N
N

N

HAL

open science

Deploying W3C Web of Things-Based Interoperable
Mash-up Applications for Industry 4.0: A Testbed
Luca Sciullo, Angelo Trotta, Lorenzo Gigli, Marco Di Felice

» To cite this version:

Luca Sciullo, Angelo Trotta, Lorenzo Gigli, Marco Di Felice. Deploying W3C Web of Things-Based
Interoperable Mash-up Applications for Industry 4.0: A Testbed. 17th International Conference on
Wired/Wireless Internet Communication (WWIC), Jun 2019, Bologna, Italy. pp.3-14, 10.1007/978-
3-030-30523-9_1 . hal-02881743

HAL Id: hal-02881743
https://inria.hal.science/hal-02881743

Submitted on 26 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://inria.hal.science/hal-02881743
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Deploying W3C Web of Things-based
Interoperable Mash-up Applications for Industry
4.0: A Testbed

Luca Sciullo, Angelo Trotta, Lorenzo Gigli, and Marco Di Felice

Department of Computer Science and Engineering
University of Bologna, Italy
{luca.sciullo,angelo.trotta5,marco.difelice3} @unibo.it, lorenzo.gigli@studio.unibo.it

Abstract. In Industry 4.0 scenarios, novel applications are enabled by
the capability to gather large amount of data from pervasive sensors
and to process them in order to devise the “digital twin” of a physical
equipment. The heterogeneity of hardware sensors, communication pro-
tocols and data formats constitutes one of the main challenge toward
the large-scale adoption of the Internet of Things (IoT) paradigm on in-
dustrial environments. To this purpose, the W3C Web of Things (WoT)
group is working on the definition of some reference standards intended
to describe in a uniform way the software interfaces of IoT devices and
services, and hence to achieve the full interoperability among different
IoT components regardless of their implementation. At the same time,
due also to the recent appearance of the WoT W3C draft, few testbed
and real-world deployments of the W3C WoT architecture has been pro-
posed so far in the literature. In this paper, we attempt to fill such gap by
describing the realization of a WoT monitoring application of a generic
indoor production site: the system is able to orchestrate the sensing oper-
ations from three heterogeneous Wireless Sensor Networks (WSNs). We
describe how the components of the W3C WoT architecture have been
instantiated in our scenario. Moreover, we demonstrate the possibility to
decouple the mash-up policies from the network functionalities, and we
evaluate the overhead introduced by the WoT approach.

1 Introduction

Recently, the Industry 4.0 has emerged as a new paradigm able to radically trans-
form the organizations’ production and business in a myriad of sectors beside
the smart manufacturing one [1] [2]. The core of the paradigm that justifies also
its generality and viability on different markets is the concept of Cyber-physical
Systems (CBSs), i.e. the strict integration between physical elements and com-
putational data enabled by the recent advances on the Internet of Things (IoT)
[1]. Hence, the ability to collect, aggregate and analyze sensor data is crucial for
the growth of the Industry 4.0 model. At the same time, today’s IoT is a chaotic
environment characterized by heterogeneous hardware devices, network proto-
col stacks and data formats. The current fragmentation can significantly increase



