
HAL Id: hal-02520041
https://inria.hal.science/hal-02520041

Submitted on 26 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Temporal Diagnosis of Discrete-Event Systems with
Dual Knowledge Compilation

Nicola Bertoglio, Gianfranco Lamperti, Marina Zanella

To cite this version:
Nicola Bertoglio, Gianfranco Lamperti, Marina Zanella. Temporal Diagnosis of Discrete-Event Sys-
tems with Dual Knowledge Compilation. 3rd International Cross-Domain Conference for Machine
Learning and Knowledge Extraction (CD-MAKE), Aug 2019, Canterbury, United Kingdom. pp.333-
352, �10.1007/978-3-030-29726-8_21�. �hal-02520041�

https://inria.hal.science/hal-02520041
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Temporal Diagnosis of Discrete-Event Systems
with Dual Knowledge Compilation?

Nicola Bertoglio[0000−0002−7905−5957], Gianfranco Lamperti[0000−0002−1915−6932],
and Marina Zanella[0000−0003−3896−3913]

Department of Information Engineering, University of Brescia, Brescia, Italy
{n.bertoglio001,gianfranco.lamperti,marina.zanella}@unibs.it

Abstract. Diagnosis aims to explain the abnormal behavior of a sys-
tem based on the symptoms observed. In a discrete-event system (DES),
the symptom is a temporal sequence of observations. At the occurrence
of each observation, the diagnosis engine generates a set of candidates,
a candidate being a set of faults: such a process requires costly model-
based reasoning. This is why a variety of knowledge compilation tech-
niques have been proposed; the most notable of them relies on a diagnoser
and requires both the diagnosability of the DES and the generation of
the whole system space. To avoid both diagnosability and total knowl-
edge compilation, while preserving efficiency, a diagnosis technique is
proposed, which is inspired by the two operational modes of the human
mind. If the symptom of the DES is part of the knowledge or experi-
ence of the diagnosis engine, then Engine 1 allows for efficient diagnosis.
If, instead, the symptom is unknown, then Engine 2 comes into play,
which is far less efficient than Engine 1. Still, the experience acquired
by Engine 2 is then integrated into the temporal dictionary of the DES,
which allows for diagnosis in linear time. This way, if the same problem
arises anew, then it will be solved by Engine 1 efficiently. The temporal
dictionary can also be extended by specialized knowledge coming from
scenarios, which are behavioral patterns of the DES that need to be di-
agnosed quickly. As such, the temporal dictionary is open and relies on
dual knowledge compilation.

Keywords: Diagnosis · Discrete-Event Systems · Automata · Temporal
Dictionary · Scenarios · Temporal Explanation · Preprocessing · Knowl-
edge Compilation · Symptom Patterns · Abduction.

1 Introduction

Diagnosis aims at explaining the abnormal behavior of a system based on the
observations relevant to its operation that are perceived from the outside. In the
Artificial Intelligence community, the definition of the task [23] led to the model-
based paradigm [6], according to which the normal behavior of the system to be

? This work was supported in part by Lombardy Region (Italy), project Smart4CPPS,
Linea Accordi per Ricerca, Sviluppo e Innovazione, POR-FESR 2014-2020 Asse I.

