
HAL Id: hal-02526356
https://inria.hal.science/hal-02526356

Submitted on 31 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Attack tolerance for services-based applications in the
cloud

Georges Ouffoué, Fatiha Zaïdi, Ana R Cavalli

To cite this version:
Georges Ouffoué, Fatiha Zaïdi, Ana R Cavalli. Attack tolerance for services-based applications in the
cloud. ICTSS 2019: 31st IFIP International Conference on Testing Software and Systems, Oct 2019,
Paris, France. pp.242-258, �10.1007/978-3-030-31280-0_15�. �hal-02526356�

https://inria.hal.science/hal-02526356
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Attack tolerance for services-based applications
in the Cloud.

Georges Ouffoué1, Fatiha Zaïdi1 and Ana R. Cavalli23

1 LRI, Univ. Paris-Sud, UMR 8623 CNRS, Université Paris-Saclay
{ouffoue,zaidi}@lri.fr

2 IMT/TELECOM SudParis, SAMOVAR, UMR 5157 CNRS, Evry, France
ana.cavalli@it-sudparis.eu

3 Montimage Paris
ana.cavalli@montimage.com

Abstract. Web services allow the communication of heterogeneous sys-
tems and are particularly suitable for building cloud applications. Fur-
thermore, such applications must verify some static properties, but also
tolerate attacks at runtime to ensure service continuity. To achieve this,
in this paper we propose an attack tolerance framework that includes the
risks of attacks. After describing the foundation of this framework, we
propose expressing cloud applications as choreographies of services that
take into account their distributed nature. Then, we extended the frame-
work to introduce choreography verification by incorporating monitoring
(passive tests) and reaction mechanisms. These techniques are validated
through relevant experiments. As a result, our framework ensures the
required attack tolerance of such cloud applications.

Keywords: Attack tolerance · Runtime verification · Monitoring · Web
services and cloud · Passive tests · Software Reflection

1 Introduction

Computer systems are now at the heart of all business functions (accounting,
customer relations, production, etc.) and, in general, in everyday life. These
systems are based on heterogeneous applications and data. Service Oriented
Architectures (SOA) have been proposed for this purpose. These architectures are
distributed and facilitate communication between environments of heterogeneous
nature. The main components of such architectures are Web services. A Web
service is a collection of open protocols and standards for exchanging data between
systems. These services can be internal and only concern one organization. In
addition, the need to expose services to the outside world is growing due to
the technological advances in communication networks, especially the Internet.
Besides, security is at the heart of business concerns. Web services, since they are
open and inter-operable, are privileged entry points for attacks. Moreover, Web
services deployed in the cloud inherit their vulnerabilities. Security must then be

2 Georges Ouffoué et al.

taken into account when implementing Web services and this at all levels : design,
specification, development and deployment. It is also appropriate to quantify the
risks in order to clearly identify the threats and reduce the vectors of attacks.

In this paper, we adopt a new end-to-end security approach based on risk
analysis, formal monitoring, software diversity and software reflection. We propose
a new formal monitoring methodology that takes into account the risks that Web
and cloud services may face. More precisely, the contributions of the paper are
the following:

– A risk-based monitoring methodology is proposed. We claim that the detection
and prevention of attacks require a good knowledge of the risks that these
systems are facing.

– An instantiation of this methodology for cloud applications based on Web
services is described. We propose an attack tolerance framework (offline and
online), for such applications. Indeed, it is appropriate to consider tolerance
during the modelling of the application and also to monitor that application
at runtime for anticipating and detecting attacks w.r.t to the risks . For this
goal:
• We first consider any application deployed in the cloud as a choreography

of services which must be continuously monitored.
• For the verification and monitoring of the choreography obtained, we

extend a formal framework for choreography verification by incorporating
our previous detection and remediation strategies [3].

• We finally propose a new Domain Specific Language (DSL) called Chor-
Gen. If choreographies written in a process algebra are formally verified
and projected on the peers, skeletons of the corresponding services are
generated by ChorGen.

The paper is then organized as follows. We propose a quick presentation of
the main attack tolerance techniques in section 2. Section 3 fully describes the
risk-based monitoring methodology. Following the above methodology, an attack
tolerance framework for cloud applications is presented in section 4. In section
5, we present a concrete case study: an electronic vote system. Experiments on
this use-case highlight the attack tolerance capability of the whole framework.
Conclusions and future enhancements of this work are given in section 6.

2 Attack tolerance: state of the art

This section presents existing attack tolerance techniques highlighting the main
issues that remain unsolved.