2 Luca Sciullo, Angelo Trotta, Lorenzo Gigli, Marco Di Felice.

the deployment costs, since collected data can remain largely inaccessible in an
integrated way unless investing significant manual effort [2]. At the same time,
interoperability can represent an opportunity for next-generation IoT applica-
tions: the McKinsey report in [3] quantifies in 40% the additional market value
that might be provided by achieving full interoperabilty among IoT ecosystems.
Among the several approaches proposed so far in order to address IoT interop-
erability problems, the Web of Things (WoT) has gained considerable attention,
thanks to the popularity and well-known unifying nature of the Web [4][5]. Dif-
ferently from other stack-oriented solutions (e.g. 6LoWPAN), WoT-based ap-
proaches propose to achieve system interoperability at the application layer,
abstracting from the sensing and communication technologies: in a first approxi-
mation, Things are represented as Web resources, and all the interactions toward
and between Things are mapped over Representational State Transfer (REST)
services [5]. At the same time, given the lack of a reference architecture, several
different WoT frameworks have been proposed in the literature (e.g. [6][7][8][9]),
introducing further fragmentation and the consequential need of devising ad-hoc
solutions for the system integration. Breaking the deadlock, the World Wide Web
Consortium (W3C) has recently proposed a reference architecture of the WoT
[10] that formally describes the interfaces allowing IoT devices and services to
communicate with each other, regardless of their underlying implementation. In
the W3C WoT vision, everything can be considered a Thing and to this purpose,
each Thing is associated to a Thing Descriptor (TD) providing general metadata
as well as the interactions, data model, and security mechanisms of a Thing [10].
In addition, a TD can be serialized and semantically annotated via the JSON-
LD language, hence representing a uniform model to enable Machine-to-Machine
(M2M) communication toward a Thing and enabling several semantic features,
like for instance the Thing Discovery (TD). The generality of the WoT archi-
tecture makes it suitable for all those scenarios characterized by the need of
aggregating data from multiple, heterogeneous sources, like the Industry 4.0.
However, due also to its recent appearance, few implementations and test-bed
of the W3C WoT have been described so far in the literature [11][12].

In this paper, we attempt to fill such gap, by describing the design and im-
plementation of a WoT testbed, consisting of a monitoring system of a generic
production site that must retrieve and process sensor data from heterogeneous
devices using different wireless access technologies (i.e. Wi-Fi, 802.15.4/Zigbee,
BLE). The overall goal is to devise mash-up applications able to orchestrate the
sensing operations over the target scenario regardless of the network protocols
and hardware, hence decoupling the rationale of the monitoring process (e.g.
minimal scenario coverage) from its implementation (i.e. the technology used to
query the sensor). More specifically, we introduce three main contributions in
this study:

— First, we describe how the scenario can be modeled within the WoT W3C
framework. We associate one Thing to each sensing device, and one Thing to
the sensor network, by defining the metadata of each. Moreover, we discuss



Interoperable Sensor Monitoring Applications on Industry 4.0 Scenarios 3

how the components of the WoT W3C architecture have been made concrete
in our application.

— Second, we describe the design and implementation of mash-up applica-
tions aimed to orchestrate the sensing operations on the target scenario. We
considered four different sensing policies, aimed to balance the coverage of
the scenario with the network performance (e.g. delay, packet delivery ra-
tio and energy). All the policies are in charge of dynamically selecting the
sensors to query at each instant in order to maximize the policy-specific
metric: to this purpose, given the dinamicity of the environment, we employ
the Reinforcement Learning (RL) framework [17] to optimally balance the
exploration-exploitation tasks.

— Third, we report a subset of the experimental results from the WoT testbed.
We investigate the performance of the sensing mash-up applications with
respect to the policy goal (e.g. delay), and the convergence over time. More-
over, we show the benefit introduced by the WoT architecture in terms of
adaptive design, i.e. the possibility to dynamically switch the sensing policies
over time without re-configuring the communication infrastructure, and the
overhead introduced by the WoT components.

The rest of the paper is structured as follows. Section 2 reviews the WoT W3C
architecture, and its recent applications. Section 3 introduces the test-bed, and
the modeling of the network components within the WoT W3C architecture.
Section 4 introduces the mash-up policies. Section 5 presents a subset of the
experimental results. Conclusions and future works follow in Section VI.

2 Related Works

Since 2007, when the concept of WoT appeared in the literature, several re-
search studies have explored how to interconnect IoT devices through standard
Web technologies. This has also lead to a proliferation of WoT frameworks and
architectures, which are quite different in terms of WoT-based interaction pat-
terns supported and functional goals addressed. For instance, the authors of
[6] review more than twenty WoT frameworks on the basis of twelve elements
which are taken as key components of the WoT. Although the REST paradigm is
considered the reference solution to implement WoT-oriented services (e.g. [7]),
alternatives to the HTTP protocol have been considered: for instance, CoAP-
based architectures are proposed, among others, in [8] and [9]. A generic model
supporting interoperability and mash-up operations from different hubs is pro-
posed in [4]: here, the authors warn about the proliferation of WoT tools, and
advocate for the need of standard solutions.

