
HAL Id: hal-02881737
https://inria.hal.science/hal-02881737

Submitted on 26 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Application-Level Traceroute: Adopting Mimetic
Mechanisms to Increase Discovery Capabilities

Chiara Caiazza, Enrico Gregori, Valerio Luconi, Francesco Mione, Alessio
Vecchio

To cite this version:
Chiara Caiazza, Enrico Gregori, Valerio Luconi, Francesco Mione, Alessio Vecchio. Application-Level
Traceroute: Adopting Mimetic Mechanisms to Increase Discovery Capabilities. 17th International
Conference on Wired/Wireless Internet Communication (WWIC), Jun 2019, Bologna, Italy. pp.66-
77, �10.1007/978-3-030-30523-9_6�. �hal-02881737�

https://inria.hal.science/hal-02881737
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Application-level traceroute: adopting mimetic

mechanisms to increase discovery capabilities

Chiara Caiazza1,2[0000−0002−6212−4805], Enrico Gregori3, Valerio
Luconi3[0000−0003−4933−8566], Francesco Mione, and Alessio

Vecchio2[0000−0001−6894−7338]

1 University of Florence, Italy
2 Dip. di Ingegneria dell'Informazione, University of Pisa, Italy,
chiara.caiazza@phd.unipi.it, alessio.vecchio@unipi.it

3 IIT-CNR, Pisa, Italy
enrico.gregori@iit.cnr.it, valerio.luconi@iit.cnr.it

Abstract. Traceroute is a popular network diagnostic tool used for dis-
covering the Internet path towards a target host. Besides network diag-
nostic, in the last years traceroute has been used by researchers to dis-
cover the topology of the Internet. Some network administrators, how-
ever, con�gure their networks to not reply to traceroute probes or to
block them (e.g. by using �rewalls), preventing traceroute from provid-
ing details about the internal structure of their networks. In this paper we
present camou�age traceroute (camotrace), a traceroute-like tool aimed
at discovering Internet paths even when standard traceroute is blocked.
To this purpose, camotrace mimics the behavior of a popular TCP-based
application-level protocol. We show preliminary results that con�rm that
camotrace is able to obtain additional information compared to standard
traceroute.

1 Introduction

The typical traceroute application, in its many forms, sends IP packets with
increasing time-to-live (TTL) to discover the network path towards a destination.
Traceroute relies on the fact that when a router receives an IP packet with TTL
equal to 1, the router should discard it and send to the source address an ICMP
packet indicating that the TTL has expired before arriving at the destination
(ICMP Time Exceeded) [19]. From that ICMP packet, traceroute is able to
discover the IP address of the router at that distance from the source.

Originally designed as a diagnostic tool, traceroute has been widely used by
researchers to discover Internet paths at various levels of abstraction, e.g. IP
interface, router, point-of-presence, and autonomous system (AS) [7, 20, 17, 14].
The e�ectiveness of traceroute depends on the response rate to traceroute packets
of routers across the Internet and it can be limited by several factors [16]. First,
not all routers always send ICMP packets when receiving a datagram with TTL
equal to 1. Some may be con�gured to never send ICMP packets, some others
may be con�gured to give low priority to this operation, and send ICMP packets



2 C. Caiazza et al.

only when their load is low. In these cases, traceroute is not able to discover part
of the path. Another relevant factor that could a�ect traceroute performance is
the presence of modern �rewalls, tra�c shapers, or similar machines. These de-
vices are able to recognize tra�c as belonging to di�erent applications, basing
classi�cation on the pattern or the payload of traversing packets (via deep packet
inspection). Then, certain classes of tra�c can be blocked, shaped, or throttled
according to the network operator's policies (in the EU this practice is prohibited
as it goes against the network neutrality principles [4]). Some operators con�g-
ure their �rewalls to block incoming and/or outgoing traceroute tra�c. Since
traceroute does not belong to any end-to-end application, they consider it use-
less (as it wastes the bandwidth available for other tra�c), or even potentially
dangerous (e.g., DDoS attacks). If this happens, the last part of the Internet
path between a source and a destination will be unreachable by measurement
probes.

