N
N

N

HAL

open science

Exploring Millions of 6-State FSSP Solutions: the
Formal Notion of Local CA Simulation

Tien Thao Nguyen, Luidnel Maignan

» To cite this version:

Tien Thao Nguyen, Luidnel Maignan. Exploring Millions of 6-State FSSP Solutions: the Formal
Notion of Local CA Simulation. 26th International Workshop on Cellular Automata and Discrete
Complex Systems (AUTOMATA), Aug 2020, Stockholm, Sweden. pp.1-13, 10.1007/978-3-030-61588-
8_1. hal-02605712

HAL Id: hal-02605712
https://hal.science/hal-02605712
Submitted on 16 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-02605712
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Exploring Millions of 6-State FSSP Solutions:
the Formal Notion of Local CA Simulation

Tien Thao Nguyen and Luidnel Maignan

LACL, Université Paris-Est Créteil, France

Abstract. In this paper, we come back on the notion of local simulation
allowing to transform a cellular automaton into a closely related one with
different local encoding of information. This notion is used to explore
solutions of the Firing Squad Synchronization Problem that are minimal
both in time (2n — 2 for n cells) and, up to current knowledge, also in
states (6 states). While only one such solution was proposed by Mazoyer
since 1987, 718 new solutions have been generated by Clergue, Verel and
Formenti in 2018 with a cluster of machines. We show here that, starting
from existing solutions, it is possible to generate millions of such solutions
using local simulations using a single common personal computer.

Keywords: cellular automata - automata minimization - firing squad synchro-
nization problem.

1 Introduction

1.1 Firing Squad Synchronization Problem and the Less-State Race

The Firing Squad Synchronization Problem (FSSP) was proposed by John My-
hill in 1957. The goal is to find a single cellular automaton that synchronizes any
one-dimensional horizontal array of an arbitrary number of cells. More precisely,
one consider that at initial time, all cells are inactive (i.e. in the quiescent state)
except for the leftmost cell which is in the general (i.e. in the general state). One
wants the evolution of the cellular automaton to lead all cells to transition to
a special state (i.e. the synchronization or firing state) for the first time at the
same time. This time 5 is called the synchronization time and it is known that
its minimal possible value is 2n — 2 where n is the number of cells.

For this problem, many minimum-time solutions were proposed using dif-
ferent approaches. As indicated in [12], the first one was proposed by Goto in
1962 [12] with many thousands of states, followed by Waksman in 1966 [14],
Balzer in 1967 [I], Gerken in 1987 [4], and finally Mazoyer in 1987 [§] who pre-
sented respectively a 16-state, 8-state, 7-state and 6-state minimum-time solu-
tion, with no further improvements since 1987. Indeed, Balzer [I] already shows
that there are no 4-state minimal-time solutions, latter confirmed by Sanders [11]
through an exhaustive search and some corrections to Balzer’s work. Whether
there exist any 5-state minimumal-time solution or not is still an open question.

2 T.T. Nguyen and L. Maignan

Note that all these solutions use a “divide and conquer” strategy. Goto’s
solution were pretty complex with two types of divisions. The following ones
used a “mid-way” division but Mazoyer’s 6-state solution uses for the first time a
“two-third” type of divisiorﬂ In 2018, Clergue, Verel and Formenti [2] generated
718 new 6-state solutions using an Iterated Local Search algorithm to explore the
space of 6-state solutions on a cluster of heterogeneous machines: 717 of these
solutions use a “mid-way” division, and only one use a “two-third” division.

1.2 Context of the Initial Motivations

In 2012, Maignan and Yunes proposed the methodology of cellular fields to de-
scribed formally the high-level implementation of a CA, and also formally the
generation of the “low-level” transition table. One of the expected benefits was
to have an infinite CA cleanly modularized into many cellular fields with clear
semantical proof of correctness together with a correctness-preserving reduction
procedure into a finite state CA [5] using a particular kind of cellular field, “re-
ductions”. This is very similar to what happen in usual computer programming
where one writes in a high-level language then transform the code into assembly
using a semantic-preserving transformation, i.e. a compiler. In 2014, they made
precise a particular reduction of the infinite CA into 21 states [67].