To this purpose, the W3C WoT group started its activities on 2015 with
the goal of defining a reference WoT set of standards, enabling interoperability
among different IoT systems. In this paper, we refer to the W3C WoT draft
presented in [10]. In brief, the W3C WoT architecture is composed of four main
blocks:



4 Luca Sciullo, Angelo Trotta, Lorenzo Gigli, Marco Di Felice.

Cloud
Gateway

WoT Scrpting API
Interacion Model

WaT Binding Templates

Remote Access
and Synchronization

Integration and

Orchestration
Seamless
Web Integration odel
Direct WoT Binding Templates Complement
Thing-to-Thing Existing Devices

Interaction
E—

Fig. 1. The abstract architecture of W3C WoT (source: [10]). The image shows the
internal blocks and the multiple interactions patterns among the Things.

— Thing: this is an entity that can be semantically represented. Using the W3C
words: “A Thing is the abstraction of a physical or virtual entity... This entity
can be a device, a logical component of a device, a local hardware component,
or even a logical entity such as a location” [10].

— WoT Thing Description (TD): this represents the metadata of the Thing, in-
cluding its interactions, data models, communication protocols and security
mechanisms. By default, the TD is serialized with the JSON-LD language
and following the Properties, Actions, and Events paradigm.

— WoT Binding Templates: this is the metadata describing the communica-
tion strategies that the Thing is able to implement. For instance, a possible
strategy could be the following: Machine-to-Machine (M2M) over the MQTT
protocol, with TLS security mechanism enabled.

— WoT Scripting API: this is a WoT interface allowing scripts to perform
main operations on a Thing, like adding properties, reading properties, or
retrieving its TD.

All the blocks above are implemented within a software runtime named
Servient, which can indifferently act as a Server or as a Client. In the first
case, the Servient is said to host and expose Things, i.e. it takes the TD as input
and creates a software object serving the requests like accessing the exposed
properties, actions and events. In the second case, the Servient is said to con-
sume Things, i.e. it creates a runtime resource model that allows accessing the
properties, actions and events exposed by the server Thing on a remote device.

Figure 1 depicts the abstract W3C architecture for the WoT, including the
blocks within each Thing and their possible interactions. In particular, the W3C
working group identified a short list of interaction patterns that are general
enough to cover most of the existing IoT deployments, regardless of the ap-



Interoperable Sensor Monitoring Applications on Industry 4.0 Scenarios 5

plication domain. The simplest one is the Client-Thing interaction, i.e. a Web
application that invokes actions on a remote Thing, after having consumed it.
Due to the recent appearance of the W3C WoT standard, few real-world applica-
tions and testbed have been proposed so far in the literature. A demo showing the
possibility to query a W3C WoT sensor device from a mobile phone is sketched
n [11]. In [12], an interesting application of the W3C WoT architecture to the
automotive industry is described; more specifically, the authors illustrate how to
describe the car signals data with a semantic ontology, and how to make them
available to external applications through the W3C WoT interaction patterns.
Security risks and vulnerabilities presented by WoT metadata are discussed in
[13]. Versioning mechanisms for the TD metadata are proposed in [14]. Finally,
in [15], we proposed the WoT Store, a W3C WoT-compliant framework that en-
ables the semantic Thing discovery and the seamless distribution and execution
of WoT applications. The WoT Store constitutes the natural execution environ-
ment for the mash-up applications considered in this study: we plan to explore
such feature in a future work.

Mash-up
Application

g

Sensor

getData()

Fig. 2. The IoT/WoT monitoring system deployed in this study.