2.1 Intrusion and attack tolerance

Several solutions for attack tolerance were proposed. [8] proposed a formalism
based on graphs to model an intrusion tolerant system. In this model they
introduce system’s response to (some of) the attacks. They call this model

Attack tolerance for services-based applications in the Cloud. 3

that incorporates attacker’s actions as well as the system’s response an Attack
Response Graph (ARG).

Besides [19] classify ITS (Intrusion Tolerant Systems) architectures into four
categories :

– Detection-triggered [16, 17]: these architectures build multiple levels of
defense to increase system survivability. Most of them rely on an intrusion
detection that triggers reactions mechanisms.

– Algorithm-driven [10, 18] : these systems employ algorithms such as the
voting algorithm, threshold cryptography, and fragmentation redundancy
scattering (FRS) to harden their resilience.

– Recovery-based [1, 14] : these systems assume that when a system goes
online, it’s compromised. Periodic restoration to a former good state is
necessary.

– Hybrid [15]: these systems combine different architectures mentioned above.

2.2 Attack tolerance techniques for services-based application

It must be noted that Web services deployed in the cloud or used for building
cloud applications inherit the vulnerabilities of the cloud platforms. Few works
were conducted in order to transpose the techniques and framework cited in
the previous section to web services. [5, 13] presented an attack tolerant Web
service architecture based on diversity techniques presented above. These so-
lutions protect essentially against XML DoS Attacks. While these approaches
are interesting, they do not address the specificity of services-based application
deployed on cloud platforms. The solutions are attack-specific. Moreover, for this
kind of application, it is necessary to integrate security in all the process steps
i.e. from modeling to deployment. We need a more efficient intrusion-tolerant
mechanism.

3 Risk-based monitoring methodology

The supervision or monitoring of information systems is of paramount importance
for any organization. It essentially consists in deploying probes in various parts
of the system based on preset checkpoints. With automatic failure reporting,
network agents can respond to key security risks. The disadvantage of such
methods is the following. If risks or failures are discovered during operation, the
attacks may have already occurred and one or more parts of the system may
be non-functional. So, the detection and prevention of attacks require a good
knowledge of the risks that these systems face.

As such, it is mandatory to include risk management in the monitoring strategy
in order to reduce the probability of failure or uncertainty. Risk management
attempts to reduce or eliminate potential vulnerabilities, or at least reduce the
impact of potential threats by implementing controls and/or countermeasures. In
the case, it is not possible to eliminate the risk, mitigation mechanisms should be

4 Georges Ouffoué et al.

Fig. 1: Risk-based monitoring loop

applied to mitigate their effects. We leveraged the risk management loop to build
our risk-based monitoring loop depicted on the Figure 1. Indeed, this risk-based
monitoring solution can be summarized in the following objectives:

3.1 Identifying Assets

Assets are defined as proprietary resources of value to the organization and
necessary for its proper functioning. We distinguish business-level assets from
system assets. In terms of business assets, we mainly find information (for
example credit card numbers) and processes (such as transaction management
or account administration). The business assets of the organization are often
entirely managed through the information system. System assets include technical
elements, such as hardware, software and networks, as well as the computer system
environment, such as users or buildings. System assets can also represent some
attributes or properties of the system such as the data integrity and availability.
This is particularly true for cloud services consumers.

3.2 Risk and vulnerability analysis

Risk is the possibility or likelihood that a threat will exploit a vulnerability
resulting in a loss, unauthorized access or deterioration of an asset. A threat is a
potential occurrence that can be caused by anything or anyone and can result
in an undesirable outcome. Natural occurrences, such as floods or earthquakes,
accidental acts by an employee, or intentional attacks can all be threats to an

Attack tolerance for services-based applications in the Cloud. 5

organization. A vulnerability is any type of weakness that can be exploited. The
weakness can be due to, for example, a flaw, a limitation, or the absence of a
security control.

3.3 Threats identification

The first step to perform to avoid or repel the different threats that can affect an
asset is to identify: affected modules/components, actions/behaviour to trigger
the threat, and potential objective of the threat. This identification helps to
understand the operation of the attacks and allows the creation of security
mechanisms to protect, not only the assets, but also the software mechanisms
that support them. The threats can be modelled by graphical representations
such attack trees.

3.4 System security monitoring

The monitoring mechanism we propose, allows to constantly monitor activities
or events occurring in the network, in the applications, and in the systems. This
information will be analysed in near real-time to early detect any potential issue
that may compromise the security or data privacy. If any anomalous situation is
detected, the monitoring module will trigger a series of remediation mechanisms
(countermeasures) oriented to notify, repel, or mitigate attacks and its effects.