From theses works and concepts, two intertwined research directions emerge.
One direction is to ask whether a reduction to fewer states is firstly possible,
and secondly automatically generable, in the same spirit as compiler optimiza-
tion, with the possible application of reducing further the 21 states. The second
direction is to build a map of as many FSSP solutions as possible and study how
they relate through the notion of “reduction” introduced, with application the
discovery of techniques used in hand-made transition table and also the factori-
sation of correctness proofs. In 2018, Maignan and Nguyen [9] exhibited a few of
these relations and in particular the fact the infinite Maignan-Yunes CA could
be reduced to the 8-state solutions of Noguchi [10].

1.3 From the Initial Motivations to a Surprise

The initial motivations whose to complete the “map of reductions” by includ-
ing the 718 solutions into the picture. In particular, a quick look at the 718
solutions gave to the authors the feeling that they could be grouped into equiv-
alence classes using the notion of “reduction”. Also, inspired by the idea of local
search and exploration through small modifications used in [2] to generate the
718 solutions, the first author tried such search algorithms to generate “reduc-
tions” of existing solutions rather than transition tables directly. Although the
idea of local search is to navigate randomly in a landscape with few actual so-
lutions, the discovered landscape of reductions has so many solutions that a
“best-effort-exhaustive” exploration have been tried, leading to many millions
of 6-states solutions. Also, this space is much more easily explored because of its
nice computational properties.

1 See Figure |1d for a mid-way division, and Figure [Lal for a two-third division

Millions of 6-State FSSP Solutions through Local CA Simulations

1.4 Organization of the Content

In Section [2, we define formally cellular automata, local simulations, FSSP solu-
tions and related objects. In Section [3] we present nice properties relating these
objects and allowing the search algorithm to save a huge amount of time. In
Section] we describe the exploration algorithm and continue in Section [5] with
some experimental results and a small analysis of the 718 solutions. We conclude
in Section [6] with some formal and experimental futur work.

2 Background

In this section, we define formally cellular automata, local mappings and FSSP
solutions in a way suitable to the current study. Some objects have “incomplete”
counterpart manipulated during the exploration algorithm. The material here is
a considerable re-organization of the material found in [9].

2.1 Cellular Automata

Definition 1. A cellular automaton « consists of a finite set of states X, a set
of initial configurations I, C Y% and a partial function 64 : Y.2 - X, called
the local transition function or local transition table. The elements of Yo 2 are
called (global) configurations and those of ¥, are called local configurations.
For any c € 1, its space-time diagram D, (c) : N x Z — X, is defined as:

c(p) if t=0,

Dddﬂm){huh%h) if t> 0 with l; = Da(c)(t — 1,p + 7).

The partial function 0 is required to be such that all space-time diagrams have to
be totally defined. When Dy (c)(t, p) = s, we say that, for the cellular automaton
a and initial configuration c, the cell at position p has state s at time t.

Definition 2. A family of space-time diagrams D consists of a set of states X p
and an arbitrary set D C X2 of space-time diagram. The local transition
relation §p € Xp3 x Xp of D is defined as:

(I°,,18,19),1}) € 6p == 3(d, t,p) € DX NXZ s.t. U= d(t+j,p+i).
We call D a deterministic family if its local transition relation is functional.

Definition 3. Given a deterministic family D, its associated cellular automaton
I'p is defined as having the set of states Xr, = Xp, the set of initial configura-
tions Ir, = {d(0,—) | d € D] and the local transition function or, = dp.

Definition 4. Given a cellular automaton «, its associated family of space-time
diagram (abusively denoted) D, is defined as having the set of states Yp_, =
Yo, and the set of space-time diagram Dy, := {Dy(c¢) | ¢ € 1o} and is clearly
deterministic.

2 Here, d(0,—) is the function from Z to S defined as d(0,—)(p) = d(0, p).

4 T.T. Nguyen and L. Maignan

These inverse constructions shows that deterministic families and cellular
automata are two presentations of the same object. For practical purposes, it is
also useful to note that, since dp has a finite domain, there are finite subsets of
D that are enough to specify it completely.