3 The W3C WoT testbed: architecture and components

The goal of this study is to investigate the suitability -both in terms of ease of
deployment and of performance- of the W3C WoT architecture for Industry 4.0
applications. To this purpose, we consider a generic IoT monitoring system of
a production site, characterized by the presence of heterogeneous sensors using
different communication technologies. The overall architecture of the testbed,
depicted in Figure 2, is structured on three tiers:



6 Luca Sciullo, Angelo Trotta, Lorenzo Gigli, Marco Di Felice.

— Edge layer. This layer is composed of three Wireless Sensor Networks
(WSNs), operating over the same environment: an IEEE 802.15.4 WSN net-
work, a IEEE 802.11 Wi-Fi WSN network and a BLE device. The 802.15.4
network includes four devices (Arduino Xbee boards), with one Coordinator
and three Leaf nodes equipped with sensing units ( ThinkerKit temperature
sensor). The Wi-Fi network includes three devices (two NodeMCU and one
Arduino WiFly board), all provided with a direct link toward the Access
Point (AP) and with a DHT11 temperature/humidity sensor. Finally, the
BLE WSN consists of one ESP32 board, provided with a DHT11 sensor.

— Fog layer. The 802.15.4 coordinator, the BLE and the Wi-Fi devices are
connected to the corresponding Fog node, via USB cable links (for the BLE
and the 802.15.4 Coordinator) or Wi-Fi links (for the IEEE 802.11 devices).
Each fog node is constituted by a Raspberry PI3B+ board and it is in charge
of exposing the corresponding Web avatar (i.e. the Web Thing) for each
managed device and WSN.

— Processing layer. This layer implements the logic of the monitoring system.
It is constituted by a Linux server running the mash-up applications further
defined in Section 4, and connected to the Fog nodes via Wi-Fi links. More
specifically, the layer is in charge of: (i) orchestrating the sensing operations,
by properly selecting the devices to query at each time slot according to
the policies of Section 4; (ii) storing the collected data within a time-series
database; (iii) processing and analyzing the data in order to implement the
Digital Twin model of the monitored site.

In this study, for space reasons, we omit the data analytics process, and also the
creation of the Digital Twin model, leaving it to future works. Instead, we detail
the data retrieval operations, and specifically the way we implemented the WoT
W3C components of the architecture reported in Figure 1, i.e.:

— Edge devices implement low-level communication and sensing operations in
the embedded firmware. The implementation as well as the list of operations
and the data format used by each device is technology dependent. This layer
is part of the IoT, while it is not covered by the WoT architecture.

— Fog nodes run a W3C WoT Servient, by using the JavaScript (JS) frame-
work available at [16]. Each Fog node exposes two types of Web Things, i.e.:
multiple (i) Thing Devices, describing the properties, events and actions of
physically managed edge devices, and one (i) Thing Network, describing the
overall performance of the virtual WSN composed by the list of connected
Thing Devices. Moreover, we consider three possible protocol bindings for
each Thing, i.e. interaction modes with the Things, based on the HTTP
(default choice), the CoAP or the MQTT protocols. The System APIs are
implemented in Javascript, and further structured into two layers, i.e.: (i)
a Device Query level, that is in charge of issuing request-response commu-
nication with the Edge device, based on the wireless technology and the
protocol stack supported by this latter (e.g. UDP socket for the WiFi de-
vices, Serial socket for the Zigbee Coordinator, BLE connected mode for the
BLE device), (i) an Inter-Process Communication (IPC) level, that makes



Interoperable Sensor Monitoring Applications on Industry 4.0 Scenarios 7

the sensor data available to the upper Scripting APIs via IPC facilities (in
our case, implemented in the ZeroMQ library!).

— Finally, the Processing node interacts with each Fog node/Servient in order
to consume Things, e.g. by periodically invoking the getData action from
the Things selected according to the actual mash-up policy.

Name Type  Description

DevicelD Property Device identifier in the network.
NetworkID  Property Network identifier the device belongs to.
Temperature Property Last temperature value.

State Property Current state of the device.

GetData Action  Get the temperature data.