3.5 Remediation

Once the risks of any system are established and the means of detection identified,
it is essential to think about how to set up mechanisms that will allow to complete
the risk-based monitoring loop i.e., to tolerate and mitigate the effects of the
potential detected attacks.

4 Risk-based monitoring for services-based applications
in the cloud

This section presents how we have instantiated the risk-based methodology for
services-based applications deployed in the cloud. As the first stages of the risk-
based monitoring loop are specific to the type of the application, we will focus
on the last two phases of that loop : monitoring and remediation. Two main
approaches of remediation can be described:

– Anticipating the attack tolerance capability. This consists in introducing
mechanisms allowing the tolerance to the attacks during the modelling of the
system. The system is likely said to be tolerant-by-design or offline tolerant
to attacks.

6 Georges Ouffoué et al.

Fig. 2: Architecture and components of the framework

– Considering tolerance by a constant monitoring. In this type of approach, the
tolerance capacity is entirely managed by the monitoring tool. The system is
actively monitored for detecting malicious behaviours. The system is likely
said to be online tolerant to attacks.

We believe that to have an effective attack tolerance (offline and online), it is
appropriate to use these two approaches in a complementary way. We therefore
propose an attack tolerance both online and offline. The resulting framework
consists of two main parts (Figure 2). The first part will present how we model
services-based applications deployed in the cloud to make them attack tolerant.
The second part will present how we monitor the system to detect the attacks;
and how we mitigate these attacks.

4.1 Modelling of cloud applications

Cloud applications are distributed applications. To fully benefit from the advan-
tages of the cloud we will consider our applications as a composition of Web
services deployed in the cloud.

Generally service compositions are classified into two styles: orchestrations
and choreographies. Orchestration always represents control from one partici-
pant’s perspective, called the orchestrator. Unlike the orchestration, there is no
privileged entities in the choreography. [6] argued that Web services composi-
tion, in particular choreography is a suitable solution used to build application
and systems in the cloud. They built a middleware solution that is capable of
automatically deploying and executing Web services in the cloud. We agree with
them that choreography is a good approach for deploying cloud applications

Attack tolerance for services-based applications in the Cloud. 7

based on web services. The applications in the cloud will be deployed as service
choreographies that integrate attack tolerance features. However, before and
when deploying such choreography one should ensure that this choreography
is realizable. Realizability, a fundamental issue of choreography, is whether a
choreography specification can correctly be implemented. In a top-down service
choreography approach, the realizability issue results in verifying whether a
choreography model can be correctly projected onto role models. For this goal, we
will leverage SChorA [9], a verification and testing framework for choreographies.

SChorA. SChorA 4 was proposed by [9]. This framework aims to solve the key
issues in choreography-based top-down development: i) Realizability: Whether a
choreography is realizable i.e ensuring that a choreography can be practically
implemented. ii) Projection: Ability to derive local models of a global choreography
on peers. In order to easily express the choregraphies, a language, ChorD which
is an extension of the Chor language [12] with data, has been proposed. Chor
language is expressive and abstract enough to enable one to specify collaborations
but lack data support, what ChorD covers.

The basic event in choreography is an interaction. An interaction represents
a communication between two roles. There are two kinds of interactions: free
interactions and bound interactions. A free interaction represents a communication
of value of variable x realized through an operation o from role a to b is denoted
by o[a,b].x, while the bound one is denoted o[a,b].〈x〉. In free interaction, the data
exchange must be known before the interaction may occur. In bound interaction,
the data exchange is bounded at the moment the interaction occurs

ChorD is described as:

ChorD ::= 1|α|A;A|A+A|A‖A|A[> A|[φ] . A|[φ] ? A

A basic activity is either an inaction (1), or a standard basic event (α)
presented above. They are structuring operators, that can be used to specify
composite activities such as sequencing (;), non-deterministic choice (+), parallel
activities (||), and interruption ([>).

One should note that we distinguish the global specification of the chore-
ography called global model and the specification of this choreography on the
different roles termed role model. In role models event are modeled as sending (!)
or reception (?). For example let’s express a simple Online-Shopping choreography
between two roles: b (buyer) and v (vendor). The buyer first requests an article
by providing an amount to be bought. If the amount is greater than 25 then the
vendor aborts this transaction. Otherwise, a confirmation will be issue from the
vendor to the buyer. This can be described as follows:

C :: Request[b,v].〈x〉; ([x < 25] . Ack[v,b] + [x ≥ 25] . Abort[v,b])

For the Buyer: Request[b,v]!.〈y〉; (Ack[v,b]? +Abort[v,b]?)

