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Chapter 7

DETECTING ANOMALIES IN
PROGRAMMABLE LOGIC
CONTROLLERS USING
UNSUPERVISED MACHINE LEARNING

Chun-Fai Chan, Kam-Pui Chow, Cesar Mak and Raymond Chan

Abstract

Supervisory control and data acquisition systems have been employed
for decades to communicate with and coordinate industrial processes.
These systems incorporate numerous programmable logic controllers
that manage the operations of industrial equipment based on sensor
information. Due to the important roles that programmable logic con-
trollers play in industrial facilities, these microprocessor-based systems
are exposed to serious cyber threats.

This chapter describes an innovative methodology that leverages un-
supervised machine learning to monitor the states of programmable logic
controllers to uncover latent defects and anomalies. The methodology,
which employs a one-class support vector machine, is able to detect
anomalies without being bound to specific scenarios or requiring de-
tailed knowledge about the control logic. A case study involving a traf-
fic light simulation demonstrates that anomalies are detected with high
accuracy, enabling the prompt mitigation of the underlying problems.

Keywords: Programmable logic controllers, anomaly detection, machine learning

1.

Introduction

Supervisory control and data acquisition (SCADA) systems have been
employed for decades to manage and control critical infrastructure as-
sets.  With human lives and the economy at stake, SCADA system
failures — whether due to accidents or attacks — cannot be tolerated.
Therefore, it is vital to detect SCADA system anomalies and implement
effective mitigation strategies.
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Programmable logic controllers (PLCs) are the workhorses of SCADA
systems. These microprocessor-based systems implement programmable
logic that processes input signals from sensors that measure system/en-
vironment state to produce output signals that are transmitted to ac-
tuators as well as other programmable logic controllers that operate
and manage industrial equipment and processes. Programmable logic
controllers are typically small, rugged, specialized devices designed to
perform specific control tasks, often operating in harsh environments
with extreme temperatures and strong vibrations. Industrial systems
may have tens to hundreds of programmable logic controllers. Large
infrastructure assets such as power grids and oil and gas pipelines have
thousands of programmable logic controllers.

Programmable logic controllers are exposed to inadvertent and mali-
cious threats that can impact their ability to safely operate industrial
systems and facilities. The most common inadvertent threats are posed
by control program implementation bugs. Malicious threats include
memory read/write logic attacks [20, 21], malware worms [5, 6, 16],
time bombs [1, 7], and stop and start attacks [22]. These threats make
it imperative to develop security solutions for monitoring the states of
programmable logic controllers to uncover latent defects and anomalies.

Unfortunately, the limited computational and storage resources of pro-
grammable logic controllers make it difficult to deploy conventional se-
curity measures such as firewalls and intrusion detection systems. Novel
and efficient methodologies are required to detect anomalous controller
behavior in real time, and help support prompt mitigations and forensic
investigations of incidents [9, 22].

Machine learning, which has been employed with much success in in-
trusion and anomaly detection systems for traditional computing and
networking infrastructures, is a promising approach for developing sim-
ilar systems for programmable logic controllers. Supervised learning,
which takes in training data with labeled outcomes, is oriented towards
data clustering and classification. Unsupervised learning, which takes
in unlabeled data, is geared towards outlier detection. In both cases, a
mathematical model is generated from the training data and the model
serves as a classifier for new data. Either model can be used for anomaly
detection.

It is difficult to apply supervised learning to detect attacks on pro-
grammable logic controllers due to the lack of genuine attack data; ad-
ditionally, the problem spaces (numbers of attack patterns) are large
and simulating every attack pattern to generate data is infeasible. In
contrast, unsupervised learning uses datasets without labels [12, 14]. A
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training dataset covering normal behavior is created and normalized to
construct a model that identifies outliers.

Anomaly detection is conceptually identical to outlier detection, which
makes unsupervised learning ideal for the problem at hand. In fact, out-
lier identification is virtually equivalent to applying unary classification
with respect to good cases.

A one-class support vector machine is a special case of a support vec-
tor machine with unary classification [17]. In this approach, data points
are grouped using correlations that are computed to yield the normal
state class. The region corresponding to normal state class data is used
to assess if a new data point is an outlier. This approach is essentially
a sophisticated regression test where the training data is processed col-
lectively. It is especially appropriate when the training dataset mainly
comprises normal state data and very little anomalous data. Indeed,
the approach is well-suited to anomaly detection in programmable logic
controllers because attacks are rare and attack data is hard to come by
whereas normal data is readily captured during day-to-day operations.

