bits in the
control field, described in Figure 3.

We noticed that some values are repeatedly used in flows. Saving the full
values of such fields each time would require additional bytes per flow, which
quickly build up if the number of flows is in the order of billions per day. For
example, according to our observations the majority of traffic uses ICMP, TCP
or UDP protocols. In order to save space, we use 2 bits (bits 0 to 1) of the
control field, that allow for the storage of 4 values, to encode them with the
fourth value meaning that another protocol is used which implies the existence
of the protocol field in the binary data.

Port values (non-ephemeral) are encoded in a similar fashion using 5 bits (bits
2 to 6). They are only consulted if the protocol is either TCP or UDP (in other
cases the port fields do not exist in the binary format). Encoded port values
are specific to a given production network, hence they should be determined
beforehand. Using those 5 bits, we can encode 32 values. The value of 0 means
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(b) Bidirectional control field

Fig. 3. CompactFlow control fields (in bits).

that neither source port nor destination port belong to the list of most frequently
used ports. The value of 1 is not used. The remaining 15 and 15 values mean that
the source or destination port respectively is in the list of common ports. Each
common port list hit saves 2 bytes of space. Since we observed that a significant
number of flows constitute requests without a response which translate to a
small number of packets, we use the next 3 bits (bits 7 to 9) to store small
packet numbers. The value of 0 has a special meaning - the number of packets if
different from a list of common small packet numbers. The remaining values from
1 to 7 are used to represent packet numbers, which results in 1 byte of saved space
per flow. The next 2 bits (bits 10 to 11) in the control field store the length of the
duration field. The value of 0 denotes that the duration is 0 and the respective
duration field does not exist in the binary representation. The duration field
can support non-standard values of up to 4.5 hours (with millisecond precision),
even though the default active timeout value in the NetFlow 9 export protocol is
only 30 minutes. This makes the format more robust towards changes of default
values in flow exporters. The sizes of packets and bytes fields take 2 bits each
(bits 12 to 13 and 14 to 15) to denote values up to 4 bytes. Summarizing, the
size of a unidirectional flow can vary from 16 to 30 bytes. Each unidirectional
CompactFlow file can store up to 143,165,576 flow records (unsigned integer
using 4 bytes divided by a maximum size of a flow - 30), if one chooses to
compute the array of pointers to each flow record.

CompactFlow also supports bidirectional flows (Figure 2b). The bidirectional
format differs by the addition of packet and byte counters as well as TCP flags for
the other side of the communication. It is not always the case that those counters



10 M. Piskozub et al.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

’ *IP 1 | *IP 2 | *IP 3 | *IP 4 ‘

*IP N-3 | *IP N-2 | *IP N-1 *IP N
IP 1 (Bitmap)

IP N (Bitmap)

Fig. 4. Bitmap index of IP addresses.

exist, e.g. the communication might comprise only a request with no reply. In
such scenarios, the destination counter values are not captured, hence the size of
those counters can be equal to 0. For that reason, the size of a bidirectional flow
is larger than its unidirectional counterpart and can take from 17 to 40 bytes.

To increase data processing performance, CompactFlow automatically places
dynamic fields that could have the size of 0 at the end of the flow. If those fields
were placed throughout the flow record, then one would need to query their size
by calculating the corresponding flags in the control field in order to get to fields
positioned after them. By using this design, we tried to minimize this behavior.
Additionally, IPv6 flow records are supported and saved into separate files. The
format for such files differs in the number of bytes allocated for each address - 4
bytes for IPv4 and 16 bytes for IPv6.

The second part of the CompactFlow framework considers flow processing
techniques. Our proposal supports a variety of indexing methods. We present
how to create the bitmap index, which is considered a state-of-the-art approach.
Bitmap indexing is efficient as it uses only 1 bit per flow record to denote whether
a given value of a flow field is present in a flow. Hence, each bitmap index is
an array of bits with the size equal to the number of all flow records. Figure 4
reports the structure of such a bitmap index that is stored in a separate file as
part of the CompactFlow format. Similarly, to the header of the unidirectional
CompactFlow file, it stores the pointers to the locations of bitmap arrays for each
field. In the case of this figure, these are IP addresses. In order to obtain selected
flows, one needs to take the positions of bits with the value of 1 and jump to
the respective flows by using the array of pointers in a binary CompactFlow file.
Since the size of pointers is fixed-size (4 bytes), it is easy to jump to the correct
ones with negligible overhead.