We devised camou�age traceroute (camotrace), a traceroute variant whose
aim is to bypass �rewalls and shapers and to possibly discover those parts of
the network that are inaccessible to conventional traceroute tools. Camotrace
mimics the behavior of common application-level protocols to confound tra�c
classi�cation tools and avoid being blocked by �rewalls. The idea is to estab-
lish a TCP connection between the measurement source and a server inside a
�rewall-protected domain, and then vary the TTL of some TCP packets dur-
ing communication to discover the intermediate routers. We ran a validation
measurement campaign that showed that the output of camotrace is correct.
In addition, we ran a set of experiments on the Italian Internet that show that
camotrace is able to obtain additional information in comparison with classic
traceroute.

2 Related Work

The traceroute tool has been �rstly developed for network diagnostic purposes by
Van Jacobson. This original traceroute uses UDP probes with high destination
port number, to maximize the chance of not �nding a used one. Each probe
is sent with a TTL value increased by one with respect to the previous probe.
According to the ICMP protocol RFC [19], once a probe reaches an intermediate
router with a TTL value of 1, the router should discard it and send back to the
source an ICMP Time Exceeded reply, which noti�es that the probe has stopped
on that router. On the destination, under the assumption that the destination
port is not in use, an ICMP Port Unreachable is instead sent back. This is the
implementation of the classic UNIX system's traceroute. On modern systems
also an ICMP version of traceroute is available, based on ICMP Echo Request
probes instead of UDP ones.

Besides diagnostic purposes, traceroute has been used in several studies of
the past 15-20 years to infer Internet paths at various level of abstraction [6]:
i) IP interface level, ii) router level upon alias resolution [15], and iii) AS level
upon IP-to-AS mapping [5]. Traceroute measurements have been used as a basis



Camou�age traceroute 3

by several Internet mapping projects, such as CAIDA Ark [7, 1], iPlane [17],
DIMES [20], or Portolan [9, 13, 10].

In the meanwhile, also some issues of the classic traceroute implementation
have been discovered. In particular, bias in the outcome of Internet mapping
measurements could be introduced because of the presence of load balancers,
�rewalls, or other evolved network equipment commonly referred to as middle-
boxes [2, 8]. Modern traceroute variants have been implemented to prevent or
reduce the impact of such issues. For example, Paris traceroute [2] is designed
to avoid known issues due to load balancers. The multipath detection algorithm
(MDA) has been subsequently added to Paris traceroute to integrate its ability
to discover all possible paths between a source and a destination in the presence
of load balancers [3]. Tracebox is instead a tool which is able to discover the
presence of middleboxes (i.e., machines that operate at levels higher than the
network level) along the path between the source and the destination [8]. These
tools however are not able to bypass �rewalls speci�cally con�gured to block
traceroute executions, which instead is the purpose of camotrace.

TCP traceroute has been developed to be able to bypass �rewalls con�g-
ured to block UDP- and ICMP- based probes. However, it must be noticed
that TCP traceroute behavior is di�erent from the one we propose. TCP tracer-
oute's probes are just TCP SYN packets, but a connection between source and
destination is never established. If the target host is not listening for incoming
connections, a TCP RST will be generated to indicate to the other endpoint that
the port is not open. Conversely, if the selected port on the target host is open,
a TCP SYN+ACK will be sent back to the host running TCP traceroute. The
latter terminates the connection with a TCP RST (the three-way handshake is
never completed). This makes TCP traceroute easily identi�able by modern so-
phisticated �rewalls. In camotrace instead, a TCP connection is �rst established
and only after that TCP segments are used as probes by varying their TTL.
Moreover, the payload of TCP segments contains the application-level data of
the protocol currently in use by camotrace (i.e. HTTP). These di�erences are
not marginal: since a connection is e�ectively established, packets can be con-
sidered by stateful �rewalls as belonging to the same �ow; since the payload of
TCP segments contains real application-level data, this may help in making the
�ow being classi�ed as non-diagnostic by deep packet inspection mechanisms.