4 http://SChorA.lri.fr

8 Georges Ouffoué et al.

For the Vendor: Request[b,v]?.〈z〉; ([z < 25] . Ack[v,b]! + [z ≥ 25] . Abort[v,b]!)

In fact ChorD is a process algebra and its semantics is given by Symbolic
Transition Graphs (STGs) [7]. An STG is a transition system. Each transition
of STG is labelled by a guard φ and a basic event α. The guard φ is a boolean
equation which has to hold for the transition to take place. A symbolic transition
from state s to state t with a guard φ, and an event α is denoted as s

[φ]α−−→t.
√

is
added to denote activity termination. The representation of the simple shopping
choreography using STG is the following:

1 2 3 4
Request[b,v].〈x〉

[z < 25]Ack[v,b]

[z ≥ 25]Abort[v,b]

√

For the realizability and projection issues, STG are also used. By their formal
richness, STGs are perfectly suited for verification of choreographies. STGs can
be expanded to describe more operations since they support data, guard and
free/bound variables. From the representation of the choreography as STG, if
there are non-realizable parts, some additional interactions are incorporated to
the graph to allow all the transitions to be realizable. Once the realizability is
verified (i.e it can be directly implemented or some additional interactions are
added), they are projected on the different roles or peers. By doing so, we are
sure that our local models projected can actually be implemented concretely. In
our case, local models are implemented as a web service. Once this step is over,
it is useful to implement these projected models on the peers. The next section
presents how in this framework, skeletons of the services are made possible.

Code generation. In top-down software development approaches, an important
part of the process is to reduce the costs of development by promoting modularity,
reusability, and code generation. This is especially true in modeling and designing
choreographies. It is therefore essential to have automatic mechanisms that
perform code generation. This is why we propose a code generation strategy in
this framework.

For this aim, we can leverage frameworks or tools in the literature ([11])
that take as input STGs and produce source code. Moreover, we propose a new
Domain Specific Language (DSL) for our choreography called ChorGen.

The ChorGen language has the following grammar:

Model:
(choreographies+= Choreography)+;

Attack tolerance for services-based applications in the Cloud. 9

Choreography:
’choreography ’ name=ID ’{’

(roles+=Roles)*
’}’

;
Roles:

’role’ name=ID ’{’
operations+=Operation

’}’
;
Operation:

’operations ’ ’{’
(methods+=Function)*

’}’
;
Function:

name=ID ’(’(params+=Param)* ’)’
;
Param:

name=ID type=ID ’,’ |name =ID type=ID
;

We used model-driven engineering technologies Xtext 5 for the semantics and
Xtend6 for code generation to the target languages: WSDL and Python. This
means that a choreography contains several roles that expose some operations to
interact with the other roles. The advantage of doing such code generation is the
reduction of the development costs and efforts. This allows us to be more efficient
when implementing the services. This is useful, for example, for choreographies
containing a very large number of peers. Another advantage is that since all
interactions are taken into account, we are sure that developers will not forget
to implement them since their signatures are available. Moreover, it should be
noted that a single implementation is not sufficient to have a complete tolerance.
It is admitted that more diversification implies more security.

4.2 Deployment, monitoring and reaction

We will leverage diversity as well. For implementing choreography, we had the
choice between two methods. The first was to diversify for example at the level
of programming languages, i.e having the implementations in different languages.
This method has the advantage of generating few dependency between the variants
of these services. However, this can create significant costs and workload for
developers and can increase the time-to-market. The developer may not be able
to master other languages. Moreover, since one of the members of the service

5 https://www.eclipse.org/Xtext/
6 https://www.eclipse.org/xtend/

10 Georges Ouffoué et al.

choreography can be changed on the fly while the others remain intact, there
could be some inconsistencies between the communication between these services.
Indeed, although based on the remote procedure call (RPC), the ways to deploy
web services are not the same.

The second way is to consider only one target programming language but have
diversified implementation. The variants differ for example at the control flow
(AST) level and use different data structures. The advantage of such an approach
is that it is more flexible. The disadvantage is that we have a low diversity rate.
However this rate may be improved by using different OS during the deployment
of the services. For such reasons we chose the second method. So, from the global
choreography, the local models are projected taking into account the interactions
added to the specifications. This is the case for example when in the verification
phase, interactions are added to the models to make the choreography realizable.
After, there is a generation of the skeletons of the services that will implement
the choreography. In particular, we generate the WSDL files (interface file of the
Web services) as well as the skeletons of the implementations of these services in
Python.