2.2 Local Mappings and Local Simulations

Theses two concepts are more easily pictured with space-time diagrams. Given
a space-time diagram d € SY*% we build a new one d’ by determining each
state d’(t, p) from a little cone (d(¢t — dt,p + dp) | dt € {0,1}, dp € [—dt, +dt])
in d. This cone is simply a state for ¢ = 0, and when d is generated by a cellular
automaton, this cone is entirely determined by (d(t — 1,p + dp) | dp € [-1,1])
for ¢ > 1. Since the set of all these triplets is exactly dom(d,), the following
definitions suffice for the current study. We call this a local mapping, because
the new diagram is determined locally by the original one. When transforming a
deterministic family, the result might not be deterministic, but if it is, we speak
of a local simulation between two CA.

Definition 5. A local mapping h from a CA « to a finite set S consists of two
functions hy : {d(0,z) | (d,z) € Dy X Z} — S and hs : dom(d,) — S.

Definition 6. Given a local mapping h from a CA « to a finite set S, we define
its associated family of diagrams @, = {h(d) | d € D, } where:

h2(d(0,p)) ift=0,

h(d)(t,p) = {hs(l—h boh) ift>0 with l; = d(t —1)(p + 0).

Definition 7. A local mapping h from a CA « to a finite set S whose associated
family of diagrams @y, is deterministic is called a local simulation from a to I's, .

Proposition 1. Equivalently, a local simulation h from a CA « to a CA f is
a local mapping from « to the set g such that {h.(c) | ¢ € I} = 1g and for
all (e, t,p) € 1o, X N x Z, we have hs(I_1,lp,l1) =) with l; = Dy (c)(t, p+ ©)
and Iy = Dg(hz(c))(t + 1,p). The details of these formula are more easily seen
graphically.

- p—=2p-1 p p+tlp+t2 .- s p=2p=1 p p+lp+2 .-
t—1 t—1
t l_l lo ll t
t+1 t+1 I
t+2 t+2

Millions of 6-State FSSP Solutions through Local CA Simulations

2.3 The Firing Squad Synchronization Problem

Definition 8. A cellular automaton is FSSP-candidate if there are four special
states xo, G, Qs Fa € Lo, if 1o = {Tia | n > 2} with T, being the FSSP initial
configuration of size n, i.e. U(p) = *a, Ga, Qu, *a o p is respectively p < 0,
p=1,pe€[2,n], and p > n+1. Moreover, x, must be the outside state, i.e. for
any (I-1, 1o, l1) € dom(d4), we must have 6(I_1, lp, ly) = %o if and only if ly = *4.
Also, Q. must be a quiescent state $0 0o (Qu, Qs a) = 90 (Qa, Qs *a) = Qo

The *, state is not really counted as a state since it represents cells that
should be considered as non-existing. Therefore, a FSSP-candidate cellular au-
tomaton « will be said to have s states when | X, \ {xo} | = s, and m transitions
when | dom(d,) \ o X {*xa} X Ty |= m.

Definition 9. A FSSP-candidate cellular automaton « is a minimal-time FSSP
solution if for any size n, Do (W)(¢,p) = Fo if and only if ¢ > 2n — 2 and
p € [1,n]. We are only concerned with minimal-time solutions but sometimes
simply write FSSP solution, or solution for short.

3 Some Useful Algorithmic Properties

Our global strategy to find new FSSP solutions is to build them from local
simulations of already existing FSSP solution «. Taking the previous definitions
litteraly could lead to the following procedure for a given local mapping h. First,
generates as many space-time diagrams of D. Secondly, use & to transform each
diagram d € D, into a new one h(d), thus producing a sub-family of @,,. At the
same time, build dp, by collecting all local transitions appearing in each h(d)
and check for determinism and correct synchronization. If every thing goes fine,
we have a new FSSP solution § =T'g,.

Such a procedure is time-consuming. We show here useful properties that
reduces drastically this procedure to a few steps. In fact, the space-time diagrams
of &5, never needs to be computed, neither to build the local transition relation
8o, (Section [3.1]), nor to check that I's, is an FSSP solution as showed in this

section (Section [3.2)).

3.1 Summarizing Families into Super Local Transition Tables

When trying to construct a CA S from a CA « and a local mapping h from
the families of space-time diagrams as suggested by the formal definitions, there
is huge amount of redundancy. All entries of the local transition relation ds,
appear many times in @5, each of them being produced from the same recurring
patterns in the space-time diagrams of a. In fact, it is more efficient to simply
collect these recurring patterns that we may call super local transitions, and
work from them without constructing @5, at all. It is specially useful because we
consider a huge number of local mappings from a single CA «.

