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Abstract. Visualization techniques such as bar graphs and pie charts let sighted 

users quickly understand and explore numerical data. These techniques remain 

by and large inaccessible for visually impaired users. Even when these are made 

accessible, they remain slow and cumbersome, and not as useful as they might 

be to sighted users. Previous research has studied two methods of improving per-

ception and speed of navigating auditory graphs - using non-speech audio (such 

as tones) instead of speech to communicate data and using two audio streams in 

parallel instead of in series. However, these studies were done in the early 2000s 

and speech synthesis techniques have improved considerably in recent times, as 

has the familiarity of visually impaired users with smartphones and speech sys-

tems. We systematically compare user performance on four modes that can be 

used for the generation of auditory graphs: parallel-tone, parallel-speech, serial-

tone, and serial-speech. We conducted two within-subjects studies - one with 20 

sighted users and the other with 20 visually impaired users. Each user group per-

formed point estimation and point comparison tasks with each technique on two 

sizes of bar graphs. We assessed task time, errors and user preference. We found 

that while tone was faster than speech, speech was more accurate than tone. The 

parallel modality was faster than serial modality and visually impaired users were 

faster than their sighted counterparts. Further, users showed a strong personal 

preference towards the serial-speech technique. To the best of our knowledge, 

this is the first empirical study that systematically compares these four tech-

niques. 

Keywords: Auditory Graphs, Auditory Feedback, Sonification, Human Com-

puter Interaction. 

1 Introduction 

Graphs or charts are a visual representation of some type of relational data. They are 

widely used across domains and disciplines. Different types of graphs like a bar graph, 

line graph, pie chart, histogram, etc. are chosen by the designers of the graph depending 

upon the nature of the information they want to convey. Due to the inherently visual 
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nature of graphs, it is difficult for visually impaired users to access or even understand 

their benefits.  

 

Graphs provide several benefits and affordances to a sighted user. They provide mul-

tiple layers of information that allows the user to explore and discover the information 

in the sequence and to the level of detail that they desire [22]. Graphs allow users to 

quickly discover trends in the data such as “Has the value of a stock been generally 

increasing in the last 5 years?”, look for specific information like “What was the highest 

or lowest value for the stock in the last 5 years?” or discover the relationship between 

two points in the graph such as “Which of the two countries have similar landmass 

size?”. An inquisitive mind can gain multiple insights from the same graph. Graphs on 

web pages can be made accessible through attributes like “alt” [16]. While such mech-

anisms allow the author to describe the contents of the graph, it does not allow the user 

to explore or discover beyond what has already been “canned” by the author. 

 

Research on making graphs accessible is not new. Two main techniques that have 

been explored are making graphs tangible and making graphs auditory. In this paper, 

we focus on auditory graphs, specifically focussing on the modalities of tones and 

speech, along with serial and parallel.  

 

As we will discuss in the related work section, previous research on sonification has 

compared the use of synthesized speech with non-speech audio (such as tones) and 

found that non-speech audio decreases workload and task time [8]. However, this study 

was done in the early 2000s. With the recent advances in technology, speech synthesis 

has reached a level of maturity. Through multiple devices like smart speakers, speech 

input and output is now much more ubiquitous. Moreover, visually impaired users have 

gained a lot of experience with speech-based screen readers. Hence a comparison be-

tween speech and tone is worth investigating again. 

 

Audio is perceived sequentially, so a potential downside of using audio is that it can 

slow the user down. Thus, at least some advantage of data becoming more accessible 

is lost because of slow speeds. Some research has explored the effect of using two audio 

streams in parallel instead of in series in order to speed up the process [2]. It found that 

parallel audio leads to faster task completion time than audio in series.  

 

To the best of our knowledge, no study has been conducted that compares the per-

formance of auditory graphs in both dimensions simultaneously: speech vs. tone and 

parallel vs. serial. In this paper, we systematically compare the effect of the four modes 

(parallel-tone, parallel-speech, serial-tone, and serial-speech) on user perception. We 

investigate the performance of both sighted and visually impaired users. We present the 

results of two within-subjects studies - one with 20 sighted users and the other with 20 

visually impaired users. 
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2 Related Work 

In order to make graphics like charts, graphs and images accessible to users of screen-

readers, W3C [30] recommends adding a short description to identify contents of the  

image and a longer description that can contain detailed information such as the scales, 

values or trends in the data. While making the graph accessible, this method does not 

allow the user to explore the data creatively on his/her own and may not fulfill the needs 

of some users. Also, presenting all the information in speech form increases the task 

load when graphs are long [48]. 

 

The visual medium communicates a lot of information in parallel [35], allowing 

sighted users to use visual graphs in diverse ways. In contrast, by and large, audio com-

municates information serially. One of the challenges in designing auditory graphs is 

retaining this rich diversity in a serial medium. In literature, auditory graphs have been 

used for presenting data with several goals. SoundVis [2] uses audio to communicate 

detailed information of a graph. TeDUB [21, 31] describes an automatic / semi-auto-

matic way of making diagrams accessible. Audio has also been used to quickly provide 

an overall gestalt effect of a graph [1, 2, 36, 37].  