Besides, it is undeniable that to better tolerate attacks, it is necessary to
detect them. Our approach of monitoring is based on reflection. Reflection makes
it possible to dynamically get the code and even the execution trace of a method,
a class and a module. One can also modify the class at run time. Using reflection
all the hashes of the source code of any methods of the system are processed
([3]). An example of code using the reflection API in python is depicted in Figure
3. In this piece of code, the source code of the running function in the call stack
is retrieved and the hash of this code is computed.

def show_stack ():
stack = inspect.stack()
’’’ Inspect the stack ’’’

for s in stack:
a=inspect.getsource(s[0])
’’’ Get the source ’’’

m=hashlib.md5()
’’’ hash that source code ’’’

Fig. 3: An example of using reflection in python language.

In fact, hash functions by their robustness are used to ensure the integrity
of messages or transactions in distributed systems. This is the case in modern
protocols, for example ssh and bitcoin. As such, the detection of attacks leveraging
hash functions is legitimate. Any deviation at runtime of that hash value means

Attack tolerance for services-based applications in the Cloud. 11

the presence of a misbehavior. Such misbehavior could be caused by an insider
attack or a virus attack. Information such as Date, Hour, Operation, hash,
host are stored in the log file. Any request has then two traces in the logs
: outbound(request) and inbound(response). For example, table 1 presents a
situation where there is no attack. We observe that the hashes for the Outbound
and Inbound requests are the same.

Table 1: Normal entries in the log of the client application
Date Hour Methode Hash Host

31/05/2019 10:00:00 AM ! update(Outbound) 2224d35250e... a
31/05/2019 10:15:00 AM ? update(Inbound) 2224d35250e... b

If there is an attack, the hashes of both Outbound and Inbound could not
correspond in the log files. This is the case depicted on table 2. One can also get
some other inconsistencies in the logs : hashes not equal, timestamps incoherence,
method inconsistencies (answer before request), or combination of inconsistencies.

Table 2: Bad entries in the log of the client application
Date Hour Methode Hash Host

31/05/2019 10:00:00 AM ! update(Outbound) 2224d35250e... a
31/05/2019 10:15:00 AM ? update(Inbound) 2504d35222e... b

For detecting attacks, log are located on the peers. We developed a new plugin
for this kind of detection in the monitoring tool MMT. The MMT (Montimage
Monitoring Tool) is a solution for monitoring networks and applications. MMT’s
Security properties are written in XML format. This has the advantage of simple
and straightforward structure verification and processing by the tool. Any security
property is written in XML. Each property begins with a <property> tag and
ends with </property>. A MMT-Security property is an IF-THEN expression
that describes constraints on network events captured in a trace T = {p1, ..., pm}.
It has the following syntax:

e1
W,n,t−−−→ e2

W ∈ { BEFORE, AFTER }, n ∈ N, t ∈ R>0 and e1 and e2 two events. This
property expresses that if the event e1 is satisfied (by one or several packets pi ,
i ∈ {1, ...,m}, then event e2 must be satisfied (by another set of packets pj , j ∈
{1, ...,m}) before or after (depending on the W value) at most n packets and t
units of time. e1 is called triggering context and e2 is called clause verdict. When
monitoring a system to detect attacks, the non respect of the MMT-Security
property indicates the detection of an abnormal behaviour that might imply the
occurrence of an attack. For example, if we consider a vote system (our use case
deeply presented in the section 5) a rule in the MMT formalism is the following.

12 Georges Ouffoué et al.

<beginning>
<property value="THEN" delay_units="s" property_id="10"

type_property="ATTACK"
description="Detection of the insider attack: ">

<event value="COMPUTE" event_id="1"
boolean_expression="((#strcmp(log.method,
’vote(inbound)’) != 0)&&(#strcmp(log.hash, ’’)!=
0))"/>

<event value="COMPUTE" event_id="2"
boolean_expression="((#strcmp(log.hash, ’’)!= 0)
&& (#strcmp(log.method, ’vote(outbound)’) ==
0) &&(#strcmp(log.hash, log.hash.1) != 0))"/>

</property>
</beginning>

Fig. 4: Security rule of the insider attack of the vote example

Figure 4 describes a property for detecting the insider attack according to the
formalism of MMT (section4). This means that in the log file any vote request
should have hashes for its operations (outbound and inbound) in the log files
and these hashes must correspond; otherwise an attack is triggered. Event 1 (e1)
expressed the reception of the inbound operation in the log file with a hash. If
event 2 (e2), the reception of the corresponding inbound operation in the log
appears, there is a comparison between the hash collected of that event and
the hash obtained in the previous event e1 (the built-in C function strcmp was
used for the comparison). If the hashes correspond, the system is attack free.
Otherwise, an alert is triggered.