6 T.T. Nguyen and L. Maignan

Definition 10. For a given CA «, the super local transition table A, consists
of two sets (Ag), C Xo> and (Ay)s € Ba° x Bo° defined as:

(5-1,80,81) € (An)z:< 3(d,p) €Dy X Z
s.t. s = d(0,p+ 1),
(8%, 8%, 80,87, 89), (511, 88, 81)) € (Aa)s = 3(d, t,p) €Dy x Nx Z
s.t. sl =d(t+j,p+1i)

Once all these patterns collected, it is possible to construct the local transi-
tion relation dg, as specified in the following proposition.

Proposition 2. Let h be a local mapping from a CA « to a set S. The local
transition relation 0g, of the family of space-time diagram @), generated by h
and the super local transition function A, of a obey:

(I°, 8,19, 1) € 05, = A(5-1,%0,51) € (Aa)z

s.t. l? = hy(s;) and lé = hs(8i—1, 84, Si+1)

\ 3((8(12) Sgla 88’ 5?7 58)) (51—17 Sé’ 8%)) € (Aoé)s

s.t. li = hs(S“Z:fp SZ‘.v Sngl)

We know have an efficient way to build the local transition relation dg,. When
it is functional, it determines a cellular automaton 8 = I'g,. For our purpose,
we need to test or ensure in some way that £ is an FSSP solution.

3.2 Local Mappings and FSSP

We first note that the constraints put by the FSSP on space-time diagrams
induces constraints on local simulations between FSSP solutions. So we can
restrict our attention to local mappings respecting these constraints as formalized
by the following definition and proposition.

Definition 11. A local mapping h from a FSSP solution o to the states X of
a FSSP-candidate CA B is said to be FSSP-compliant if it is such that (0) hy,
maps *q, Go, and Qo respectively to g, Gg, and Qp, (1) hs(l_1,lo, k) = % if
and only if 6o (I-1, lo, i) = *o (meaning simply ly = %), (2) hs(l—1,lo,l) =Fp
Zf and Only Zf 504(1—17 ZO; ll) = Fou and (3) hs(Qoquonz) = hs(Qaa Qaa*) = QB'

Proposition 3. Let « be a FSSP solution CA, B a FSSP-candidate CA and h a
local simulation from « to 8. If B is a FSSP solution, then h is FSSP-compliant.

The following proposition is at the same time not difficult once noted, but
extremely surprising and useful: the simple constraints above are also “totally
characterizing” and the previous implication is in fact an equivalence. This means
in particular that it is not necessary to generate space-time diagrams to check if
a constructed CA is an FSSP solution, which saves lot of computations.

Proposition 4. Let a be an FSSP solution, 5 a FSSP-candidate CA and h be
local simulation from « to 8. If h is FSSP-compliant, then B is a FSSP solution.

Millions of 6-State FSSP Solutions through Local CA Simulations

4 Exploring The Graph of Local Mappings

4.1 The Graph of FSSP-compliant Local Mappings

In our actual algorithm, we take as input an existing FSSP solution « and
fix a set of state S of size | ¥, |. The search space consists of all FSSP-
compliant local mappings from « to S, the neighbors N(h) of a local map-
ping h being all A’ that differs from h on exactly one entry, i.e. I(I_1, 0, 1l1) €
dom(dy) s.t. hs(l—1,1, 1) # hL(I-1,1, 1). More precisely, the mappings are con-
sidered modulo bijections of S. Indeed, two mappings h and k' are considered
equivalent if there is some bijection r : S — S such that h, = r o h, and
hs = r o h.. So the search space is, in a sense, made of equivalence classes, each
class being represented by a particular element. This element is chosen to be the
only mapping h in the class such that hs is monotonic according to arbitrary
total orders on dom(d,) and S fixed for the entire run of the algorithm.

Considering 6-states solutions, let us denote X, = {*u,Ga, Qas Fas Aa, Bas Co
and S = {%,G,Q,F, A, B,C}°l In each of these sets, four of the states are the special
FSSP solution states (Def.[8|and Def.[J). Only the three states A, B, C come with
no constraints. We can thus evaluate the size of the search space by looking at
the degrees of freedom of FSSP-compliant local mappings (Def.