Start Action  Start sending data at each time-slot.

Stop Action  Stop sending data.

NewData Event  This event is fired when a new sensor data is produced.

ChangeState Event This event is fired when the connection state changes.
Table 1. Example of Properties, Actions, and Events described in a Thing Description
of a Device Thing.

Table 1 shows some of the properties, actions, and events described in the Thing
Description (TD) for a Device Thing. The TD of a Network Thing includes only
properties that are referred to the average network performance (i.e. the delay,
the packet delivery ratio and the throughput) and actions that can be invoked
from the entire network, like for instance the getAllData(). Similarly, the snippet
below shows a code fragment of the mash-up application, specifically the way
we query a sensor device in order to read its temperature value. We can notice
that -through the WoT architecture- the mash-up application is agnostic on the
wireless access technology in use, and retrieves data from heterogeneous sensors
by means of a common API regardless of the WSN implementation. The rationale
of the sensing applications is presented in the Listing 1.1.

Listing 1.1. Example code for discovering and invoking actions on Things.

let type = "http://wots.unibo.it/labWireless/testbed”
let THINGS = []
//get Thing Descriptions from the discovery service
for (var t in discovery.discoverByType(type)) {
//Consume things
let thing = await consumer.consumeThing(t);
//Set http as protocol required
thing . getClients () .set( http’, http_client);
THINGS. push (thing)

}

for(var i = 0; i < lambda; i++) {
//invoke the getData action for collecting data
let thing = THINGS[i%THINGS. length];
var res = await thing.actions|[ getData’].invoke();

}

! ZeroMQ Project Website, http://zeromq.org




8 Luca Sciullo, Angelo Trotta, Lorenzo Gigli, Marco Di Felice.

4 The W3C WoT testbed: the mash-up sensing policies

We implemented multiple mash-up sensing policies, and we tested the capability
of switching among them in a seamless way in Section 5. To this purpose, let D
be the set of available devices, and W (d;), Vd; € D, be the function describing
the WSN type. In our testbed, W : D — {WiFi, BLE, Zigbee}. We assume the
time to be divided into discrete time-slot, i.e. T' = {tg, 11, ....}, corresponding
to sensing events when the mash-up application is issuing getData command
toward a selected subset of the available devices. Let t;,terva; be the temporal
interval between two measurements, i.e. the time difference between t;;; and
t;, assumed constant. Moreover, let x : D x T' — {0, 1} the function indicating
whether device d; is active, i.e. it is used at time slot ¢; (in this case, x(d;, t;) = 1,
otherwise x(d;, t;) = 0). All sensing policies share a common rationale, i.e.: they
keep the area covered higher than a predefined threshold, while maximizing
a performance index I. In our case, the area coverage is expressed in terms
of number of active devices (M) at each time-slot. More formally, all policies
address the optimization problem formally defined below:

Goal : Maximize [
Constraint : Z k(d;, t;) = M,¥t; € T (1)
d;,eD

The performance I can vary according to sensing policy in use. We implemented
and tested four different metrics:

— Static Energy-aware policy (Pp). The mash-up application selects the M
active devices at each time-slot according to a pure round-robin scheme, in
order to discharge them with the same rate.

— Dynamic Delay-aware policy (P;). The mash-up application takes into ac-
count the average delay required to issue a getData command and to receive
the corresponding reply message. The M devices with the lowest Round Trip
Time (RTT) are selected at each time slot.

— Dynamic PDR-aware policy (P). The mash-up application takes into ac-
count the communication reliability of each sensor expressed in terms of
average Packet Delivery Ratio (PDR), i.e. the ratio of received replies over
the total number of getData requests sent toward each d;. Specifically, the
M devices with the highest PDR values are selected at each time slot.

— Dynamic Delay-PDR-aware policy (Ps3). The mash-up application takes into
account both the delay and the PDR, as better explained in the following.