Then every module is monitored by extracting the program stack using
reflection. We have a local database(M-DB) in which all the sources of the
program functions are securely stored. If the attack is not known in the M-DB
(i.e the hash is not conform), the system checks in the own DB (M-DB). If the
attack exists, countermeasures are launched else the hash is stored in the M-DB.
For the mitigation of the attack, in case of attacks the current source code is
replaced with one of the other variants randomly. The hash is also adapted.
However, it should be noted that classic hash functions can provide the same
hash for two different strings of characters. In practice, the probability of this
happening is small. As a result, a more robust hash will not be foolproof either,
but the probability of a collision will be higher and/or the means of generating it
will be more complex and inaccessible.

Attack tolerance for services-based applications in the Cloud. 13

5 Use case: Vote application

In this section, we present the implementation of the risk-based monitoring
approach through a concrete case study. To illustrate our approach, we propose an
electronic voting choreography for the election of the president in a certain country.
This application allows citizens to register on the electoral lists and to vote
electronically. The application is described by the VoteElecService choreography.
It is composed of three basic members: Inscription, Vote and Citizen. The
first member of that choreography allows to register a citizen on the electoral
lists by providing the personal information (surname, first name, date of birth,
address, ...). Now, we describe the main components of the risk-based monitoring
associated to this use-case.

5.1 Identifying Assets

In line with our risk-based monitoring approach the main assets remain the votes
of the citizens and the availability of the platform. These citizens must be able
to vote at any time of the election day.

5.2 Risk and attack scenarios

The main vulnerability in the vote example is an insider malicious developer or a
not cautious user of the vote choreography [2, 4]. Then, the following attacks (of
course this is not an exhaustive list) can appear:

– Brute force : By analysing the unauthorised user’s activities, user imperson-
ation can sometimes be detected using MMT.

– Insider attacks (modification of the votes by a human being or by a virus):
A member of the development team can modify the algorithm of the vote
method in order to help a candidate or a political party of his choice to win
the elections. We will provide some properties for such an attack.

– DoS/DDoS attacks: Making the vote service unavailable.

Brute force and DoS/DDoS attacks are classical and easy to detect and
to mitigate. Using strong authentication such as 2-factors authentication and
providing some classical MMT security rules can be sufficient. In addition, the
reflection methodology is particularly useful for source code attacks. As such,
due to space limitation, in the experiment part, we will focus on insider attacks
that are more destructive.

5.3 System security monitoring and reaction

Modelling and verification. Let’s first describe the choreography. Once regis-
tered, the citizen can vote electronically after verification of his registration by
the member Vote. Subsequently, this service will provide the list of associated
candidates and their identification number (1, 2, ...) in addition to the number

14 Georges Ouffoué et al.

zero that is associated with the blank ballot. A registered citizen will vote by
selecting one or more voting numbers (including the blank ballot) and submitting
his/her choices. The choreography can be expressed in ChorD as follows:

inscription[c,i].〈info〉; voteRequest[c,v].〈y〉; resultV erifInfo[v,i].〈x〉;
([x=0] .rejection[v,c] + [x! = 0] . (confirmation[v,c]; liste[v,c]; vote[c,v])).

Fig. 5: Projection of the choreography on the peers

Where the Citizen member, the Inscription member, the Vote member and
the result member correspond to respectively c, i and v. As one can observe
on Figure 5, the choreography is fully realizable without the need of adding
new interactions since the projection is effective and doesn’t include such added
interactions. And from these descriptions, we generate skeletons of the roles that
the developer should complete later.

Deployment, experiments and results. The services were deployed on the
Amazon Web Services (AWS) cloud platform. We used a virtual machine for each
member of the choreography. AWS is among the leaders of the cloud computing
market.

For the monitoring, Figure 4 presents a property for detecting the insider
attack. This means that in the log file any vote request should have hashes for
its operations (outbound and inbound) in the log files and these hashes must
correspond; otherwise an attack is triggered.

The same choreography has been deployed on a local test-bed consisting of
three Dell machines having two micro processors, 3 Go RAM memory and all
using the Ubuntu OS in its latest version. The same choreography has been
deployed on an amazon cloud. The three different virtual machines also have 3
Go RAM memory and 2 Vcpu. Some experiments where conducted to test the
attack tolerance capability of our approach.