 

In this paper, we focus on enabling users to estimate (e.g. the highest point) and 

compare values (e.g. two similar points) of bars in a bar graph. While a sighted user 

may explore a bar graph for other purposes, we argue that comparison and estimation 

are the most common use cases of a bar graph. 

 

Tactile [20], auditory [28, 32, 36] and combined [33, 47] modalities have been used 

to make graphs accessible by visually impaired users. Tactile graphs have been ex-

plored to allow exploration of line graphs [47], bar graphs [47], georeferenced data 

[38], etc. alongside auditory feedback. Tactile graphs themselves are limited by the 

amount of data that can be presented at the same time [34].  

 

In this paper, we focus on the use of audio to make graphs accessible. In literature, 

several terms have been used for graphs that use audio for communication including 

“auditory data representation” [29], “auditory graphs” [5, 9, 13], “sonification” [2, 3, 

7, 10, 11], etc. In this paper, we use the term “auditory graphs” as against “visual 

graphs” to include any graph that communicates numerical information through audio.  

 

While speech is considered a natural form of communication, tones are non-speech 

sounds like musical instruments, earcons, everyday sounds, synthesized sounds and so 

on. Different parameters of sound like pitch [1, 2, 4, 13], loudness [13][17], duration 

[10], frequency [10], timbre [3][39], panning [2][3][4] have been used to map data to 

auditory graphs. 

 

Mansur et al. [1] compared the performance of tactile graphs and auditory graphs for 

conveying characteristics of the curve such as the slope, monotonicity, convergence, 

symmetry and whether the line graph was exponential. The study was done with sighted 
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and visually impaired users. Results showed that the auditory graph was faster to use 

while the tactile graph was significantly more accurate than the auditory graph. The 

authors also concluded that the accuracy of auditory graphs could improve with some 

practice. In this study, music i.e. continuous tone and not discrete tones convey graph 

information. Ramloll et al. [8] investigated the use of speech and non-speech audio and 

speech-only interface for accessing numerical data (between 0-100) in 26 rows and 10 

columns. They found that making data available in non-speech audio form resulted in 

lower subjective workload and higher task successes and significantly lower mean task 

completion time.  

 

Different strategies of encoding data in sound to leverage the relationships between 

the sound parameters have been explored [12, 19, 28, 27]. For example, frequency and 

pitch have a logarithmic relationship, for logarithmic data set or for multivariate data 

set the dimension that varies exponentially is mapped onto frequency. Peres et al. [3] 

conducted an experiment to investigate whether using redundant design i.e., using two 

parameters of sound to represent the information redundantly is useful. They found that 

the benefit depends upon the properties chosen for the mappings. Using pitch and loud-

ness (“integral parameters”) to map the data to auditory graphs was found to be bene-

ficial whereas using pitch and timing (“separable parameters”) together were not found 

to be useful. 

 

While some studies have suggested that panning in parallel mode may not be suffi-

cient to make data streams differentiable [40][41], others reported that panning does 

help certain types of tasks when presenting multiple data series in parallel [4]. Audio is 

perceived sequentially, so a potential downside of the use of audio is that it can tend to 

slow the user down as audio needs to be perceived sequentially. Thus, at least some 

advantage of data becoming more accessible is lost because of slow speeds. Previous 

research has explored the effect of using two audio streams in parallel instead of in 

series to represent two or more data series [2][4]. It was found that parallel audio leads 

to faster task completion time than audio in series in sonified graphs with two data 

series, for finding intersection of the two lines. Audiograph [22] compared two ways of 

playing tones: note-sequence where all tones between the note for origin and that for 

the current value were played and note-pair, where only the notes for origin and the 

note for the value were played. Note-sequence had the advantage of conveying the 

value in pitch and in the time, while Note-pair had the advantage of being brief. Note-

sequence emerged as the more accurate method. Many studies investigated the effect 

of providing context information in auditory graphs, the visual graph equivalent of grid-

lines along X and Y axes [11][17][35].  

 

Nees et al. [17] investigated the effect of varying the loudness of the context audio 

relative to the data audio on the performance and found that keeping the loudness lower 

or higher than that of the data audio was beneficial to the performance of point estima-

tion tasks. Magnitude estimation tasks have been used to study preferred mappings of 

data to the sound parameters and whether they were the same for sighted and visually 

impaired users [10]. Three parameters of sound were varied: pitch, tempo, or spectral 
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brightness. Users were presented with a sound stimuli and asked to estimate its value. 

The study aimed to understand whether users associated higher pitch or spectral bright-

ness and faster tempo with higher or lower values for entities like dollar, size, temper-

ature, pressure and velocity and whether this was same for sighted and visually im-

paired users.  

 

Different kinds of data has been represented using auditory graphs. Stockman et al. 