4 Evaluation

We compare our format to most popular open-source flow collectors that sup-
port binary file storage, i.e. Argus, flowd, nfdump, and SiLK. To carry out this
comparison, we analyze the binary formats of such collectors to have full un-
derstanding of their flow representation. In Figure 5, we show the same uni-
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directional flow represented using the aforementioned binary formats and our
proposed CompactFlow format. The flow is shown in the plaintext format (Fig-
ure 5a) with color-coded field names (explained in Figure 5b). In our comparison
we configure flow collectors to store only the fields that we consider, whenever
possible. Most binary formats use fixed-length representation of each flow record,
which makes the file format more straightforward to read from. Indeed, it is pos-
sible to jump by a constant number of bytes to get to the same field in the
next flow. However, this feature also makes it extremely inefficient space-wise.
CompactFlow is designed to achieve a trade-off between file size and process-
ing speed. In fact, our proposed format applies a hybrid approach, in which
the always-present fields are of constant length and the fields whose values can
change are of variable length. This results in a compact representation that is
the smallest of all presented binary formats, as shown in Figure 5h. It is worth
noting that the protocol, destination port and number of packets are included in
the control field as an optimization by our binary format (see Section 3.2). The
sample flow in CompactFlow binary format is only 20 bytes. In what follows, we
discuss and compare different flow collectors one by one.

Audit Record Generation and Utilization System (Argus) [4] is a popular,
open-source flow monitoring framework. The Argus collector provides a binary
file format to store flow records, which assigns a fixed-length space for fields
constituting a flow. It is worth noting that such length remains fixed even when
not all fields are captured. This approach leads to wasted space, which is a
fundamental factor when dealing with large data sets. In total a flow record
takes 116 bytes.

Another flow collector, flowd [1], offers binary storage at a reduced size of 48
bytes per flow record. It uses big-endian encoding and provides no file header.
It offers an option to save protocol, TCP flags, and Type of Service without
being able to selectively pick each one. Additionally, there is no option to save
the timestamp from when the flow started, only the timestamp of receiving the
flow by the collector. It also does not provide an option to store the duration of
a flow. Both of these shortcomings limit its use in real-world settings.

A slight improvement in those regards is offered by nfdump [17]. It uses the
nfcapd tool to collect flows from the exporter and to save them to binary files. It
also allows for fine-grained specification of which fields to store. However, it keeps
start and end timestamp from which duration field is calculated, which is not an
efficient approach. It also uses little-endian encoding, which might seem strange
since network order is big-endian. Moreover, the conversion between encodings
might add unnecessary overhead to the collection process. The binary format
of nfdump stores the header in 344 bytes, each flow record in 56 bytes and the
footer in 44 bytes.

SiLK [29] is the most optimized open-source flow collector with a state-
of-the-art binary format and a set of processing tools. It provides an option
to specify endianness of files and provides optimizations such as storing flow
duration instead of end time or storing average amount of bytes transferred
per packet. This results in the smallest binary format of all open-source tools
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02: [EB9H o1bb 0SS PE2E 48a3 04al

(f) SiLK

01: 0000 1600 2c00 2b00 2400 2000 1400 1000
02: 0c00 0a00 0800 0400 1600 0000 D028 OO0
03: bbol PHEE 9800 0000 0300 0000 44bb 25ac

04: 6801 0000 0000 0000 E104 @348 BEOH ESE0

(g) FlatBuffers

02:

01: 1862 o1 EBON PB48 [ES04 @136 2244 958H
523 0018

(h) CompactFlow

Fig. 5. Comparison of binary file formats.
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Compression File Size RAM Pro- | Total | Time
Method CPU Size | Gain Load cessing | Time Loss
Cores | (MB) (%) | Time (s) | Time (s) (s) (%)
uncompressed 1,425 - 3.267 0.548 3.815 -
gzip 1 791 44 1.887 12.065 | 13.952 366
gzip 32 792 44 1.881 7.408 9.289 243
bzip2 1 697 51 1.609 61.638 | 63.247 | 1,658
bzip2 32 696 51 1.603 3.155 4.758 125
lzo 1 1,023 28 2.325 4.818 7.143 187

Table 2. Comparison of compression methods used with a CompactFlow file of
67,257,407 unidirectional IPv4 flow records.

with 24-88 bytes for the header and 28 bytes per flow record. However, it does
not support bidirectional flows (even though it provides tools to match flows
after they are captured) and it does not provide functionality to index flows.
Moreover, it relies on the file hierarchy, which divides traffic into internal to
internal, external to external, incoming and outgoing Web and ICMP traffic.
While the hierarchy can speed up select queries regarding one of those types, it
also makes the binary format more complex and adds overhead for more analytic
queries, such as the selection of all flows within a time period to train machine
learning models.

Additionally to flow collectors, we examine a popular, fast data serialization
library, FlatBuffers [2]. This library supports a large variety of extensions in
different programming languages to interact with its binary data format. One
of its advantages is the flexibility of what information to store. This is done by
writing a schema with a structure of data to be stored. In the case of storing
flow records, FlatBuffers does not perform better than most of flow collectors.
It uses 64 bytes per flow record. This is due to the support of only regular types
(e.g. uint8, uint16, uint32, uint64) and no custom types (such as uint24) which
leads to wasted space. Additionally, in order to store a collection of records, one
needs to specify another type that will serve as a container for those records.