Attack tolerance for services-based applications in the Cloud. 15

Experiment 1: Since the approach of the framework consists of modelling
and deploying cloud-based applications as distributed service choreographies, we
evaluated the latency of the service to respond to some amounts of requests on
premises and in the cloud.

Table 3: Latency measurement
Number of requests On premises In the cloud
100 0.27 seconds 0.34
200 0.69 seconds 0.87
300 1.10 seconds 1.40
400 1.80 seconds 2.56
500 2.48 seconds 3.24
600 3.45 seconds 5.13
700 4.41 seconds 6.35
800 5.65 seconds 7.24
900 6.89 seconds 8.68
1000 8.41 seconds 9.17

As can be seen on Table 3, the response times to requests are substantially
equal. The slight difference can be explained by the latency of the network. One
way to significantly reduce this latency is if you have the choice to deploy virtual
machines in the cloud in regions that are very close to where you are going to
go. Then, the flexibility and cost reduction offered by cloud computing make the
overhead negligible. The following experiments were conducted for testing the
detection capability of the framework. Here, we only focus on attacks consisting
in modifying the source code of a method or a function deliberated (by a human
being) or made by a virus. As we explained earlier, it has been proven in the
literature that this kind of attacks may appear in voting systems. For the sake
of demonstration, we design a relatively harmless virus. This virus modifies all
the codes of the classes, methods or functions of the python modules of a given
directory tree. We generated a signature of the new virus and added to the virus
database.

Experiment 2: We evaluated the time elapsed to detect the insider attacks
coming from both a modification of the source code and a virus. The accuracy of
the detection mechanism was discussed in [3]. In this section, we only evaluate
the efficiency of the monitoring w.r.t the two attacks above.

Table 4: Detection mean time
Virus Modification
0.053 seconds 0.031 seconds

16 Georges Ouffoué et al.

On Table 4 the modification seems to be easily detectable than the virus.
This was predictable since the database of virus may contain a larger number of
rows in comparison with the database containing the hashes of the methods. To
have a fair detection time, one can have a unique database. The drawback of this
solution is that we loose readability and flexibility. Along with the detection of
attacks, the system reacts as mentioned in section 4. This reaction is transparent
for the user. Although we can detect attacks with great granularity, it is also
important to consider the impact of the monitoring mechanism. That’s why we
will measure the overhead of the new monitoring method in the next experiment.

Experiment 3: Evaluation of the impact of the monitoring mechanism.

Table 5: Overhead of the monitoring mechanism
Number of requests Without Monitoring (s) With monitoring (s)
100 0.38 0.46
200 0.88 0.91
300 1.39 1.4
400 2.50 2.57
500 3.26 3.27
600 5.22 5.30
700 6.31 6.35
800 7.21 7.45
900 8.89 9.12
1000 9.15 10.02

As one can see on Table 5, the overhead of the monitoring is not too significant.
In future works, we will investigate how to reduce this overhead. The detection
approach based on software reflection is suitable for the monitoring of cloud
applications deployed as choreographies of services. To a certain extent, it can also
be useful for detecting attacks such as buffer overflows and SQL injections. One
limitation of such approach is the fact that this detection is only appropriate for
attacks targeting the source code. But the main limitation is that the approach
can not be applied in programs developed in programming languages that do not
allow reflection or do not provide a powerful reflection API.

6 Conclusion

In this paper, we have proposed a new approach for attack tolerance based
on formal runtime monitoring and software engineering techniques. We show
that a good tolerance to attacks requires, on the one hand, to perform attack
detection and continuous monitoring; and, on the other hand, reliable reaction
mechanisms. In addition, we leverage the traditional risk management loop to
build a risk-based approach that integrates risks into monitoring. Finally, we

Attack tolerance for services-based applications in the Cloud. 17

proposed an offline and online attack tolerance framework for Web services-based
application in the cloud. With this aim, we first express any application deployed
in the cloud as a choreography of services, which must be continuously monitored
and tested. Then, we extend a formal framework for choreography testing by
incorporating the methods for detecting and mitigating attacks presented in the
previous sections. Adding mechanisms of detection and reaction on the fly to
these applications, ensure optimal attack tolerance. In the future work we will
evaluate the scalability of the framework for very large choreographies. Besides,
we believe that in addition to detection and remediation, it would be necessary
to be able to predict and anticipate future attacks. We think that diagnosis and
prediction techniques would be interesting to investigate in order to improve the
attack detection and tolerance of our approach.