Indeed, all FSSP-compliant local mappings h from « to S have the same
partial function h,, and the same value hs(I_1, lp, I) for those entries (I_1,, l1) €
dom(d,,) forced to *, Q or F. For all other entries (I_1, l, l1), hs(l-1, lp, l1) cannot
take the values x nor F, leaving 5 values available. So given an initial solution
a, the number of local mappings is 5 where z is the size of dom(d,) without
those entries constrained in Def. To give an idea, for the solution 668 of the
718 solutions, x = 86 to the size of the search has 61 digits, and for Mazoyer’s
solution, z = 112 leading to a number with 79 digits.

4.2 Preparation Before the Algorithm

As described in Section [3.1] the local mappings are evaluated from the super
local transition table. To build this table, we generate, for each size n from 2
to 5000, the space-time diagram D, (%) and collect all super local transitions
occurring from time 0 to 2n — 4 and from position 1 to n. Note that for all
known minimum-time 6-state solutions, no additional super local transitions
appear after n = 250.

The starting point of the exploration is the local mapping h, corresponding
to the local transition function d, itself, i.e. (hy)z, = ¢ [{*a,Ga, Qa } and (he)s =
q o 4 for some bijection ¢ : ¥, — S. This local mapping is obviously FSSP-
compliant since it is local simulation from « to «.

4.3 The Exploration Algorithm

To explain the algorithm, let us first consider the last parameter £ to be 0, so
that line 7 of the explore algorithm can be considered to be simply S « N(h).

3 Recall that we do not count the * states.

8 T.T. Nguyen and L. Maignan

Algorithm 1: Algorithm 2:

1 explore(Aq, ha, k) 1 pertN(Aq, H, h, k)

2 H<+ {ha} 2 S+« N(h)

3 Heurrent < {ha} 3 K <« perturbation(h,k)
4 while | Heyrrent| > 0 do 4 if ¥ ¢ H then

5 Hpeat < {} 5 S+ SUN(R)

6 for h € Heyrrens do 6 if isSimul(h’, A,) then
7 S, H + pertN(An, H, h, k) 7 | H« HU{n'}

8 for /' € (S\ H) do 8 end

9 if isSimul(h’, A,) then o end

10 Hyext < Hpewt U{R'} 10 return S, H

11 H+ HU{h'}

12 end
13 end
14 end
15 chrrent — Hnewt
16 end
17 return H

In this case, the algorithm starts with h,, and explores its neighbors to collect all
local simulations, then the neighbors of those local simulations to collect more
local simulations, and so on so forth until the whole connected components of
the sub-graph consisting only of the local simulations in collected.

More precisely, the variable H collects all local simulations, H .y ren: cOntains
the simulation discovered in the previous round and whose neighbors should be
examined in current round, and the newly discovered local simulations are put
in H, ey for the next round. The function isSimul uses the super local transition
table to construct the local transition relation of @} and check if it is functional,
i.e. if it is a local transition function of a valid CA I'g,. By our construction, a
valid CA is necessarily an FSSP solution making this operation really cheap.

When £ > 0, the neighborhood operation is altered to add more neighbors.
A local mapping obtained by k& modifications is considered and its neighborhood
is added to the original the normal neighborhood, in the hope of discovering
another connected component of the local simulation subgraph.

5 Analyzing the Results

5.1 Analyzing the 718 solutions

As mentioned in the introduction, this study began by the desire to analyse the
718 solutions found in [2]. These solutions, numbered from 0 to 717, are freely
available online. We tried to search local simulation relation between them as
done in [9]. Firstly, we found a slight mistake since there are 12 pairs of equivalent
solutions up to renaming of states: (105, 676), (127, 659), (243, 599), (562, 626),
(588, 619), (601, 609), (603, 689), (611, 651), (629, 714), (663, 684), (590, 596)

Millions of 6-State FSSP Solutions through Local CA Simulations

and (679, 707). This means that there are really 706 solutions, but we still refer
to them as the 718 solutions with their original numbering.

Once local simulation relation established between the 718 solutions, we an-
alyzed in the number of connected components and found 193 while expecting
only a few. When there is a local simulation i from a CA « and a CA 3, the
number of differences between h, and h varies a lot, but the median value is 3.