2 N. Bertoglio et al.

diagnosed is described by a model and the diagnosis results have to explain the
discrepancies between what has been observed at the system output terminals
and what we expected to observe on grounds of the model itself. The diagnosis
task produces a collection of sets of faulty components, where each set, called a
candidate, is an explanation of the observation. Each candidate explains the ob-
servation as assuming that all the components in the candidate are not behaving
normally and all the others are behaving normally is consistent with the observa-
tion. This consistency-based diagnosis was initially conceived for static systems,
such as combinational circuits. For a dynamical system, a discrete-event system
(DES) [3] model can be adopted, this being a finite automaton. This model
is typically distributed, consisting of several automata that communicate with
one another [2]. Although consistency-based diagnosis is applicable to DESs by
modeling their nominal behavior only [22], a DES specification usually involves
its abnormal behavior also, as in the seminal work by Sampath et al. [25]. The
input of the diagnosis task for a DES is a temporal sequence of observations;
the output is a set of candidates, each candidate being a set of faults, where
a fault is associated with an abnormal state transition represented in the DES
model. Diagnosing a DES becomes a form of abductive reasoning, inasmuch the
candidates are generated based on the trajectories (sequences of state transi-
tions) of the DES that entail the sequence of observations. The approach in [25]
relies on a diagnoser, a data structure that is derived in a preprocessing phase
from the space (or global model) of the DES. Such a diagnoser is exploited on
line, in order to generate a new set of candidate diagnoses upon perceiving each
observation. However, this method requires the generation of the global model
of the DES, which is impractical even for distributed systems of moderate size,
owing to a combinatorial state explosion. Moreover, in order for the diagnoser
to produce a sound and complete set of candidates, the DES is required to fulfill
a formal property called diagnosability. By definition, a DES is diagnosable if
every fault occurred can be detected within a finite number of observable tran-
sitions of the DES while it is moving in a trajectory of its space. Unsurprisingly,
the problem of checking diagnosability has given rise to an extended literature
in the last two decades [5, 8, 30, 4, 21, 28, 24, 20, 26, 19, 29, 27]. One alternative to
the diagnoser approach is the active-system approach [1, 11–13, 15], which nei-
ther requires the generation of the global model nor the diagnosability of the
DES. The rationale behind the traditional active-system approach is to perform
the abduction online, a possibly costly operation that, however, being driven by
the sequence of observations, can only focus on the trajectories that produce
such a sequence. This paper, which stems from the active-system approach,
proposes a novel, more efficient, method to compute a new set of candidate di-
agnoses of a DES upon receiving each observation. The candidates generated by
this technique are endowed with a property, called temporal explanation, which
has so far been missing in the active-system approach. Temporal explanation
is supported by a technique, embedded in the diagnosis engine, called backward
pruning. Efficiency is achieved by preprocessing the system model to construct a
data structure, called a temporal dictionary, which is exploited online, when the

Diagnosis of Discrete-Event Systems with Dual Knowledge Compilation 3

DES is being operated. In contrast with the diagnoser, the temporal dictionary
is not the result of total knowledge compilation, instead it embodies the knowl-
edge relevant to some selected (domain-dependent) behaviors, called scenarios.
In addition, whenever a sequence of observations that is not encompassed by the
dictionary is processed, the dictionary is extended online. In other words, the
dictionary is open and relies on dual knowledge compilation.

2 The Two-Systems Metaphor of the Mind

According to Daniel Kahneman [9], psychologist and Sveriges Riksbank Prize
in Economic Sciences in Memory of Alfred Nobel 2002, two modes of thinking
coexist in the human brain, which correspond to two systems in the mind, called
System 1 and System 2. System 1 operates automatically and quickly, with little
if any effort, and no sense of voluntary control, such as when orienting to the
source of a sudden sound or driving a car in an empty road. By contrast, System 2
operates consciously and slowly, with attention being focused on demanding
mental activities, possibly including complex computations or inferences, such
as when filling out an intricate application form or checking the validity of a
complex argument. Intriguingly, an activity initially performed by System 2,
such as driving a car or playing the piano, may be subsequently operated by
System 1 after appropriate training. This “dual system” architecture of the
mind is a metaphor for the diagnosis approach for DESs presented in this paper.
The proposed diagnosis engine (DE) operates in two different modes resembling
System 1 and System 2 in the human mind, called Engine 1 and Engine 2. If
the diagnosis problem to be solved is part of the knowledge or experience of the
DE, then Engine 1 can solve this problem quickly. If, instead, the problem is not
part of the knowledge or experience of the DE, then comes into play Engine 2,
which requires deep model-based reasoning and, therefore, operates far more
slowly than Engine 1. Still, the experience acquired by Engine 2 in solving the
diagnosis problem can be integrated into the knowledge of the DE, so that, in
the future, the same diagnosis problem can be solved by Engine 1 efficiently.
Besides, the DE is not born naked, that is, without any knowledge except the
model of the DES, otherwise Engine 2 would operate far more frequently than
Engine 1 for a possibly long time. Instead, the DE starts working being already
equipped with specialized knowledge on domain-dependent scenarios that are
considered either most probable or most critical for the safety of the DES (or
the surrounding environment) and, as such, need to be coped with efficiently.