3 Method

To better understand the behavior of camotrace, we brie�y recall the main con-
cepts upon which traceroute is based. Traceroute probes are IP packets with
either UDP, ICMP, or TCP payload. These probes are sent without establishing
a connection with the target host. For UDP probes, the payload is empty or
random; ICMP probes are ICMP Echo Requests; TCP probes are instead TCP
SYNs. Probes are sent cyclically with increasing IP TTL values, starting from
1. Traceroute stops when the target host or a maximum TTL value (hereafter
MAX_DEPTH) is reached. Common traceroute implementations use 30 as



4 C. Caiazza et al.

Algorithm 1 Camou�age traceroute probing algorithm
1: MAX_TTL← System default TTL
2: MAX_DEPTH ← 40
3: MAX_ATTEMPT ← 3
4:
5: for all x ∈ {1..MAX_DEPTH} do

6: setTTL(x)
7: start timer
8: send an HTTP request
9: setTTL(MAX_TTL)
10: nAttempt = 0
11: while ICMP Time Exc. not received && nAttempt < MAX_ATTEMPTS do

12: while True do

13: try

14: listen for and consume ICMP Time Exceeded packets
15: if ICMP Time Exceeded packets arrive then
16: restart timer
17: break

18: end if

19: catch timer expired
20: break

21: end try

22: end while

23: if the server closes the socket then
24: connect to the server
25: end if

26: nAttempt = nAttempt + 1
27: end while

28: end for

the default maximum TTL value4. At each iteration, a probe can reach either
an intermediate router or the target host. Intermediate routers should send back
an ICMP Time Exceeded packet, which indicates that the probe has reached the
router with a TTL value of 1. The target host instead should respond with an
ICMP Port Unreachable (if UDP probe), ICMP Echo Reply (if ICMP probe), or
a TCP RST or SYN+ACK (if TCP probes), that will stop traceroute operations.

To disguise itself and bypass �rewalls or other blocking entities, camotrace
mimics the behavior of application-level protocols. In particular, we implemented
camotrace to act as an HTTP speaker. Camou�age traceroute operates in two
phases. In the �rst phase camotrace establishes a connection with the target
host. Thus, to operate correctly, camotrace needs as a target for measurements
a host listening for connections for the implemented protocol (i.e., an HTTP-
based service or a Web-server). In its current implementation, to establish a
connection, camotrace uses sockets of type stream, relying on the operating sys-
tem support for the TCP protocol. In other words, to avoid implementing all the
intricacies of TCP mechanisms, camotrace implementation uses just the func-
tionalities o�ered by the stream socket interface. As a consequence, camotrace
does not have the visibility at the packet level for both outgoing and incoming
tra�c. The second phase is the probing phase. Once connected to the server,
camotrace changes dynamically the TTL associated with outgoing data to dis-

4 In some preliminary tests conducted using standard TCP traceroute, we observed
that 30 hops may be insu�cient to reach all destinations. For this reason, we set
MAX_DEPTH to 40 hops for the experiments described in Section 5.



Camou�age traceroute 5

SOURCE WEB
SERVER

HTTP Request

TCP TTL 1

R1 R2 R3
ICMP

TCP MAX_TTL

Fig. 1: Camotrace principle of operation.

cover routers along the path. In this phase, camotrace operates according to
Algorithm 1. In detail, for values of x ranging from 1 to MAX_DEPTH camo-
trace executes the following steps: i) the time-to-live (TTL) associated with the
socket is set to x (this is done to discover the router at x hops from the sender);
ii) up to MAX_ATTEMPTS HTTP requests are sent through the socket: this
data will elicit an ICMP error on the router at x hops from the sender (camo-
trace may stop before MAX_ATTEMPTS probes are sent if an ICMP error
is received); iii) the TTL associated with the socket is reset to its default value
(MAX_TTL), this is done to retransmit the HTTP request with a TTL that
makes it reach the other endpoint; iv) ICMP errors are consumed; v) the state
of the socket is checked: if it has been closed by the server, a new connection is
established. An overview of camotrace operations is shown in Figure 1.

ICMP Time Exceeded errors are handled in a while cycle to cope with
possible TCP re-transmissions. The execution exits from the while cycle when
a timer associated with the socket expires (catch block). In other words, if no
ICMP Time Exceeded errors are received for a given amount of time, camotrace
assumes that the router at x distance is not responding and it proceeds to the
next hop. The payload of probes is an HTTP 1.1 GET request with the following
simple format:

GET / HTTP/1.1

Host: <target_host_name>

Connection: keep-alive

It must be noticed that camotrace is able to detect a hop only if an ICMP
packet is received. Since the destination host does not send any ICMP packet,
camotrace is not able to determine if, and eventually when, the target is reached.
Therefore, in its current implementation, the algorithm always continues un-
til MAX_DEPTH is reached. The default values for MAX_DEPTH and
MAX_ATTEMPTS are 40 and 3, respectively.