This chapter describes a methodology that leverages unsupervised ma-
chine learning to monitor the states of programmable logic controllers
to uncover latent defects and anomalies. The methodology, which em-
ploys a one-class support vector machine, can detect anomalies without
being bound to specific scenarios or requiring detailed knowledge about
the control logic. In addition to conventional data capture methods, the
methodology leverages an additional security block in a programmable
logic controller to detect anomalies [1]. The historian is also employed to
store timestamped programmable logic controller state information (i.e.,
key memory address values) for anomaly /attack analyses and forensic in-
vestigations. A traffic light simulation case study employing a Siemens
S7-1212C programmable logic controller demonstrates that anomalies
are detected with high accuracy.

2. Related Work

Garitano et al. [2] have reviewed several anomaly detection method-
ologies and conclude that network intrusion detection systems may not
be able to efficiently detect attacks on industrial control systems. Fur-
thermore, since programmable logic controllers typically have limited
computational resources, implementing host-based intrusion detection
systems is generally infeasible.

Hsu et al. [4] have evaluated several machine learning algorithms on
datasets comprising normal operational data from SCADA networks.
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Their results demonstrate that machine learning algorithms are able to
accurately detect most attacks.

Schuster et al. [10] conducted anomaly detection experiments in two
plant process control networks using one-class support vector machines
and isolation forest classifiers. Their studies revealed that network traffic
data is inadequate for training purposes when sufficient programmable
logic controller traffic is not available.

Wu and Nurse [18] have observed that valuable information can be ob-
tained by monitoring the memory addresses of programmable logic con-
trollers, regardless of whether the controllers were executing normally or
were under attack. They also evaluated the use of a programmable logic
controller logger as a forensic tool that continuously polls the memory
variables in a running programmable logic controller.

Yau and Chow [20, 21] have proposed two approaches for detecting at-
tacks on programmable logic controllers. One approach applies machine
learning to logged data of pre-selected memory values of a programmable
logic controller to detect abnormal operations [20]. The other approach
employs a control program logic change detector that leverages anomaly
detection rules to detect and record undesirable events [19].

Both the approaches require knowledge about the control logic before
monitoring procedures can be applied. They may, therefore, be imprac-
tical because the personnel responsible for monitoring the security of
SCADA systems are typically not involved in SCADA system develop-
ment. In addition, remote monitoring of programmable logic controllers
via active polling imposes network overhead that is unacceptable in in-
dustrial control system environments.

To overcome these challenges, Chan et al. [1] proposed the incorpora-
tion of a security block module to support programmable logic controller
logging and attack detection capabilities. Specifically, they installed a
security block (i.e., programmable logic controller code) on the device to
capture selected memory content and other internal device information
for monitoring purposes. This approach can help detect programmable
logic controller memory read-write logic attacks with high accuracy while
maintaining a low network footprint. In addition, the security block can
verify the number of data blocks installed in a programmable logic con-
troller to detect worm attacks, which is more efficient than traditional
network memory address value polling method using libnodave [3] or the
Siemens Step 7 library [8].
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Figure 1. Experimental setup.

3. Anomaly Detection Case Study

This section describes the experimental setup and the methodology
for detecting anomalous programmable logic controller operations.

3.1 Experimental Setup

Figure 1 shows the experimental setup. A Siemens S7-1212C pro-
grammable logic controller was installed with a traffic light control pro-
gram that manages interactions between switches and the sequencing
and durations of traffic lights. In addition to the standard traffic control
light program, the programmable logic controller was equipped with a
security block that transmitted input, output and memory address val-
ues to a historian via a direct TCP connection. All this information was
recorded in a log file by the historian for anomaly detection and forensic
analysis.

Rogue attacks on the programmable logic controller were executed by
incorporating attack logic in the device. Upon receiving certain input
signals, the program logic altered output signals to launch the attacks.

The objective of the experiment was to detect anomalous behavior.
Events such as direct attacks, hardware failures and implementation
bugs produce anomalies. By attaching timestamps to the events, anoma-
lous situations can also be investigated retroactively by examining the
data maintained by the historian.
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Figure 2.  Assignment list for the traffic light system with a security block.