Excluding Py, all the other policies compute the M sensors to query at each
time-slot based on the current traffic loads and network conditions. For this rea-
son, we employ a dynamic, learning-based scheme based on the Reinforcement
Learning (RL) framework 2. In brief, this latter refers to a class of machine learn-
ing algorithms where an agent learns over time the optimal sequence of actions

2 For space shortage, we do not provide an in-depth illustration of the RL framework.
Interested readers can refer to [17] for a detailed discussion on the topic.



Interoperable Sensor Monitoring Applications on Industry 4.0 Scenarios 9

needed to perform a task, by dynamically interacting with the environment and
by receiving a numeric reward at each interaction. More formally, the RL frame-
work can be represented as a Markov Discrete Process (MDP) < S, A, R, TR >
where: S is the set of States, A is the set of Actions, R : {S, A} — IR is the
Reward function, expressing a numeric reward received by the agent when ex-
ecuting action a; € A in state s; € S, and TR : {S, A} — S is the transition
function, expressing the next state s; after performing action a; from state s;
(a deterministic environment is assumed). The goal of the RL agent is hence to
determine the optimal policy function 7 : .S — A that indicates the optimal ac-
tion to execute at each state, so that the long-term reward is maximized. In our
modeling, we omit the state function .S, while the list of action A coincides with
the list of devices D. The immediate reward R(d;) is computed when issuing a
getData command on sensor d;, according to the policy in use:

— Py: this is the RTT for each getData command. Only successful requests
(i.e. reply messages are received) are considered.

— Py: this is a positive value (41) if the getData is successful, 0 otherwise.

— Ps: similarly to P;, however a penalty equal to timeout is applied in case no
reply is sent back after a timeout.

Each time a getData is issued on d;, and the immediate reward R(d;) is com-
puted, we also update the Q-value entry at time slot ¢ for d; as follows:

Qi(di) = Qi—1(di) + - (R(di) — Qi-1(dy)) (2)

where « is a learning rate, set equal to 0.7 in our experiments. Balancing the
exploration and exploitation issue is a crucial issue in dynamic environments
[17]. For this reason, we consider an e-greedy exploration scheme, i.e.: each time
a getData is executed, the policy selects with probability 1 — € the sensor with
the k-th highest Q-value, and it performs a random selection over D otherwise
(avoiding duplicates). We repeat the e-greedy selection M times at each time
slot, since all policies need to guarantee an M-coverage of the scenario (in other
words, the k above varies between 0 and M —1). The € parameter is progressively
discounted at each time slot, i.e. ¢, = ¢;_1 -9, with 0 < ¢ < 1, in order to reduce
the exploration over time. At the same time, the € parameter cannot decrease
below a minimal threshold (€, ), i-e. a default exploration rate is kept anyway
in order to detect any possible change in the scenario, and to adapt the system
policy accordingly. We set €=0.8, 1=0.97, €,,,;,=0.1 in our testbed.

5 The W3C WoT testbed: experimental results

In this Section, we report a subset of experimental results collected through
the WoT testbed described above. The experimental analysis is divided in three
stages: (4) first, we characterize the overall performance of different WSNs and
sensors; (i) second, we evaluate the four different mash-up policies of Section
4; (4i) finally, we demonstrate the possibility of dynamic mash-up policy re-
placement and quantify the overhead introduced by the W3C WoT architecture.



10 Luca Sciullo, Angelo Trotta, Lorenzo Gigli, Marco Di Felice.

1600 1004 1600
1400 1400
80
1200 1200
z
& 1000 . £ 1000
2 g e &
E — « 3 s00
E 800 -3 S
o« a £
600 40 & 600
400 400
20
200 200
0 0 0
ble  WiFi0  WiFil  WiFi2 ZigBeeO ZigBeel ZigBee2 ble  WiFi0  WiFil  WiFi2 ZigBeeO ZigBeel ZigBee2 ble  WiFi0  Wifil  WiFi2 ZigBeeO ZigBeel ZigBee2
Sensor Sensor Sensor
(a) (b) (c)

Fig. 3. The average per-device RTT and PDR is shown in Figures 3(a) and Figure
3(b), respectively. The per-device RT'T for the CoAP protocol is shown in Figure 3(c).