3.1 Performance enhancements for some speci�c cases

Since the Web server on the target machine is not under camotrace's control,
the latter has to deal with arbitrary decisions that may a�ect the connection. To
cope with these events we modi�ed the basic camotrace algorithm presented in
the �rst part of this section. In particular, two improvements were introduced.
Managing non persistent connections. To successfully operate, the connec-
tion between the sender and the target has to be persistent. The HTTP 1.1



6 C. Caiazza et al.

INTERNET
SOURCE

FIREWALL WEB
SERVER

Fig. 2: Validation set up.

standard states that the connection between client and server should be persis-
tent [11]; however, some HTTP servers still close the connection immediately
after completing to serve a request. To bypass this problem, we implemented a
camotrace variant that, instead of sending a complete HTTP request at each
step, sends only a portion of the request (few bytes at a time). More precisely,
the operations illustrated in Algorithm 1 are changed by sending just a few bytes
of an HTTP request and not a complete one (Line 8).
Managing other unexpected connection closures performed by the

server. Even when adopting the above described mechanisms, the server may
still unexpectedly close the connection. This could be due to several reasons,
such as a high workload on the server or the presence of timers associated with
connections. In fact, if a request is not completed in a given amount of time,
or if the time between two consecutive requests is too long, the server can close
the connection with the client. This issue may a�ect both the default camotrace
algorithm and the variant previously described. To cope with this problem, when
a connection-close is detected camotrace connects again to the target and restarts
probing activities from the last hop reached during the previous run.

4 Validation

To validate camotrace both in terms of principle of operation and implementation
we ran a two-step validation.

We �rst checked if camotrace is able to correctly discover the path from a
source to a destination. We ran a measurement campaign with target belong-
ing to the GARR network. GARR is the Italian public research network that
connects all the Italian Universities and Research Centers [12]. The map of the
GARR network is publicly available5, thus we have been able to check if the
paths found by camotrace were correct. We ran measurements towards 17 ma-
chines hosting the Web sites of University institutions and spread all over Italy.
For all targets we checked that the Web server was actually hosted in the net-
work of the considered institution. For all targets we successfully veri�ed that
the path found by camotrace was equal to the one available on the network map.

Second, we checked the ability of camotrace to bypass �rewalls that are con-
�gured to block traceroute tra�c. This validation step was run in a controlled
environment set up between the IIT-CNR and the University of Pisa. The ma-
chine running camotrace was located in the IIT-CNR network. In the same

5 https://gins.garr.it/xWeathermap/mapgen.php?slice=garrx_top



Camou�age traceroute 7

network a Palo Alto �rewall was in execution [18]. Such device is able to recog-
nize tra�c at the application level via deep packet inspection, and then to block,
shape, and forward tra�c according to policies de�ned by administrators. We
also set up a web server on a machine located at the University of Pisa. The
validation environment is shown in Figure 2.

The Palo Alto �rewall was con�gured to block all traceroute applications
between the machine hosted at IIT-CNR and the web server hosted at the Uni-
versity of Pisa. We ran three types of traceroute (UDP, ICMP, and TCP on
port 80) and camotrace between the two hosts. The Palo Alto �rewall was able
to block all traceroute tra�c except camotrace. Thus camotrace was the only
traceroute application which always managed to discover the entire path between
the source and the destination. In other words, camotrace was able to bypass
the Palo Alto �rewall con�gured to block traceroute.

5 Results

We evaluated the discovering capabilities of camotrace using a large set of Italian
Web servers as targets. To generate the list of targets, we �rst collected from
the Italian DNS system approximately one million domains belonging to the .it