3 Discrete-Event Systems

A DES is assumed to be a network of components, where each component is
endowed with input and output pins and is modeled as a communicating au-
tomaton [2]. Each output pin of a component is connected with an input pin
of another component by a link. The mode in which a transition is triggered in
a component is threefold: (1) spontaneously (formally, by the empty event ε),

4 N. Bertoglio et al.

Fig. 1. DES P (center) and models of the sensor s (left) and the breaker b (right).

Component transition Description

s1 = 〈idle, (ko, {op}), awake〉 s detects a threatening event and commands b to open
s2 = 〈awake, (ok , {cl}), idle〉 s detects a liberating event and commands b to close
s3 = 〈idle, (ko, {cl}, error〉 s detects a threatening event, yet commands b to close
s4 = 〈awake, (ok , {op}), error〉 s detects a liberating event, yet commands b to open

b1 = 〈closed , (op, ∅), open〉 b reacts to the opening command by opening
b2 = 〈open, (cl , ∅), closed〉 b reacts to the closing command by closing
b3 = 〈closed , (op, ∅), closed〉 b does not react to the opening command
b4 = 〈open, (cl , ∅), open〉 b does not react to the closing command
b5 = 〈closed , (cl , ∅), closed〉 b reacts to the closing command by remaining closed
b6 = 〈open, (op, ∅), open〉 b reacts to the opening command by remaining open

Table 1. Transition details for sensor (top) and breaker (bottom) in the DES P.

(2) by an (external) event coming from the extern of the DES, or (3) by an (in-
ternal) event coming from another component of the DES. When a component
performs a transition, it possibly generates new events on its output pins, which
possibly trigger the transitions of other components, where the triggering events
are consumed. A transition generating an output event on a link can occur only
if this link is not occupied by another event already.

Example 1. Centered in Figure 1 is a DES called P (protection) which includes
two components, a sensor s and a breaker b, and one link connecting the (single)
output pin of s with the (single) input pin of b. The model of s (outlined on
the left-hand side) involves three states (denoted by circles) and four transitions
(denoted by arcs). The model of b (outlined on the right-hand side) involves two
states and six transitions. Each component transition t from a state p to a state
p′, triggered by an input event e, and generating a set of output events E, is
denoted by the (angled) triple t = 〈p, (e, E), p′〉, as detailed in Table 1.

For diagnosis purposes, we need to characterize a DES X with its observability
(whether each transition is observable or unobservable) and normality (whether
each transition is normal or faulty). To this end, let T be the set of component
transitions in X , O a finite set of observations, and F a finite set of faults. The
mapping table of X is a function µ(X) : T 7→ (O ∪ {ε}) × (F ∪ {ε}), where
ε is the empty symbol. The table µ(X) can be represented as a finite set of
triples (t, o, f), where t ∈ T, o ∈ O ∪ {ε}, and f ∈ F ∪ {ε}. The triple (t, o, f)
defines the observability and normality of t: if o 6= ε, then t is observable, else t
is unobservable; if f 6= ε, then t is faulty, else t is normal.

Diagnosis of Discrete-Event Systems with Dual Knowledge Compilation 5

Example 2. With reference to the DES P introduced in Example 1, the mapping
table µ(P) includes the following triples: (s1, act , ε), (s2, sby , ε), (s3, act , fos),
(s4, sby , fcs), (b1, opn, ε), (b2, cls, ε), (b3, ε, fob), (b4, ε, fcb), (b5, ε, ε), and (b6, ε, ε),
where the symbols have the following meaning: act = activate, sby = standby,
opn = open, cls = closed, fos = failed to command to open, fcs = failed to
command to close, fob = failed to open, fcb = failed to close.