5.2 Analyzing the Local Simulations

To find more FSSP solutions, we implemented many algorithms, gradually sim-
plifying them into the one presented in this paper. It has been run on an Ubuntu
Marvin machine with 32 cores of 2.00GHz speed and 126Gb of memory. However,
the implementation being sequential, only two cores was used by the program.
The original plan was to generate as many solutions as possible but we had
some problems with the management of quotas in the shared machine. So we
only expose the some selected data to show the relevance of the approach.

When running the program with the solution 355 and k& = 0, the program
used 14Gb of memory and stopped after 27.5 hours and found 9,584,134 local
simulations! A second run of the program for this solution with £ = 3 found
11,506,263 local simulations after 80.5 hours. This indicates that perturbations
are useful but the second run find only 1922129 additional local simulations but
its computing time is three times more than the first run. Testing whether a
local simulation belongs to set H obviously takes more and more times as more
local mappings are discovered but there might be some understanding to gain
about the proper mapping landscape too in order to improve the situation.

The transition table for the original Mazoyer’s solution can be found in [§],
but also in [I3] together with other minimal-time solution transition table. When
running the program of the original Mazoyer’s solution with different values of
k with obtained the following number of new solutions for different runs. The
behavior with k¥ = 1 seems to be pretty robust, but the bigger number of results
is obtained with k = 2.

’k\number of solutions found by 10 different runs ‘
0(644

1120682, 17645, 20731, 16139, 20731, 9538, 20626, 20682, 20054, 20490
219451, 9451, 20595, 8241, 37275, 3817, 17421, 8241, 17317, 19895
31644, 644, 644, 644, 644, 644, 644, 731, 8241, 8241
4
5

644, 644, 644, 2008, 644, 644, 644, 644, 644, 8241
644, 644, 644, 644, 644, 644, 644, 644, 644, 644

Note that while the solutions do not have less states, the number of transi-
tions do change. We show in Figure [la] the solution 668 (the only Mazoyer-like
solutions found among the 718 solutions), and one of its simulations having less
transition in Figure [Id For fun, we also show in Figure [Id and [IH a local simu-
lation having alternating states at time 2n — 3, illustrating how local simulation
rearrange locally the information. The identical part in represented with lighter
colors to highlight the differences.

10 T.T. Nguyen and L. Maignan

Proposition 5. There are at least many millions of minimum-time 6-state FSSP
solutions.

6 Conclusion

This paper presents only a small part of many ongoing experimentations. The
notion of local simulation presented here is just a particular case of the notion of
cellular field that can be used more broadly to investigate these questions. For
example, we relate here only the small cones {d(¢t— dt,p+ dp) | dt € {0,1},dp €
[—dt,+dt]} of any space-time diagram d in local mappings. If we increase the
range of dt in this definition to be [0,] for some h > 1, we allow CA to be
transformed to a bigger extent.

Another justification for this extension is that the composition of two local
simulations is not a local simulation. In fact, composing an h-local simulation
with an h'-local simulation produces an (h + h')-local simulation in general. A
0-local simulation is just a (possibly non-injective) renaming of the states.

Note that since local mappings of local mappings are not local mappings,
running the above algorithm on new found solutions should a priori generate
more solutions! Of course, a more exhaustive study is required.

Our guess is that, with a properly large notion of such simulations, it should
be possible to classify the 718 solutions into only a few equivalence classes,
more or less in two groups: the “mid-way division” solutions and the "two-
third division” solutions. This results also represents an important step in the
understanding of automatic optimization of CA.

Finally, the content of Section about the preservation of correctness by
FSSP-compliant local simulation is really interesting because of the simplicity
of checking FSSP-compliance. It implies that a proof of correctness of a small
FSSP solution can indeed be made on some huge, possibly infinite, simulating
CA where everything is explicit as considered in [6[7]. This can be applied to
ease the formal proof of correctness of Mazoyer’s solution. Up to our knowledge,
it is known to be long and hard but also to be the only proof to be precise enough
to actually be implemented in the Coq Proof Assistant [3].

We would like to give special thanks to Jean-Baptiste Yunes who pointed us
the 718 solutions paper. If we are right, he also partly inspired the work who
lead to the 718 solutions by a discussion during a conference.

References

1. Robert Balzer. An 8-state minimal time solution to the firing squad synchroniza-
tion problem. Information and Control, 10(1):22-42, 1967.