3.2 Anomaly Detection Methodology

In order to detect anomalies, it is necessary to capture adequate
amounts of useful data. Since there is no prior information about the
programmable logic controller logic, it is necessary to determine which
memory addresses are referenced by the controller logic.

If the source code of the traffic light program is available, the code
can be loaded into TTA [15], an integrated development environment for
Siemens programmable logic controllers, which creates an assignment list
that contains all the referenced memory addresses. Figure 2 shows the
assignment list for the traffic light program. Because the security block
was configured to use memory block addresses MB200 to MB900, these
addresses were deemed to be irrelevant and were, therefore, ignored in
the data capture.

If the source code is not available, then it is necessary to capture the
contents of memory addresses during normal operation. The memory
capture process is repeated for small memory blocks until the contents
of all the memory addresses have been captured. Next, the memory
addresses whose contents do not change are eliminated based on the
assumption that their inactivity implies that they have no impact on
programmable logic controller behavior. The assumption is reasonable
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for programs that do not flip and restore memory addresses during a
cycle, and have no external dependencies. This turned out to be the
case for the traffic light simulation program.

Since the source code was available in the experiment, the Siemens
TIA integrated development environment was used to identify the mem-
ory addresses of interest in the programmable logic controller.

After the memory addresses have been identified, several approaches
can be used to capture information about programmable logic controller
status. One approach is to use a network sniffer or mirror port in a
network device to capture network traffic to and from the programmable
logic controller. Another approach is to actively poll memory address
values using an external program [19]. Yet another approach is to use a
security block to transmit internal programmable logic controller data [1]
to a historian.

The approach adopted in this work was to capture and analyze input
and output signals and memory values using a security block. One reason
is that, in many real-world deployments (as in the case of the traffic con-
trol experiment), a programmable logic controller has minimal external
network traffic — because it is directly connected to input/output ports,
not all signals generate network traffic traces during normal operation.
In addition, stateful information about programmable logic controller
operations may not be transferred to an external device such as a histo-
rian for storage. Thus, network traffic captures alone would not provide
adequate information about the programmable logic controller.

Since different combinations of memory address values may represent
different program states, it is important to ensure that the captured
values are consistent within a programmable logic controller execution
cycle. However, using an external program (e.g., Snap7 [8]) over a net-
work to query memory address values does not ensure their consistency
due to network latency and programmable logic controller operating sys-
tem delays. In addition, continuously polling multiple memory addresses
imposes overhead on a programmable logic controller that may degrade
its performance.

These challenges are overcome using a security block to produce a
consistent snapshot of memory values in every cycle. Other advantages
of the security block over active polling are higher levels of correlation
between memory addresses, less lag and missing state data, and accurate
timestamp information for forensic analyses.

Since the data transferred from a security block is in the form of a
tokenized byte stream, the byte stream has to be converted back to its
original data types (e.g., integer and boolean) for input to a machine
learning model.
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The popular OCSVM outlier detection machine learning model [10]
was employed to detect anomalies. The specific OCSVM model used was
from Scikit-learn [13], an open-source software package that provides
several machine learning libraries written in Python. The formatted
input data was provided to the OCSVM model libraries.

The OCSVM parameters were optimized to increase model accuracy
before it underwent training and testing. This was achieved by applying
a portion of the original dataset to conduct an iterative search for the
best parameters.

The following optimized parameter settings were employed:

m Kernel: This parameter specifies the non-linear function used by
the support vector machine to project the hyperspace to a higher
dimension. The optimal rbf kernel setting was used.

s Degree: This parameter specifies the degree of the polynomial
kernel function. The optimal degree setting of four was used.

m Coef0: This parameter is not significant for the rbf kernel. The
optimal setting of zero was used.

m Nu: This parameter specifies the maximum number of training
examples that can be misclassified and the minimum fraction of
training examples for the support vector. The optimal setting of
0.001 was used.

The next step involved the generation of anomalous events and data
collection. Programs were executed to inject attack traffic into the pro-
grammable logic controller to simulate real attacks. Normal and attack
data collected by the historian were used as samples.