[36] investigated the use of sonification to allow users to get an overview of data in the 

spreadsheets. They explored auto-sonification that gives an overview of the data auto-

matically and also manual sonification where a visually impaired user could select 

ranges of data to sonify in order to quickly understand trends in the selected range and 

identify characteristics such as outliers [36]. Flower et al. used binned data to generate 

auditory histograms with a musical pitch to present statistical information like shape of 

the distribution [49]. AUDIOGRAPH developed by Rigas et al. [22] used auditory 

tones to convey information like shape, size of the shape, location of the object in space, 

etc. to enable users to manipulate objects in space. 

 

While the human ear can detect small pitch changes very well, studies show that 

there is no linear relationship between pitch perception and the actual frequency of the 

auditory signal and that it is user dependent [8][50][51]. In our study design, like Ram-

loll et al. [8], we did not include value estimation tasks. Brown et al. [3] recommend 

using instruments with wide pitch like the Piano and Trumpet and MIDI tones 35-100 

as they are easily perceived and differentiable. In our design, we used pitch variation to 

show differences in values in a graph. In the next section, we describe in more detail 

how data in bar graphs were mapped to MIDI tones with piano timbre. While sonifica-

tion gives a quick overview of the data [6, 13] and reduces cognitive load for tabular 

and graph datasets [8], it cannot provide an absolute perception of value at a point. 

Speech-based auditory graphs, on the other hand, can provide exact value at a point. 

3 Design of The Auditory Graphs 

In this experiment, we used a simple bar graph with a single data series, such as the one 

shown in Fig. 1 below. A sighted user may explore such a bar graph in different ways, 

depending on what task s/he is trying to do. S/he may be interested in a point estimation 

task (such as which city gets the lowest rainfall). Or s/he may be trying to do a point 

comparison task (such as which city gets similar rainfall to my city). Our goal was to 

provide similar flexibility of exploration to a blind user. Here we describe how the in-

formation contained in a bar graph was conveyed to the user through each of the four 

auditory graph techniques. 
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Fig. 1. Graph showing annual average rainfall in different cities in India in mm. 

3.1 Serial-Parallel 

By default, audio information is communicated to the user sequentially, i.e., one after 

the other. For example, the user would hear “Mumbai 2168, Delhi 790, Chennai 1541, 

Bangalore 905”. We call this “serial” modality. Unfortunately, serial communication 

would take at least as much time as it might take to play the audio files, and more time 

if the user needs repetition. It is possible to speed up the audio playback, and several 

users (especially visually impaired users who use screen readers) are used to perceiving 

spoken audio at very high speeds.  

 

Yet, another way to reduce the time is to playback multiple elements of the audio 

simultaneously. In the example above, we could play back the words “Rainfall in mm, 

(Mumbai = 2168), (Delhi = 790), (Chennai = 1541), (Bangalore = 905)”. wherein the 

brackets imply that the words in the brackets (e.g. “Mumbai” and “2168”) are played 

simultaneously. We call this “parallel” modality.  

 

In our study, we compared serial modalities with parallel modalities. While it may 

seem natural to assume that parallel modalities will be faster than serial modalities, this 

may in fact not be so effective. Firstly, the amount of time taken to communicate the 

actual information about the elements may be not much in comparison with the other 

time taken. A bar graph may have other information that needs to be communicated 

(e.g. the title). The user may need time to perceive and process the information and to 

navigate the graph. Secondly, the user may find it harder to perceive the information 

presented in the parallel modalities in comparison with the serial modalities, leading to 

errors or repetitions. The goal of our study is to explore if parallel modalities actually 

result in time-saving, whether they induce more errors, and whether the users prefer 

them to serial modalities. 
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3.2 Speech-Tone 

Our interest is to compare the effect of speech and tone in communication. “Speech” is 

considered a natural modality of communication. In contrast, “tones” need interpreta-

tion. As discussed in the related work, there are many ways to represent data in tones. 

However, for this study, we restricted ourselves to variations of pitch alone, as a single 

dimension of variation.  

 

The elements of the X-axis of the bar graph may either be ordinal (e.g. ranks of 

athletes), related by a natural sequence or progression (e.g. months of a year), or may 

be unrelated by any natural sequence or progression (e.g. countries). Considering that 

in a general case, elements of the X-axis may be unrelated to each other in any predict-

able way, we decided to always use speech to communicate information about the ele-

ments on the X-axis. 

 

In contrast, the Y-axis always contains numerical data, (e.g. time taken by athletes, 

rainfall in each month, or population of countries). It is possible to communicate this 

data through either speech or tone modalities. We chose to vary the information about 

the Y-axis values through the use of tone in some conditions, and speech in the others. 

Thus, in tone modalities, the user would hear, “Rainfall in mm, Mumbai beep 1, Delhi 

beep 2, Chennai beep 3, Bangalore beep 4”, where beeps 1-4 represent tones represent-

ing 2168, 790, 1541 and 905 respectively. In speech modalities, the user would hear 

“Rainfall in mm, Mumbai 2168, Delhi 790, Chennai 1541, Bangalore 905”. 