At each time instant, a DES X is in a state x = (C,L, δ), where C is the array
of the current states of the components, L is the array of the (possibly empty)
events currently placed on the links, and δ is the (possibly empty) set of faults
occurred in X starting from its initial state x0 = (C0, L0, ∅). The occurrence of
a component transition t moves X from a state x to a state x′, in other words,
a transition 〈x, t, x′〉 occurs in X . Hence, assuming that only one component
transition at a time can occur, the process that moves a DES from its initial state
to another state is represented by a sequence of component transitions, called
a trajectory of the DES. The set of possible trajectories of X is specified by a
deterministic finite automaton (DFA) called the diagnosis space of X , namely,

X ∗ = (Σ,X, τ, x0) (1)

where Σ (the alphabet) is the set of component transitions, X is the set of
states, τ is the (deterministic) transition function, τ : X×Σ 7→ X, and x0 is the
initial state.1 Thus, each string T = [t1, . . . , tn] of the regular language of X ∗ is
a trajectory of X . Based on the mapping table µ(X), each trajectory T ∈ X ∗
is associated with one symptom and one diagnosis. The symptom O of T is the
finite sequence of observations involved in T ,

O = [o | t ∈ T, (t, o, f) ∈ µ(X), o 6= ε]. (2)

The diagnosis δ of T is the set of faults marking the accepting state of T in X ∗.
Since a diagnosis is a set, at most one instance of each fault f can be in δ. Hence,
generally speaking, the domain of possible diagnoses is the powerset 2F, which
is finite. By contrast, several instances of the same observation can be in the
symptom O; therefore, the domain of possible symptoms is in general infinite.
We say that the trajectory T implies both O and δ, denoted T ⇒ O and T ⇒ δ,
respectively. Since a trajectory of X is observed as a symptom and since the
observed symptom can be implied by several (possibly infinite) trajectories, it
follows that several diagnoses can be associated with the same symptom, which
are collectively called the explanation of the symptom. Formally, let O be a
symptom of X and δ(T) denote the diagnosis of T . The explanation ∆ of O is
the finite set of diagnoses, called candidates, defined as

∆(O) = { δ(T) | T ∈ X ∗, T ⇒ O}. (3)

1 Implicitly, all states of X ∗ are also accepting (final) states.

6 N. Bertoglio et al.

p∗ C = (s, b) L δ

0 (idle, closed) ε ∅
1 (awake, closed) op ∅
2 (error , closed) cl {fos}
3 (awake, open) ε ∅
4 (awake, closed) ε {fob}
5 (error , closed) ε {fos}
6 (idle, open) cl ∅
7 (error , open) op {fcs}
8 (idle, closed) cl {fob}
9 (error , closed) op {fob, fcs}
10 (idle, open) ε {fcb}
11 (error , open) ε {fcs}
12 (idle, closed) ε {fob}
13 (error , open) ε {fob, fcs}
14 (error , closed) ε {fob, fcs}
15 (error , open) cl {fcb, fos}
16 (awake, closed) op {fob}
17 (error , closed) cl {fob, fos}
18 (error , closed) ε {fcb, fos}
19 (error , open) ε {fcb, fos}
20 (awake, open) ε {fob}
21 (error , closed) ε {fob, fos}
22 (idle, open) cl {fob}
23 (error , open) op {fob, fcs}
24 (idle, open) ε {fob, fcb}
25 (error , open) cl {fob, fcb, fos}
26 (error , open) ε {fob, fcb, fos}
27 (awake, open) op {fcb}
28 (awake, open) ε {fcb}
29 (idle, open) cl {fcb}
30 (error , open) op {fcb, fcs}
31 (idle, closed) ε {fcb}
32 (error , open) ε {fcb, fcs}
33 (awake, closed) op {fcb}
34 (error , closed) cl {fcb, fos}
35 (awake, closed) ε {fob, fcb}
36 (idle, closed) cl {fob, fcb}
37 (error , closed) op {fob, fcb, fcs}
38 (error , open) ε {fob, fcb, fcs}
39 (error , closed) ε {fob, fcb, fcs}
40 (error , closed) ε {fob, fcb, fos}
41 (error , closed) cl {fob, fcb, fos}
42 (idle, closed) ε {fob, fcb}
43 (awake, closed) op {fob, fcb}
44 (awake, open) ε {fob, fcb}
45 (idle, open) cl {fob, fcb}
46 (error , open) op {fob, fcb, fcs}
47 (awake, open) op {fob, fcb}

Fig. 2. Diagnosis space P∗ (left) and relevant state details (right).