Even though the comparison favors the CompactFlow format, a single flow
is not representative of a larger variety of flows on networks. In fact, the uni-
directional record takes from 16 to 30 bytes, which in some cases can exceed
SiLK’s 28 bytes per flow record. For this reason, we evaluate the average size
of a CompactFlow record by considering a variety of flows from a production
network. Experimental results based on the analysis of 1,802,377,030 flows show
that the average size of a flow in our proposed unidirectional binary format is
21.4 bytes - a value 24% smaller than SiLK’s format.

To get a clearer view of what different binary formats mean in the real world,
we used each of them to store over five months of flow data from the University
of Oxford. The results are shown in Figure 6. In total 181,315,995,252 flows are
stored that come from three networks with over 64 thousand hosts. The most
inefficient format takes over 21 TB to store the entirety of this data. While the
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Argus

flowd

nfdump

SiLK
FlatBuffers
CompactFlow

21.03 -

25

Storage Size [TB]

Fig. 6. 181 million flows from the University of Oxford using different flow collectors.

state-of-the-art binary format of SiLK uses about 5 TB, our proposed format
uses only 3.88 TB.

The final aspect of the evaluation is a comparison of an uncompressed Com-
pactFlow file against three common compression algorithms (i.e. gzip, bzip2,
and 1zo). Such an analysis is meant to show which approach is the fastest in
terms of loading the file into memory (RAM load time) and reading contained
flow records (processing time). We observed that those two metrics are a trade-
off between disk speed and a chosen compression algorithm. As it was shown
in 2014 in the evaluation of SiLK [29], reading flow records was faster from a
compressed binary file. This was due to the limited speed of then widely used
hard disk drives (HDDs). However, we assess that this is no longer true with the
rising popularity and decreasing prices of solid-state drives (SSDs). In Table 2,
we show that the increase of disk speeds (from 100 MB/s in [29] to 436MB/s
in our analysis) results in faster processing of raw, uncompressed binary files.
In order to reverse this trend, one can assign more CPU cores to speed up the
decompression. We used 32 cores of a dual Intel Xeon CPU to determine that it
takes 25% longer in total while reducing the file size by half. However, the prices
and power requirements of such CPUs are high, which means that often they are
not available to network administrators. As a result, compression is not suitable
in the case of commodity hardware, which puts more emphasis on a small binary
representation of flow data.

5 Discussion

Storing data in a binary format is more efficient than database-based methods in
terms of size. In fact, the database-based methods need more space for indexing
purposes, which may even take double the space required for the data [20]. They
also do not allow a fine-grained control of what and when is indexed which
accounts for their poor per-flow storage times. Our format provides a quicker
and hybrid solution. It is also robust in case of errors. We use Golay code in
the header to preserve fundamental information regarding the flows in the file,
such as an hour-based timestamp, the IP version supported, or the type of flow.
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Secondly, the header can be optionally enriched with an array of flow pointers.
In this way, it would be easy to isolate the faulty flows in case errors occur within
the file body. Faulty flows can be easily detected by relying on the first two flow
fields, namely flow size and flow control. As a first check, we have to verify the
following condition on the flow size value: flow_size >y, . size(i) + 2, where
C is a set of flow fields of constant size and size(i) is the size of field 7. The
additional 2 is related to the two variable fields with a minimum size of 1 byte
(i.e. number of packets and bytes). The condition does not comprise the other
variable fields since their minimum size is 0. A second check on flow consistency
could be made on the packet and byte flow fields. Indeed, it is known that not
only is the former smaller than the latter, but that the following condition is
verified: bytes# > min_packet_size x packets#, where min_packet_size is the
minimum allowed packet size by the considered protocol.

Our evaluation shows that even though flow collectors use the most efficient
type of data storage, binary files, they usually do so in an inefficient manner. In
fact, a string representation of each flow record would take less space than in
most evaluated binary formats.

We do not evaluate compressed sizes of different flow collectors’ binary for-
mats. Even if compressed sizes were similar, in order to process the data, one
needs to decompress it - which brings us to the initial problem since the file sizes
start to matter again. We show in Section 4 that compression slows down the
processing of flows. Moreover, memory prices show no signs of decreasing, hence
it is important for a format to have a minimal memory footprint.

6 Conclusion

In this paper, we presented a hybrid binary file format to store network flow
data. It not only is compact in its representation, but also supports well-known
indexing approaches to speed up flow queries. To assess the performance of
the CompactFlow format, we compared it to the most popular open-source flow
collectors with an in-depth analysis of their binary formats. Then, we carried out
an extensive comparison in terms of storage size on a real-world traffic dataset
from the University of Oxford. Finally, we evaluated the impact of compression
on our format in terms of file size and processing time.
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