3.3 Auditory Graphs 

We used combinations of the parallel-serial and speech-tone modalities described 

above resulting in four modes of our study, namely parallel-tone, serial-tone, parallel-

speech, and serial-speech. We selected eight datasets to create auditory bar graphs of 

real-world data sourced from The World Bank [24]. We selected the topics of rural 

population, surface area (sq km), incidence of tuberculosis (per 100,000 people), total 

population (thousands), population growth (%), forest area (%), CO2 emissions (kt), 

and GDP growth (%) of various countries. We chose these topics because we expected 

that participants would not be too familiar with such data, and would need the graphs 

to find answers to the questions asked in the tasks. We wanted the data to be realistic 

so that our study will have good external validity. Four datasets (rural population, sur-

face area, tuberculosis, and total population) contained six data points on the x-axis (the 

“short” graphs). The other four datasets contained 15 data points on the x-axis (the 

“long” graphs). The number 15 was chosen to safely be beyond the short term memory 

limit [23]. In order to counter the variation in the time required to speak out the names 

of different countries (e.g. “United Kingdom” and “India”), all the short graph datasets 

had the same set of countries. Similarly, all the long graph datasets had the same set of 

countries. Thus, we created a total of (8 datasets x 4 four modes = 32) auditory graphs.  

 



8 

We made some specific design decisions for each modality. In the speech modalities, 

the numeric readout of values was limited to 3 digits (most significant bits). For exam-

ple, if the value was 25.263, we rounded it off to 25.3. If it was 2.5263, we rounded it 

off to 2.53, and if it 25,263, we rounded it off to 25,300. As our study was done in India, 

we used “Animaker Voice” [26] with the Indian English female voice “Raveena” at the 

default speed to generate the speech.  

 

In the tone modalities, the method of converting numerical data to auditory tones 

was derived from Brown et al. [2], where data values were mapped to MIDI notes. The 

data was mapped to MIDI notes linearly. The lowest pitch was chosen as a MIDI value 

of 20 and the highest was MIDI 100. We used “Sonic Pi” [25] with the “Piano Synthe-

sizer” option as the musical instrument for generating tones as they were reported to be 

perceived more easily [8, 18].  

 

In the parallel modalities, the sounds were “left aligned”, i.e. both sounds started 

playing at the same time, although they may end at different times depending on their 

lengths. In both the serial and parallel modalities, the two audio streams representing 

the X and Y-axes were spatially separated. The audio representing the X-axis was al-

ways played to the right ear and the audio representing the Y-axis was always played 

to the left ear.  

 

 Once the audio clips for all modalities were generated, the audio was combined and 

spatially modified, mapping X-axis to the right ear and Y-axis to the left ear in Audacity 

[42]. All source clips were brought to the same volume gain. The means and standard 

deviations in seconds of the total duration of audio recordings for graphs in each mode 

if all information in that graph was heard without repetition or delay are shown in Table 

1. An attempt was made towards making all tone audios of the same length. In most 

cases, the duration of tone playback (for X-Axis) was shorter than the duration of 

speech playback (for Y-Axis). Thus as the graphs of a set (short or long) had the same 

Y-Axis (countries), in Table 1 the tonal modalities show a small standard deviation.       

Table 1. The means and standard deviations of the duration of audio recordings in the 

four modes for the two graph lengths. 

 Short Graphs (s), N = 4 Long Graphs (s), N = 4 

 Mean  SD  Mean  SD  

Parallel tone 3.70 0.00 9.35 0.00 

Serial tone 6.43 0.10 16.45 0.12 

Parallel speech 8.85 2.35 16.95 6.41 

Serial speech 12.42 2.61 25.71 6.90 
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We created a prototype running on a laptop computer for the studies. We used Pro-

cessing [46] to create the keyboard based user interface and link keystrokes to respec-

tive audio playback.  

 

The users navigated the graphs using the up (↑), right (→) and left (←) arrow keys 

and the enter key (↵) of a keyboard. While we acknowledge that navigation is a crucial 

aspect of an auditory graph, in order to systematically study the effect of the modes on 

perception, we kept the navigation complexities at a minimum. When the user presses 

the enter key (↵), the audio corresponding to the first bar of the graph is played. When 

the user presses the right arrow key (→), the audio corresponding to the next bar is 

played after the audio corresponding to the first bar is over. When the user pressed the 

left arrow key (←), the audio corresponding to the previous bar is played. When the 

user presses the up arrow key (↑), the audio corresponding to the current bar is repeated. 

Audios do not interrupt or overlap each other. If the user tries to go beyond the first or 

the last values on the X-axis, a tone is played back indicating that the user has reached 

the end. 

 

Here we illustrate each mode using data from Fig. 1. Irrespective of the mode, the 

user first hears a “title”, such as “Rainfall in four major cities in India in millimeters”. 