References

1. D. Arsenault, A. Sood, and Y. Huang. Secure, resilient computing clusters: Self-
cleansing intrusion tolerance with hardware enforced security (scit/hes). In The
Second International Conference on Availability, Reliability and Security (ARES’07),
pages 343–350, 2007.

2. P. Beaucamps, D. Reynaud, J.Y. Marion, and E. Filiol. On the impact of malware
on internet voting. In 1st Luxembourg Day on security and reliability, 2009.

3. A. R. Cavalli, A. M. Ortiz, G. Ouffoué, C. A. Sanchez, and F. Zaïdi. Design of a
secure shield for internet and web-based services using software reflection. In Web
Services – ICWS 2018. Springer International Publishing, 2018.

4. S. Estehghari and Y. Desmedt. Exploiting the client vulnerabilities in internet
e-voting systems: Hacking helios 2.0 as an example. In Proceedings of the 2010
International Conference on Electronic Voting Technology/Workshop on Trustworthy
Elections, pages 1–9. USENIX Association, 2010.

5. M. Ficco and M. Rak. Intrusion tolerant approach for denial of service attacks to
web services. In Proceedings of the 2011 First International Conference on Data
Compression, Communications and Processing, CCP ’11, pages 285–292. IEEE
Computer Society, 2011.

6. T. Furtado, E. Francesquini, N. Lago, and F. Kon. A middleware for reflective
web service choreographies on the cloud. In Proceedings of the 13th Workshop on
Adaptive and Reflective Middleware, ARM ’14, pages 9:1–9:6. ACM, 2014.

7. M. Hennessy and H. Lin. Symbolic bisimulations. Theor. Comput. Sci., 138(2):353–
389, 1995.

8. B. B. Madan and K. S. Trivedi. Security modeling and quantification of intrusion
tolerant systems using attack-response graph. Journal of High Speed Networks,
13(4):297–308, 2004.

9. Huu Nghia Nguyen. Une Approche Symbolique pour la Vérification et le Test des
Chorégraphies de Services. PhD thesis, Université Paris-Sud, 2013.

10. D. O’Brien, R. Smith, T. Kappel, and C. Bitzer. Intrusion tolerance via network
layer controls. In Proceedings DARPA Information Survivability Conference and
Exposition, volume 1, pages 90–96 vol.1, 2003.

11. S. Pavel, J. Noyé, P. Poizat, and J-C. Royer. A java implementation of a component
model with explicit symbolic protocols. In Software Composition. Springer Berlin
Heidelberg, 2005.

18 Georges Ouffoué et al.

12. Z. Qiu, X. Zhao, C. Cai, and H. Yang. Towards the Theoretical Foundation of
Choreography. In Proc. of WWW’07, 2007.

13. B. Sadegh and M. A. Azgomi. A new architecture for intrusion-tolerant web
services based on design diversity techniques. Journal of Information Systems and
Telecommunication (JIST), Autumn 2015.

14. P. Sousa, A. Bessani, N. F. Neves, and R. Obelheiro. The forever service for
fault/intrusion removal. In Proceedings of the 2Nd Workshop on Recent Advances
on Intrusiton-tolerant Systems, WRAITS ’08, pages 5:1–5:6. ACM, 2008.

15. P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo. Resilient
intrusion tolerance through proactive and reactive recovery. In 13th Pacific Rim
International Symposium on Dependable Computing (PRDC 2007), pages 373–380,
2007.

16. A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy, H. Saïdi,
V. Stavridou, and T. ás E. Uribe. An architecture for an adaptive intrusion-tolerant
server. In Security Protocols, 10th International Workshop, Cambridge, UK, April
17-19, 2002, Revised Papers, pages 158–178, 2002.

17. A. Valdes, M. Almgren, S. Cheung, Y. Deswarte, B. Dutertre, J. Levy, H. Saïdi,
V. Stavridou, and T. Uribe. An architecture for an adaptive intrusion-tolerant
server. In Security Protocols, pages 158–178. Springer Berlin Heidelberg, 2004.

18. P. E. Verissimo, N. F. Neves, C. Cachin, J. Poritz, D. Powell, Y. Deswarte, R. Stroud,
and I. Welch. Intrusion-tolerant middleware: the road to automatic security. IEEE
Security Privacy, 4(4):54–62, 2006.

19. F. Wang, U. Raghavendra, and C. Killian. Analysis of techniques for building
intrusion tolerant server systems. In IEEE Military Communications Conference
(MILCOM), volume 2, pages 729–734, 2003.

	Attack tolerance for services-based applications in the Cloud.