Figures 3(a), 3(b) and 3(c) refer to the first analysis. Specifically, Figure 3(a) and
3(b) show respectively the average RTT and PDR for each device and WSN type,
when the HTTP protocol is used to interact with each Web Thing. It is easy to
notice that the Wi-Fi devices are producing the lowest RTT values. The PDR
original results demonstrated that the Wi-Fi WSN is also the most reliable tech-
nology. However, in order to differentiate the mash-up policies, we introduced
a probabilistic packet filter on the Wi-Fi Serviant, discarding the sensor data
messages with a loss rate equal to 70% to emulate a congested access point. As
a result, comparing Figures 3(a) and 3(b), we can notice that the sets of M=3
nodes maximizing the RTT or the PDR depends on the selected performance
index. Finally, Figure 3(c) shows the per-device RTT when the CoAP protocol
is used for data gathering. Only minimal differences can be noticed compared to
the HTTP case (Figure 3(a)).

In Figures 4(a)-5(a), we evaluate the performance of different mash-up poli-
cies. Figure 4(a) shows the RTT values of Py, Pi, Py, P3 algorithms over time-
slots; as expected, P; produces the lowest delay since it takes into account
the per-packet RTT as immediate reward. Also, we can appreciate the learning
phases of P;: the RTT is high during the exploration phase and it is progres-
sively reduced when increasing the amount of exploitation. After time-slot 1000,
the RL algorithm has discovered the optimal set of sensors, however it keeps
performing random actions for continuous, minimal exploration. This justifies
the jagged shape of the plot. In Figure 4(b) we depict the per-device ratio of
utilization over time for the policy P;. While during exploration all the devices
are equally used, after time-slot 1000 the mash-up policy is mostly exploiting the
three Wi-Fi devices since -in accordance with Figure 3(a)- they are associated
to the lowest RTT values. Figure 4(c) compares the policies in terms of PDR.
Here, the optimal policy is Ps; form Figure 5(a) we can notice that, after the ex-
ploration phase, the three Zigbee devices are maximally used, hence conversely
to Figure 4(b) but again in accordance with Figure 3(b). We tested the dynamic
policy replacement in Figure 5(b); i.e. from time-slot 1 to 3000, policy P, is used



RTT (ms)

Interoperable Sensor Monitoring Applications on Industry 4.0 Scenarios 11

1000 100

800 80

2
2
3

PDR (%)

N
&

=
)
Utilization (%)

200 N e P3 ble ZigBee

. WiFi0 s ZigBeel
Py WiFiL ZigBee2 30
WiFi2

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Time Time Time

(a) (b) (c)

Fig.4. The RTT an PDR values for the four mash-up policies are shown in Figures
4(a) and 4(c). The device utilization ratio for the P; policy is shown in Figure 4(b).

(delay minimization), then P5 from 3001 to 6000 (PDR maximization), finally
we switch to Ps (delay-PDR trade-off) from instant 6001. We remark that the
policy replacement is simply implemented as the shut-down of a JS process and
the execution of a new one, thanks to the abstraction provided by the W3C WoT
architecture; no hardware or software re-configuration of the WSNs is required.
Finally, we evaluate in Figure 5(c) the overhead introduced by the W3C WoT
deployment, and specifically by the WoT servient: to this aim, we compute the
RTT required to perform a sensor request directly at the System API level. We
can notice that most of the overhead is due to the channel access and the pro-
cessing at the firmware level, while the overhead introduced by the Servient and
by the additional communication with the Web Thing is negligible.

6 Conclusions and Future Works

In this paper, we have described the deployment and evaluation of a W3C-based
WoT system for generic site monitoring applications. In order to stress the in-
teroperability issue, we have realized a testbed composed of three heterogeneous
WSNs and mash-up applications orchestrating the sensing operations over the
monitored area. We have discussed how the different WoT components have been
instantiated on the target scenario, and we have demonstrated the capability of
decoupling the sensing policy from the low-level networking operations, thanks
to the Thing meta-data description. Future works include: the digital twin model
implementation, the evaluation of additional mash-up policies, the integration
with the WoT Store [15] framework.