When the user is ready, s/he presses the enter key (↵). Then in the parallel-tone mode, 

the user hears “Mumbai” and “beep 1” simultaneously. On pressing the right arrow key 

(→), s/he hears “Delhi” and “beep 2” again simultaneously, and so forth. In serial-tone 

mode, the user hears “Mumbai”, followed by “beep 1”, and after (→) “Delhi”, followed 

by “beep 2”, and so forth. In parallel-speech mode, the user hears “Mumbai” and “two 

thousand one hundred and sixty” simultaneously, and after (→) “Delhi” and “seven 

hundred and ninety” simultaneously, and so forth. In serial speech mode, the user hears 

“Mumbai”, followed by “two thousand one hundred and sixty”, and after (→) “Delhi”, 

followed by “seven hundred and ninety”, and so forth. In all of these cases, the values 

on the X-axis (“Mumbai”, “Delhi” etc.) are heard in the right ear and the corresponding 

values on the Y-axis (in speech or tone) would be heard in the left ear. 

4 Method 

We conducted two within-subject studies to compare speed, errors, and preference of 

users. One study was conducted with sighted users and the other with visually impaired 

users. The study compared across parallel-serial and speech-tone modalities, resulting 

in four modes of auditory graphs - parallel-tone, serial-tone, parallel-speech, and serial 

speech. In each mode, we studied auditory graphs of two lengths, a 6-point graph (short) 

and a 15-point graph (long). On each graph, users performed three tasks - estimating 

the highest point (task 1), the two most similar points (task 2), and the lowest three 

points (task 3). The wording of the tasks was modified to suit the contents of the graph. 

For example, for the graph of the rural population, the task 1 was “Which country has 

the highest rural population?” None of the tasks required the participants to guess exact 

values, but only to compare values. 
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Thus we had 4 modes, with 2 graph lengths per mode, and 3 tasks per graph, resulting 

in 24 tasks per user. The order of the modes was counterbalanced across participants 

through a balanced Latin square. The order of graphs was kept the same across modes 

- the participants first used the short graph, and then the long graph. The order of the 

three tasks for each graph was kept the same for all graphs. Thus the complete design 

of the experiment across the independent variables was speech-tone (2) x parallel-serial 

(2) x graph length (2) x tasks (3) x user type (2 - between subjects). 

 

All participants went through a training protocol before performing the tasks. The 

training protocol was the same for sighted and visually impaired participants. The ex-

perimenter first familiarised the participant with bar graphs. He presented two versions 

of a bar graph, namely a printed version and a transparent tactile overlay. This graph 

contained information about rainfall for a city by month from April to September. The 

experimenter asked the participant to explore this graph on his/her own and perform a 

talk aloud. If the participant was not familiar with graphs (which was the case for some 

visually impaired participants), the experimenter explained concepts of the X-axis, Y-

axis points, and plotting. After this, the experimenter explained and demonstrated the 

four modes of auditory graphs used in the experiment. The order of modes for the train-

ing was parallel-tone, serial-tone, parallel-speech, and serial-speech. The same rainfall 

data was used as examples. The experimenter asked the participant one question for 

each mode. The participant was allowed to listen to these examples multiple times if 

required.  

 

After the training, the participant performed the tasks. When the participant was 

ready, s/he heard the title of a graph. Then the experimenter verbally gave the partici-

pant the first task for that graph. The participant was instructed that after s/he finds the 

answer, s/he should immediately say it aloud. For the tasks requiring multiple answers, 

the participant had to be ready with all the answers before answering. Before starting 

with the task, the participant had the option to listen to the graph title and the task as 

many times as required. When s/he was ready to do the task, s/he pressed the enter key 

(↵) and started navigating the graph. The task time started when the participant pressed 

the enter key (↵). A soft limit of 5 minutes was initially kept for every question after 

which the task was to be abandoned, but this was not required as no one exceeded this 

limit. As soon as the participant started answering, the experimenter pressed a key on 

another keyboard, which stopped the navigation and logged the time. After the partici-

pant had told the answer(s), s/he was told if his/her answer was correct and if not, the 

error rank (see below). This was done to keep the participant engaged with the study.  

 

After completing the three tasks of the short graph of the first assigned mode, the 

participant moved on to do the tasks of the long graph of the same mode. After com-

pleting the six tasks of the two graphs of the first mode, the participant was assigned 

the next mode. After completing the 24 tasks for the 8 graphs of the 4 modes, the par-

ticipant was asked to fill out the system usability score (SUS) [14] to record his/her 
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feedback for each mode. If s/he had a problem recalling a particular mode, s/he could 

hear to the training graph of that mode again. 

 

The dependent variables of the study were task time, the error rank of the given 

answer, and the SUS score. The task time was the time from when a participant started 

an exploration of the graph to when s/he started giving the answer. The error rank of a 

task was calculated by ranking all possible answers of that task in ascending order of 

correctness starting with zero. Thus the error rank of an answer was 0 if the answer 

given by the user was correct, 1 if it was the second best answer and so forth. 

4.1 Participants 

We conducted two studies. The first study was done with 20 sighted participants and 

the second study was done with 20 visually impaired participants. Anonymous demo-

graphic information regarding self-reported hearing ability, age, level of education, mu-

sical training and prior familiarity with graphs was recorded. 