TLD. The list of domains was resolved to ∼ 800 k IPv4 addresses (the remain-
ing ∼ 200 k names were registered but not associated with any IP address). We
then removed duplicate addresses, thus obtaining a list of ∼ 92 k unique IPv4
addresses. The signi�cant reduction from ∼ 800 k to ∼ 92 k addresses is due to
the fact that many websites are actually hosted by the same physical machine.
Finally, we selected a single IP address for each AS in the list, and this produced
a �nal set of 3 260 targets, which were used for the experiments described in the
following. For performing IP-to-AS mapping we used the Whois service provided
by Team Cymru [21]. The rationale for the last step was to be able to carry out
experiments in a reasonable amount of time (collecting traceroute results is time
consuming) while preserving heterogeneity. We suppose that traceroute �ltering
policies may be quite di�erent from organization to organization, whereas poli-
cies can be reasonably homogeneous within a single organization. The signi�cant
reduction of the set of targets caused by the last �ltering step is due to the fact
that a large fraction of websites is managed by a relatively small number of
hosting providers. For each of these destinations we executed both camotrace
with the reconnect option and TCP traceroute. Both were con�gured to explore
paths with MAX_DEPTH = 40 hops. We compared camotrace with TCP
traceroute only, as the latter is known to have better discovering capabilities in
comparison to ICMP and UDP traceroute.

For 629 targets, camotrace was not able to successfully perform the con-
nection to the server. There are several possible reasons behind this behavior:
the target host may be disconnected, the target may be behind a completely
blocking �rewall, or a Web server may be unavailable on the target host. In
fact, the presence of an entry in the DNS system does not imply that a Web
server is necessarily running at that address. For 89.5% of the 629 targets, also



8 C. Caiazza et al.

0 10 20 30 40 50 60 70 80 90 100
Percentage of paths (%)

Case 4

Case 3

Case 2

Case 1

Fig. 3: Percentage of paths where camotrace �nds more nodes (case 1), TCP
�nds more nodes (case 2), both �nd some nodes not found by the other but not
all the nodes of the other (case 3), both �nd exactly the same nodes (case 4).

TCP traceroute was unable to reach the destination machine (even though it
was able to collect information about the intermediate nodes along the path),
thus suggesting that the target IP address is not allocated. Since camotrace re-
quires a Web server in execution at the target machine, this subset of targets
has been discarded, and hereafter only the targets for which camotrace is able
to successfully perform the connect operation will be taken into account.

Figure 3 shows the fraction of paths in which camotrace is able to �nd addi-
tional information on intermediate nodes with respect to TCP traceroute (case
1) and vice-versa (case 2). The third column shows the fraction of paths where
each algorithm is able to �nd some more hops with respect to the other algo-
rithm, but at the same time is unable to �nd all the hops of the other one (case
3). Finally, the last column shows the fraction of paths where the two algorithms
�nd the same set of hops (case 4). More formally, let us call Icam and Itcp the
sets of intermediate nodes found by the two algorithms along the path6. The
�rst and second columns represent the fraction of targets where Icam ⊃ Itcp
and Icam ⊂ Itcp, respectively. The third column corresponds to the case when
Icam 6= Itcp and Icam, Itcp ⊂ (Icam ∪ Itcp). Finally, the last column represents
the case when Icam = Itcp.

For approximately 83% of probed paths, camotrace and TCP traceroute
found the same set of intermediate nodes. This means, conversely, that in approx-
imately 17% of the paths the chosen algorithm in�uences the set of discovered
routers. In particular, case 1 accounts for ∼ 10%, whereas case 2 accounts for
∼ 6%, demonstrating that camotrace may be able to provide more information.
Case 3 covers a limited number of paths (∼ 1%).

The above results provide an indication on the number of paths where camo-
trace performs better than TCP traceroute and vice-versa, but they do not mea-
sure the amount of additional information that is discovered. Figure 4a shows the
number of additional IP interfaces that each algorithm is able to �nd in the paths

6 For example, I = {1, 4, 5} when the �rst, fourth, and �fth routers are found.



Camou�age traceroute 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of hops

0

30

60

90

120

150

180

210

240
camotrace
TCP traceroute

(a) Excluding the last occurrence of the destination ad-
dress in TCP traceroute.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of hops

0

30

60

90

120

150

180

210

240
camotrace
TCP traceroute

(b) Excluding all the occurrences of the destination ad-
dress.

Fig. 4: Number of additional nodes.

containing di�erences (which are, as mentioned, ∼ 17% of the total number of
paths). For each number of additional IP interfaces, the number of occurrences
for both camotrace and TCP traceroute are presented. As expected, camotrace
is able to �nd a higher number of IP interfaces. For example, camotrace is able
to �nd one additional IP interface in comparison to TCP traceroute on the path
towards approximately 240 targets, while the opposite occurs approximately 170
times. For two and three additional interfaces TCP performs slightly better, then
for higher numbers of interfaces camotrace is again better. In few cases, TCP
traceroute �nds almost all the IP interfaces along the path whereas camotrace
is unsuccessful. This explains the long tail of the TCP traceroute distribution.
These limited number of cases are due to some anomalous behaviors that are
analyzed in Section 5.1.