Diagnosis of Discrete-Event Systems with Dual Knowledge Compilation 7

Example 3. With reference to the DES P introduced in Example 1 (cf. Figure 1
and Table 1), outlined on the left side of Figure 2 is the diagnosis space P∗, where
states are identified by numbers 0 .. 47; state details are listed in the table on the
right side. Specifically, each state p∗ ∈ P∗ is represented by a triple (C,L, δ),
where C is the pair of states of the sensor s and the breaker b, L is the (possibly
empty) event within the link, and δ is the diagnosis associated with p∗. Owing to
cycles, the set of possible trajectories of P is infinite. One of these trajectories is
[s1, b1, s2, b4], ending in the state 10 = ((idle, open), ε, {fcb}), which corresponds
to the following events: s detects a threatening event and commands b to open;
b opens; s detects a liberating event and commands b to close; still, b remains
open. In fact, the diagnosis {fcb} accounts for the failing of the breaker to close.

When diagnosis is performed online, while the DES is being monitored, some
sort of diagnosis information is expected at the occurrence of each observation.
This is captured by the notion of a temporal explanation.

Definition 1. Let O = [o1, . . . , on] be a symptom of X and T a trajectory of X
implying O. Let O[i], i ∈ [0 .. n], denote the prefix of O up to oi. Let T[i], i ∈
[0 .. n], denote either T , if i = n, or the prefix of T up to the transition preceding
the (i+ 1)-th observable transition in T , if 0 ≤ i < n. The temporal explanation
of O is the sequence of sets of candidate diagnoses, ∆(O) = [∆0, ∆1, . . . ,∆n],
where each ∆i, i ∈ [0 .. n], is the minimal set of diagnoses defined as follows:

T ∈ X ∗,∀i ∈ [0 .. n]
(
∆i ⊇

{
δ(T[i]) | T[i] ⇒ O[i]

})
. (4)

Example 4. Let O = [act , opn, sby , act , cls] be a symptom of the DES P. As
such, O is implied by just one trajectory, namely T = [s1, b1, s2, b4, s3, b2]. Thus,
∆(O) = [∆0, ∆1, ∆2, ∆3, ∆4, ∆5], where ∆0 = ∆1 = ∆2 = {∅}, ∆3 = {{fcb}},
and ∆4 = ∆5 = {{fcb, fos}}.

When a DES is being monitored, the temporal explanation needs to be updated
at the occurrence of each newly generated observation, as the symptom of the
DES is not output in one shot, but one observation at a time. Still, updating
the temporal explanation at the occurrence of the observation oi+1 does not boil
down to simply extending ∆(O[i]) by ∆i+1. Instead, generally speaking, each
∆j , j ≤ i, needs to be updated (specifically, pruned).

Example 5. With reference to Example 4, the temporal explanation of O af-
ter the third observation, is ∆([act , opn, sby]) = [∅, ∅, ∅, {∅, {fcb}, {fcs}}]. The
set ∆3 = {∅, {fcb}, {fcs}} includes the diagnoses relevant to the trajectories
ending in the states 6, 7, 10, or 11 of P∗ (cf. Figure 2). However, after the
reception of the fourth observation, namely act , only the transition up to the
state 10 is consistent (being exited by s1 and s3), which implies the diagnosis
{fcb}. Hence, the other two candidates in ∆3, namely ∅ and {fcs}, are removed,
so that the extended temporal explanation becomes ∆([act , opn, sby , act]) =
[∅, ∅, ∅, {{fcb}}, {{fcb}, {fcb, fos}}], where ∆4 = {{fcb}, {fcb, fos}} is the set of
the diagnoses implied by the trajectories ending in states 15, 19, 27, or 28.