 

Sighted participants were university students (mean age = 24.7 years, SD = 4.65). 

The selection criteria were that they had to be currently enrolled and between the ages 

of 18 to 36. None of them were familiar with the research or with the people involved 

in the studies. They were recruited through word of mouth and through online groups. 

As these users walked to the experiment center, they were not compensated for travel. 

Instead, they were given a token of appreciation in the form of a gift voucher worth 

INR 150 (about USD 2). 

 

Visually impaired users were recruited from across the city (mean age = 29.71 years, 

SD = 11.33). They were initially recruited through word of mouth and then through a 

snowballing process. Selection criteria was any visually impaired individual with more 

than 8-10 years of formal education. They were compensated for their travel to and 

from the experiment venue. 

4.2 Experiment Apparatus 

The experiment was conducted in a quiet room with minimal human movement around 

the seating. A Hewlett Packard laptop running Windows 10 was used for conducting 

the experiment. Philips DJ series headphones were used for all participants and the 

default volume was kept at 38. The experimenter asked the participant if s/he were 

comfortable with the volume and changed it if necessary. Users were given an external 

USB keyboard with mechanical button keys for navigating the graph. The arrangement 

was such that the participant could not see the screen from where s/he was seated. Only 

one participant participated in the experiment at a time. 
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5 Results 

We performed two within subjects repeated measures ANOVAs with time and error as 

dependent variables and parallel-serial (2), speech-tone (2), graph length (2), tasks (3), 

and user type (2, between subject) as independent variables. We found the following 

differences significant for time: Tone is faster than speech (F(1,38) = 8.093, p = 0.007), 

parallel is faster than serial (F(1,38) = 4.928, p = 0.032), short graphs are faster than 

long graphs (F(1,38) = 234.031, p < 0.0005), task 1 (highest point) is faster than task 2 

(two similar points) and task 3 (three lowest points) (F(2,37) = 18.74, p < 0.0005), and 

visually impaired participants are faster than sighted participants (F(1,38) = 8.246, p = 

0.007). The significant results for errors are: speech is more accurate than tone (F(1,38) 

= 15.242, p < 0.0005), short graphs are more accurate than long graphs (F(1,38) = 

19.069, p < 0.0005) and task 1 is more accurate than task 2 and task 3 (F(2,37) = 15.154, 

p < 0.0005). We elaborate on these results below. 

5.1 Tone vs. Speech 

Tone (mean time = 43.53 seconds, SD = 1.81, 95% CI = 39.87 to 47.20) was found to 

be significantly faster than speech (mean time = 49.81 seconds, SD = 1.61, 95% CI = 

46.55 to 53.08) (F(1,38) = 8.093, p = 0.007, ηp
2 = 0.176). At the same time, speech 

(mean error rank = 0.59, SD = 0.12, 95% CI = 0.35 to 0.83) was significantly more 

accurate than tone (mean error rank = 1.63, SD = 0.24, 95% CI = 1.13 to 2.12) (F(1,38) 

= 15.242, p < 0.0005, ηp
2 = 0.286). Thus, though tone improved user speed in compar-

ison with speech to an extent, it did so at the cost of accuracy. The implication to design 

is that if it is important that the users interpret the data accurately, speech works better 

though task time may increase. 

  

Fig. 2. Graphs showing mean time (seconds) and error rank for tone and speech modes. 

5.2 Serial vs. Parallel  

Parallel modality (mean time = 45.20 seconds, SD = 1.46, 95% CI = 42.24 to 48.15) 

was found to be significantly faster than serial modality (mean time = 48.15 seconds, 

SD = 1.48, 95% CI = 45.15 to 51.15) (F(1,38) = 4.928, p = 0.032, ηp
2 = 0.115). How-

ever, error was higher in the case of parallel modality (mean error rank = 1.26, SD = 

0.23, 95% CI = 0.78 to 1.73) than serial modality (mean error rank = 0.96, SD = 0.12, 
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95% CI = 0.71 to 1.20), though the difference was not significant. Thus, the parallel 

modes performed significantly faster than the serial modes without affecting user accu-

racy by much. 

  

Fig. 3. Graphs showing mean time (seconds) and error rank for serial and parallel modes. 

5.3 Graph Length 

In case of short graphs, there were only 6 data points and users could rely solely on 

short term memory in order to answer after traversing the graph once. This is not the 

case with long graphs as there were 15 points and participants were required to go back 

and forth to find the correct answer. As expected, participants took significantly more 

time to navigate longer graphs (mean time = 58.71 seconds, SD = 1.86, 95% CI = 54.96 

to 62.47) than they did shorter graphs (mean time = 34.63 seconds, SD = 1.12, 95% CI 

= 32.38 to 36.89) (F(1,38) = 234.031, p < 0.0005, ηp
2 = 0.86). Likewise, participants 

made significantly more errors with longer graphs (mean error rank = 1.62, SD = 0.25, 

95% CI = 1.12 to 2.13) than shorter graphs (mean error rank = 0.59, SD = 0.07, 95% 

CI = 0.45 to 0.73) (F(1,38) = 19.069, p < 0.0005, ηp
2 = 0.334). 