As previously mentioned, camotrace, di�erently from TCP traceroute, is not
able to detect the target machine. Thus, the above results have been computed
not considering the last hop found by TCP traceroute, i.e. the target itself.
However, during the analysis, we noticed that in some cases some intermediate



10 C. Caiazza et al.

0-25 25-50 50-75 75-100
Position (%)

0
20
40
60
80

100
120
140
160
180
200

camotrace
TCP traceroute

Fig. 5: Number of new IP interfaces, or groups, found by the two methods against
the normalized position.

nodes were replying using the target's address. This could indicate that such
hosts are behind a NAT connected to the public Internet using the target's
address. We thus computed again the number of additional IP interfaces but
excluding the target address, to show that this phenomenon marginally a�ects
the previously discussed results (Figure 4b).

In addition, we computed the position along the path of the additional (or
groups of additional) IP interfaces found by the two methods (for groups, just
the starting position is considered). Since the length of the path is di�erent from
target to target, the position is expressed as a percentage from the beginning of
the path. Figure 5 shows that for camotrace the newly discovered IP interfaces
are mostly in the second half of the path, and in particular in the last 25%.
This is rather expected, as it is reasonable to suppose that the majority of
classi�cation and �ltering systems are placed in non-transit networks. It must
be noticed that in the �rst 25% of the considered paths, only TCP traceroute is
able to discover more interfaces than camotrace, whereas the opposite does not
occur. This situation takes place just a few times, for some atypical behaviors
described in Section 5.1.

5.1 Analysis of some atypical situations

Figure 4 includes a limited number of cases where TCP traceroute �nds a rather
large number of hops unseen by camotrace. We analyzed these cases in detail
using a packet sni�ng tool (Wireshark) and we found two main anomalous
behaviors.

The �rst situation takes place right after the connection is established. The
target server sends a TCP window update message that resets the TTL value
to its maximum value. This means that subsequent messages are sent directly
to the server and camotrace is unable to receive any ICMP message from the
intermediate nodes. After the �rst message has been received these anomalous
servers send a new TCP window update message or close the connection. This
forces camotrace to open a new connection, thus starting the same behavior



Camou�age traceroute 11

again. In the end, camotrace is not able to send any message with TTL lower
than 64 and no hop along the path can be discovered.

In the second case, the server accepts the connection but an HTTP reply is
never sent. Camotrace sends the �rst message with TTL=1 receiving an ICMP
message from the �rst router. Then it sends a message to the destination with
TTL = 64 but no response is received. The underlying TCP layer starts to
retransmit the packet and all following requests are queued. No ICMP message
from the intermediate routers is received (with the exception of the �rst one).
In some cases, after a while, the server sends a TCP reset and the connection
can be re-established. However, since the server keeps being not responsive to
HTTP requests, only an additional intermediate node can be discovered.

6 Conclusion

Traceroute is the most widely used tool for obtaining information about the
topology of the Internet, and in the last decades it has been the cornerstone
of countless research works. Camou�age traceroute tries to expand the amount
of information collected in those portions of the network where operators apply
restricting policies to diagnostic tra�c. This is done by mimicking the behav-
ior of application-level tra�c, thus reducing the probability of being classi�ed
and consequently restricted. The main limitation of camotrace is that a server
is required to be running on the target machine, as camotrace needs that a con-
nection is open for delivering probes containing application-level tra�c. Current
implementation of camotrace only supports HTTP tra�c, but other applica-
tion protocols can be added to further improve its discovering capabilities and
increase the set of possible targets.

Experiments carried out on the Italian Internet show that camotrace is able
to provide more information than TCP traceroute in approximately 10% of the
paths, while the opposite occurs in 6% of the paths. We believe that this is a good
improvement, especially considering that the traceroute tool is well consolidated.
Moreover, it is possible to conceive a tool that �rst operates as the classical TCP
traceroute and then as camotrace, to �nally produce a set of intermediate routers
that corresponds to the union of the results obtained by the two methods.