References

1. E. Sisinni, A. Saifullah, et al. Industrial Internet of Things: Challenges, Opportu-
nities, and Directions. IEEE Transactions on Industrial Informatics, 2018.



Utilization (%)

100

12 Luca Sciullo, Angelo Trotta, Lorenzo Gigli, Marco Di Felice.

— RTTPL . 16001 et RTT with WoT
1000{ -~~~ PDRPL ; AT £ = RTT without WoT
. RTTP2 M 1400

< PDRP2
s00] — RTTP3
PDR P3

& 1200

PDR (%)

600

RTT (ms)

RTT (ms)
o
8

400

— ble ZigBeeo 200

—WIFI0 e ZigBeel

— WiFiL ZigBee?
WiFi2

500

0
1000 1500 2000 2500 3000 0 2000 4000 6000 8000 0
Time Time BLE WiFi

(a) (b) (c)

Fig. 5. The device utilization ratio for the P> policy is shown in Figure 5(a). The RTT
and PDR values when replacing the active policy at runtime in shown in Figure 5(b).
The RTT when enabling/disabling the WoT approach is shown in Figure 5(c).

2. P. Patel, et al. From raw data to smart manufacturing: AI and semantic Web of
Things for Industry 4.0. IEEE Intelligent Systems, 33(4), pp. 79-86, 2018.

3. McKlInsey Global Institute. The Internet of Things: Mapping the value beyond the
hype. Executive Summary. 2015.

4. M. Blackstock and R. Lea Toward interoperability in a Web of Things. Proc. of
IEEE UbiComp, Zurich, Switzerland, 2013.

5. D. Guinard and V. Trifa Building the Web of Things. Manning Editions, 2016.

6. A. Kamilaris and M. I. Ali. Do ”Web of Things platforms” truly follow the Web of
Things?. Proc. of IEEE WF-IoT, Reston, USA, 2016.

7. F. Paganelli, et al. A Web of Things framework for RESTful applications and its
experimentation in a smart city. IEEE Systems, 10(4), pp. 1412-1423, 2016.

8. L. Mainetti, V. Mighali and L. Patrono. A software architecture enabling the Web
of Things. IEEE IoT Journal, 2(6), pp. 445-454, 2015.

9. E. Mingozzi, G. Tanganelli and C. Vallati. CoAP proxy virtualization for the Web
of Things. Proc. of IEEE CloudCom, Singapore, 2014.

10. WoT W3C Architecture. http://www.w3.org/TR/wot-architecture/

11. Y. Ji, K. Ok and W. Suk Choi. Demo Abstract: Web of Things based IoT standard
interworking test case. Proc. of ACM BuildSys, Shenzen, China, 2018.

12. B. Klotz, S. K. Datta, D. Wilms, et al. A car as a semantic Web Thing: motivation
and demonstration. Proc. of IEEE GIloTS, Bilbao, Spain, 2018.

13. M. McCool and E. Reshetova. Distributed Security risks and opportunities in the
W3C Web of Things. Proc. of IEEE DISS, San Diego, USA, 2018.

14. M. Blank, S. Kaebisch, H. Lahbaiel, and H. Kosch Role models and lifecycles in
IoT and their impact on the W3C WoT Thing Description. Proc. of IEEE IoT,
Santa Barbara, USA, 2018.

15. L. Sciullo, C. Aguzzi, M. Di Felice, T. S. Cinotti WoT Store: Enabling things
and applications discovery for the W3C Web of Things. Proc. of IEEE CCNC, Las
Vegas, USA, 2019.

16. Eclipse ThingWeb https://projects.eclipse.org/proposals/eclipse-thingweb

17. A. Barto and R. S. Sutton Reinforcement Learning: An Introduction MIT Press,
1998

ZigBee