  

Fig. 4. Graphs showing mean time (seconds) and error rank for different graph lengths (short and 

long). 
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significant differences in the ANOVA because of the tasks in time (F(2,37) = 18.74, p 

< 0.0005, ηp
2  = 0.33) and errors (F(2,37) = 15.154, p < 0.0005, ηp

2 = 0.285). Performing 

pairwise comparisons after applying Bonferroni adjustment for multiple comparisons, 

we found that task 1 (mean time = 39.76 seconds, SD = 1.34, 95% CI = 37.05 to 42.47) 

was significantly faster than task 2 (mean time = 50.97 seconds, SD = 2.00, 95% CI = 

46.93 to 55.01) and task 3 (mean time = 49.29 seconds, SD = 1.82, 95% CI = 45.62 to 

52.97)  (p < 0.0005). Task 1 was also more accurate (mean error rank = 0.18, SD = 

0.05, 95% CI = 0.07 to 0.28) than task 2 (mean error rank = 1.86, SD = 0.34, 95% CI = 

1.18 to 2.54) and task 3 (mean error rank = 1.29, SD = 0.20, 95% CI = 0.89 to 1.69) (p 

< 0.0005). The differences between tasks 2 and 3 on task time and errors was not sig-

nificant. 

  

Fig. 5. Graphs showing mean time (seconds) and error rank for the three tasks. 

5.5 User Type 

The experiment was conducted with two groups of participants, sighted and visually 

impaired. Fig. 6 shows the mean time and error values for both these user types. Visu-

ally impaired participants were significantly faster (mean time = 42.90 seconds, SD = 

1.86, 95% CI = 39.15 to 46.66) than their sighted counterparts (mean time = 50.44 

seconds, SD = 1.86, 95% CI = 46.69 to 54.20)(F(1,38) = 8.246, p = 0.007, ηp
2 = 0.178). 

While sighted users (mean error rank = 1.01, SD = 0.20, 95% CI = 0.61 to 1.41) were 

more accurate in their answers than visually impaired users (mean error rank = 1.21, 

SD = 0.20, 95% CI = 0.81 to 1.61), this difference is not significant. 

  

Fig. 6. Graphs showing mean time (seconds) and error rank for sighted and visually impaired 

participants. 
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5.6 Significant Interactions 

In case of speed, we found four significant interactions, namely graph-length * user-

type (F(1,38) = 11.323, p = 0.002, ηp
2 = 0.23), graph-length * tone-speech (F(1,38) = 

5.02, p = 0.031, ηp
2 = 0.117), tone-speech * task (F(2, 37) = 6.303, p = 0.003, ηp

2 = 

0.142) and tone-speech * graph-length * task (F(2, 37) = 7.129, p = 0.001, ηp
2 = 0.158). 

Fig. 7 represents these interactions in graphs. We note that there were no significant 

interactions between the two independent variables of interest in this paper - namely 

tone-speech and parallel-serial. 

  

  

Fig. 7. Graphs showings significant interactions in speed. 

In case of errors, we found two significant interactions, namely tone-speech * task (F(2, 

37) = 3.873, p = 0.025, ηp
2 = 0.092) and graph-length * task (F(2, 37) = 3.892, p = 

0.025, ηp
2 = 0.093). Fig. 8 represents these interactions in graphs. There were no sig-

nificant interactions between the two independent variables of interest - namely tone-

speech and parallel-serial. 

  

Fig. 8. Graphs showings significant interactions in error. 
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5.7 User Preference 

User preference was calculated through a system usability score (SUS) [14] for each of 

the four modes, viz. parallel-tone, serial-tone, parallel-speech and serial speech (Fig. 

9). In the case of sighted participants, two participants reported they were not confident 

enough on giving a rating as they had not paid enough attention to the technique while 

performing the tasks. These participants were dropped from the SUS evaluation and 

thus N = 18 for sighted users. All 20 visually impaired users gave SUS ratings confi-

dently. 

 

We performed a within subjects repeated measures ANOVA with SUS scores as 

dependent variables and parallel-serial (2), speech-tone (2) and user type (2, between 

subject) as independent variables. We found that users preferred speech (mean SUS = 

83.63, SD = 1.97, 95% CI = 79.63 to 87.63) over tone (mean SUS = 61.25, SD = 2.80, 

95% CI = 55.56 to 66.93) (F(1,36) = 46.283, p < 0.0005, ηp
2 = 0.562). Users also pre-

ferred serial modes (mean SUS = 77.51, SD = 2.05, 95% CI = 73.35 to 81.66) over 

parallel modes (mean SUS = 67.37, SD = 2.03, 95% CI = 63.25 to 71.48) (F(1,36) = 

26.157, p < 0.0005, ηp
2 = 0.421). Visually impaired users gave significantly higher SUS 

ratings (mean SUS = 76.31, SD = 2.45, 95% CI = 71.34 to 81.29) compared to sighted 

users (mean SUS = 68.56, SD = 2.59, 95% CI = 63.32 to 73.80) (F(1,36) = 4.732, p = 

0.036, ηp
2 = 0.116). This was probably because visually impaired users are a lot more 

familiar with audio-interfaces in general than sighted users. 