The following metrics for benchmarking the accuracy of machine learn-
ing techniques [11] were used to assess the effectiveness of anomaly de-
tection:

m Precision: Precision is defined as the ratio of true positives to the
sum of true positives and false positives (= %). It measures
the ability of a classifier to not misclassify negative samples as
positive samples. The precision ranges from one (best) to zero

(worst).

m Recall: Recall is defined as the ratio of true positives to the sum
of true positives and false negatives (= TPE%). It measures the
ability of a classifier to identify all the positive samples. The recall
ranges from one (best) to zero (worst).
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Table 1. Classification results for various performance metrics.

Records Precision Recall F1 Score

Training Set 922,162 1.00 0.94 0.97
Testing Set 1 505,041 0.97 0.93 0.94
Testing Set 2 588,573 0.95 0.94 0.94
Testing Set 3 471,207 0.97 0.95 0.96

m F1 Score: The F1 score is a weighted average of precision and

recall (= ?;f;g ). The higher the score, the better the ability of a

classifier to detect negative samples while maintaining a low false
positive rate. The F1 score ranges from one (best) to zero (worst).

Table 1 shows the anomaly detection results for the training set and
three testing sets. Good results were obtained. The precision for the
three testing sets ranges from 0.95 to 0.97; the recall ranges from 0.93
to 0.95; and the F1 score ranges from 0.94 to 0.96.

4. Discussion

In industrial control environments, it is difficult to obtain attack data
and little, if any, details are available about the internal logic of pro-
grammable logic controllers. Since adequate amounts of normal opera-
tional data are available, the solution to detecting anomalies caused by
attacks is to employ a machine learning technique create a model of nor-
mal behavior and use the trained model to identify anomalous behavior.
The experimental results demonstrate that the trained detector was able
to recognize normal behavior with a low error rate. Thus, it would be
effective as a monitoring mechanism for detecting unknown attacks and
unanticipated failures.

The experiments assumed that the training dataset contained only
normal scenarios, without any anomalous events. This requires the num-
ber of normal scenarios in the dataset to be substantial enough to be
distinguishable from anomalous outliers. The experiments revealed that
insufficient amounts of training data about normal scenarios yield high
false positive rates. Therefore, a large normal dataset must be used
during the training phase.

Another observation is that the model parameters have large impacts
on the accuracy of detection. A previous study with the simulated traf-
fic light system [21] revealed that the default parameter settings yield
modest results. In contrast, the experiments described in this chapter
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demonstrate that good results are obtained by using a small dataset in
an iterative search for optimal model parameters and then applying the
model with the optimized parameters to larger datasets for training and
testing.

The logging mechanism implemented by the historian maintains pre-
cise timestamps of programmable logic controller memory status. The
timestamped information coupled with the trained anomaly detection
model can significantly advance forensic investigations. For example,
when the anomaly detection model triggers an alert with a concrete
timestamp, a forensic investigator can narrow down the time and dura-
tion of the incident, and look up and recreate the programmable logic
controller memory status and behavior using the data stored by the
historian.

However, the proposed approach has some limitations. First, the anal-
ysis of memory addresses is not scalable. If large numbers of memory
addresses are used by a programmable logic controller, then a filtering
mechanism would be required to reduce the number of features consid-
ered by the machine learning model. Second, if a programmable logic
controller stores its state data on an external device during its execution
cycle, this data must be obtained and verified to ensure accurate de-
tection. Finally, unsupervised learning requires a large and rich normal
dataset for model training.

5. Conclusions

The lack of genuine attack data and the difficulty in generating simu-
lated attack data render unsupervised learning well-suited to developing
anomaly detection systems for programmable logic controllers. The pro-
posed anomaly detection methodology, which employs a one-class sup-
port vector machine, accurately detects anomalies without being bound
to specific scenarios or requiring detailed knowledge about the control
logic. The methodology leverages an additional security block in a pro-
grammable logic controller to detect anomalies and employs the historian
to store timestamped programmable logic controller state information
(i.e., key memory address values) to support anomaly/attack analyses
and forensic investigations. Experimental results with a traffic light
simulation system employing a Siemens S7-1212C programmable logic
controller demonstrate that anomalies are detected with high accuracy.

Future research will focus on implementing increased state awareness
based on live programmable logic controller memory analysis to enhance
anomaly detection. Efforts will also concentrate on tuning the unsu-
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pervised learning methodology to enhance performance metrics such as
precision, recall and the F1 score.
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