Future work will focus on studying how to cope with camotrace limitations,
mainly the ability to discover the target IP address. In addition, we plan to
execute a world-wide measurement campaign to evaluate both the soundness of
camotrace and the di�usion of traceroute blocking mechanisms at a planetary
scale.

Acknowledgment

This work was partially funded by the University of Pisa (project PRA 2017_37
- �IoT e Big Data�), and the Italian Ministry of Education and Research (MIUR)
in the framework of the CrossLab project (Departments of Excellence).



12 C. Caiazza et al.

References

1. The Cooperative Association for Internet Data Analysis Archipelago Measurement
Infrastructure (CAIDA Ark). http://www.caida.org/projects/ark/

2. Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,
Magnien, C., Teixeira, R.: Avoiding Traceroute Anomalies with Paris Traceroute.
In: Proc. ACM SIGCOMM IMC. pp. 153�158 (2006)

3. Augustin, B., Friedman, T., Teixeira, R.: Multipath tracing with Paris traceroute.
In: Proc. IEEE/IFIP E2EMON '07. pp. 1�8 (2007)

4. BEREC Guidelines on the Implementation by National Regula-
tors of European Net Neutrality Rules. http://berec.europa.

eu/eng/document_register/subject_matter/berec/download/0/

6160-berec-guidelines-on-the-implementation-b_0.pdf (2016)
5. Chang, H., Jamin, S., Willinger, W.: Inferring AS-level Internet Topology from

Router-Level Path Traces. In: Proc. SPIE ITCom '01. pp. 196�207 (2001)
6. Cheswick, B., Burch, H., Branigan, S.: Mapping the Internet. IEEE Computer

32(4), 97�98, 102 (1999)
7. cla�y, k., Hyun, Y., Keys, K., Fomenkov, M., Krioukov, D.: Internet Mapping:

From Art to Science. In: Proc. CATCH '09. pp. 205�211 (2009)
8. Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., Donnet, B.: Revealing

Middlebox Interference with Tracebox. In: Proc. IMC '13. pp. 1�8 (2013)
9. Faggiani, A., Gregori, E., Lenzini, L., Luconi, V., Vecchio, A.: Smartphone-based

crowdsourcing for network monitoring: Opportunities, challenges, and a case study.
IEEE Comm. Mag. 52(1), 106�113 (2014)

10. Faggiani, A., Gregori, E., Lenzini, L., Mainardi, S., Vecchio, A.: On the feasibility of
measuring the Internet through smartphone-based crowdsourcing. In: Proc. WiOpt
'12. pp. 318�323 (2012)

11. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol � HTTP/1.1. RFC 2616 (1999)

12. Consortium GARR Home Page. https://www.garr.it/
13. Gregori, E., Lenzini, L., Luconi, V., Vecchio, A.: Sensing the Internet through

crowdsourcing. In: Proc. PerMoby '13. pp. 248�254 (2013)
14. Gregori, E., Luconi, V., Vecchio, A.: Studying forwarding di�erences in European

mobile broadband with a net neutrality perspective. In: Proceedings of the 24th
European Wireless Conference. pp. 81�87 (May 2018)

15. Keys, K., Hyun, Y., Luckie, M., cla�y, k.: Internet-Scale IPv4 Alias Resolution
with MIDAR. IEEE/ACM Transactions on Networking 21(2), 383�399 (2013)

16. Luckie, M., Hyun, Y., Hu�aker, B.: Traceroute Probe Method and Forward IP
Path Inference. In: Proc. ACM SIGCOMM IMC '08. pp. 311�324 (2008)

17. Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy,
A., Venkataramani, A.: iPlane: An Information Plane for Distributed Services. In:
Proc. USENIX OSDI '06. pp. 367�380 (2006)

18. Palo Alto Networks. https://www.paloaltonetworks.com/
19. Postel, J.: Internet Control Message Protocol � DARPA Internet Program Protocol

Speci�cation. RFC 792 (1981)
20. Shavitt, Y., Shir, E.: DIMES: Let the Internet Measure Itself. ACM SIGCOMM

Comput. Commun. Rev. 35(5), 71�74 (2005)
21. Team cymru: IP to ASN mapping. http://www.team-cymru.com/

IP-ASN-mapping.html