 

We found only one significant interaction, namely parallel-serial * user-type 

(F(1,36) = 5.775, p = 0.022, ηp
2 = 0.138). Fig. 9 represents these interactions in a graph.  

We note that there were no significant interactions between the two independent varia-

bles of interest in this paper - namely tone-speech and parallel-serial. 

  

Fig. 9. Mean SUS rating (out of 100) and significant interactions in SUS ratings by partici-

pants. 

5.8 Qualitative Findings 

Most participants found tone modalities harder, especially for values that were numer-
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more time. Participants stated that tone modalities were easy for comparing adjacent 

points, but difficult for longer graphs. 

 

Likewise, users found it harder to concentrate in parallel modalities as they had to 

pay attention to both ears. Users noted that this might be hard when they are listening 

casually, while multitasking, or in places with noise. Interestingly, users found parallel 

speech more distracting than parallel tone. In spite of this, the response for parallel-

speech was generally positive as participants found that it was fast and conveyed all the 

information necessary. Users found parallel tone acceptable only for adjacent values. 

For longer graphs, this was much harder.  

 

Participants made several design suggestions. For example, using different instru-

ments in the tonal modalities to indicate data values. A participant also suggested using 

different voices to indicate the magnitude of a data point as well as changing the pitch 

of voices. Previous research has explored using multiple instruments to denote multiple 

data series [3]. It would be worth exploring a technique where different instruments are 

used to denote the magnitude of the data.  

 

We noticed that users rarely used the up arrow to repeat a bar, preferring instead to 

go back and forth with left and right arrow keys, leading to more repetitions. When 

asked why, they mentioned it helped get a better relational reference. 

6 Discussion 

Tone modalities were faster than speech modalities. Through this study, we found that 

while the tone modalities have substantially less recorded time than speech modalities, 

this results in only a small amount of saving in the actual task time. Further, this saving 

comes at a cost of significantly higher error rates and lower user preference. Tones are 

a poor substitute for speech to communicate numeric data, but they provide a way to 

reach the required data quickly. While prior work has found that tone modalities may 

provide context and help in augmenting the information in graphs [15], our users felt 

that tones do not convey the complete information and demand higher attention. User 

preference was higher for speech modalities than tonal modalities. 

 

Parallel modalities showed more promise, though they too have a price. As expected, 

the parallel modalities were faster than the serial modalities in recorded time. Our stud-

ies show that task times have some gains in parallel modalities compared to serial mo-

dalities, and although accuracy is degraded, the difference is not significant. These re-

sults are consistent with earlier studies [2] which showed the effectiveness of using 

parallel audio streams. While users did not prefer parallel modalities over serial modal-

ities because of increased attention demands, participants were nonetheless positive 

about parallel modalities, as they conveyed all the information in a short time.  
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We acknowledge some limitations in our studies. Our participants were familiar with 

speech technologies, including conversational agents such as Google Assistant [43] and 

Siri [45], and in case of visually impaired users with screen readers such as TalkBack 

[44]. None of the participants had prior familiarity with tones which depict numerical 

values. Our studies did not give the users an opportunity to practice the tone and parallel 

modalities. The advantages of using these modalities may become more evident after 

practice.  

 

Our studies have identified opportunities for future work. Firstly, we focussed on bar 

graphs only. Several other types of graphs could be explored. The tasks performed in 

our studies were point estimation and point comparison tasks. Choosing a different task 

could lead to different results. We did not explicitly evaluate the effect of practice of 

the first task on subsequent tasks. This is something that could be systematically con-

trolled for, and explored. It would be interesting to evaluate interfaces which switch 

between modalities, either automatically or manually. There was a significant increase 

in task time and errors from short graphs to long graphs. It will be interesting to explore 

techniques required for very long graphs containing hundreds of points. Future studies 

could study more interactive graph navigation techniques, data sorting and filtering 

techniques, and/or voice input based interactions. 

7 Conclusion 

In this paper we presented a systematic evaluation of tone and speech and parallel and 

serial modalities for auditory bar graphs in four modes - parallel tone, serial tone, par-

allel speech, and serial speech. We found that although tone was consistently faster than 

speech, it was less accurate. Parallel modalities were significantly faster than serial mo-

dalities without affecting accuracy significantly. We also found that users preferred se-

rial modalities over parallel modalities and speech modalities over tone modalities. Se-

rial speech mode was the most preferred. To the best of our knowledge, this is the first 

paper that presents a systematic comparison of these modes. We hope this work will be 

beneficial to creators of auditory graphs and pave the way towards new methods of 

effective auditory graph generation. 
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