2. Manuel Clergue, Sébastien Vérel, and Enrico Formenti. An iterated local search
to find many solutions of the 6-states firing squad synchronization problem. Appl.
Soft Comput., 66:449-461, 2018.

3. Jean Duprat. Proof of correctness of the Mazoyer’s solution of the firing squad
problem in Coq. Research Report LIP RR-2002-14, Laboratoire de 'informatique
du parallélisme, March 2002.

Millions of 6-State FSSP Solutions through Local CA Simulations

0
;
:
:
;
»
5
b
"
21 | |E [B|Q|E
i&
»
o [eleal
5
"
.
. el
41 A
s [lca] 4]
o o
" (Al
o JelBa[col o
50 C
o g [ATGIAT (]
; X aTc 4] 1]
» [A] [A[GIA]l [A]
" [A] [A[GIA] [A]
')"& G G G G G G G
HEEEEEEEEEEEEG
(a) original solution 668: 93 rules (b) a local simulation of 668: 90 rules

SEE

M

(c) original solution 355 (d) a local simulation of 355

Fig. 1: Some FSSP space-time diagrams of size 31

11

12

10.

11.

12.

13.

14.

T.T. Nguyen and L. Maignan

H. D. Gerken. Uber synchronisations-probleme bei zellularautomaten. Diplomar-
beit, Institut fur Theoretische Informatik, Technische Universitat Braunschweig,
50, 1987.

Luidnel Maignan and Jean-Baptiste Yuneés. A spatio-temporal algorithmic point of
view on firing squad synchronisation problem. In Georgios Ch. Sirakoulis and Ste-
fania Bandini, editors, Cellular Automata - 10th International Conference on Cel-
lular Automata for Research and Industry, ACRI 2012, Santorini Island, Greece,
September 24-27, 2012. Proceedings, volume 7495 of Lecture Notes in Computer
Science, pages 101-110. Springer, 2012.

Luidnel Maignan and Jean-Baptiste Yunes. Experimental finitization of infinite
field-based generalized FSSP solution. In Jaroslaw Was, Georgios Ch. Sirakoulis,
and Stefania Bandini, editors, Cellular Automata - 11th International Conference
on Cellular Automata for Research and Industry, ACRI 2014, Krakow, Poland,
September 22-25, 201/. Proceedings, volume 8751 of Lecture Notes in Computer
Science, pages 136—145. Springer, 2014.

Luidnel Maignan and Jean-Baptiste Yunes. Finitization of infinite field-based
multi-general FSSP solution. J. Cellular Automata, 12(1-2):121-139, 2016.
Jacques Mazoyer. A six-state minimal time solution to the firing squad synchro-
nization problem. Theor. Comput. Sci., 50:183-238, 1987.

Tien Thao Nguyen and Luidnel Maignan. Some cellular fields interrelations and
optimizations in FSSP solutions. J. Cellular Automata, 15(1-2):131-146, 2020.
Kenichiro Noguchi. Simple 8-state minimal time solution to the firing squad syn-
chronization problem. Theor. Comput. Sci., 314(3):303-334, 2004.

Peter Sanders. Massively parallel search for transition-tables of polyautomata.
In Chris R. Jesshope, Vesselin Jossifov, and Wolfgang Wilhelmi, editors, Parcella
1994, VI. International Workshop on Parallel Processing by Cellular Automata
and Arrays, Potsdam, Germany, September 21-23, 1994. Proceedings, volume 81
of Mathematical Research, pages 99-108. Akademie Verlag, Berlin, 1994.

Hiroshi Umeo, Mitsuki Hirota, Youhei Nozaki, Keisuke Imai, and Takashi Sogabe.
A new reconstruction and the first implementation of goto’s FSSP algorithm. Appl.
Math. Comput., 318:92-108, 2018.

Hiroshi Umeo, Masaya Hisaoka, and Takashi Sogabe. A survey on optimum-time
firing squad synchronization algorithms for one-dimensional cellular automata.
IJUC, 1(4):403-426, 2005.

Abraham Waksman. An optimum solution to the firing squad synchronization
problem. Information and Control, 9(1):66-78, 1966.

	Exploring Millions of 6-State FSSP Solutions: the Formal Notion of Local CA Simulation