8 N. Bertoglio et al.

4 Temporal Dictionary

A technique for preprocessing a DES X in order to generate a DFA, the temporal
dictionary, for supporting the online diagnosis of X efficiently is presented.

Definition 2. Let X ∗ be a diagnosis space. Let X ∗n be the nondeterministic finite
automaton (NFA) obtained from X ∗ by substituting the observation o for the
component transition t marking each transition in X ∗, where (t, o, f) ∈ µ(X).
The temporal dictionary of X is the DFA X~ obtained by the determinization
of X ∗n , which is decorated by the following additional information:

1. Each state x~ in X~ is marked with the sets bx~c, ‖x~‖, and ∆(x~), where:

(a) bx~c is the set of states of X ∗n included in x~,2

(b) ‖x~‖ is the set of pairs (x∗1, x
∗
2) where x∗1 ∈ bx~c, x∗2 ∈ bx~c, x∗1 is

entered by an observable transition in X ∗n , x∗2 is exited by an observable
transition in X ∗n , and there is a (possibly empty) sequence of ε-transitions
in X ∗n connecting x∗1 with x∗2,

(c) ∆(x~) is the set of diagnoses associated with the X ∗n states in bx~c;
2. Each transition 〈x~1 , o, x

~
2 〉 in X~ is marked with b〈x~1 , o, x

~
2 〉c, denoting the

set of transitions 〈x∗1, o, x∗2〉 in X ∗n where x∗1 ∈ bx~1 c and x∗2 ∈ bx~2 c.

Proposition 1. The language of X~ equals the set of possible symptoms of X .
Besides, if O is a symptom in X~ with accepting state x~, then ∆(x~) = ∆(O).

Remarkably, according to Proposition 1, the explanation of a symptom O is
materialized in the state of the temporal dictionary accepting the string O,
hence making the generation of the explanation of O very efficient.

Example 6. With reference to the diagnosis space P∗ in Figure 2, the tempo-
ral dictionary P~ is outlined on the left side of Figure 3, with explanations
being listed in the table shown on the right side. Details of states and tran-
sitions are displayed in Figure 4. Specifically, each (shadowed) state p~ incor-
porates the relevant set bp~c of P∗ states, along with the set of connections
‖p~‖, indicated by internal arcs. Each transition 〈p~, o, p′~〉 is unfolded into
the set of transitions b〈p~, o, p′~〉c in P∗. In accordance with Proposition 1,
given O = [act , opn, sby , act , cls], which has accepting state 8 in P~, we have
∆(8) = {{fcb, fos}} = ∆(O) (cf. Example 4).

Based on Definition 1, the temporal explanation of O = [o1, . . . , on] is a sequence
∆(O) = [∆0, ∆1, . . . ,∆n] where each ∆i, i ∈ [0 .. n], is the set of diagnoses im-
plied by T[i], where T[i] also implies O[i]. Here, the key point is that the same tra-
jectory T must fulfill these conditions for all prefixes O[i]. This property makes
a temporal explanation consistent: for each diagnosis δi ∈ ∆i, i ∈ [0 .. (n− 1)],
there is a diagnosis δi+1 ∈ ∆i+1 such that δi ⊆ δi+1, and vice versa.

2 According to the Subset Construction determinization algorithm [7], each state of
the DFA is identified by a subset of the states of the NFA.

Diagnosis of Discrete-Event Systems with Dual Knowledge Compilation 9

State p~ Explanation ∆(p~)

0 {∅}
1 {∅, {fob}, {fos}}
2 {∅}
3 {{fob, fcs}}
4 {{fob}, {fob, fcs}}
5 {∅, {fcb}, {fcs}}
6 {{fob}, {fob, fos}}
7 {{fcb}, {fcb, fos}}
8 {{fcb, fos}}
9 {{fob}}
10 {{fob}}
11 {{fcb}, {fcb, fcs}}
12 {{fob}, {fob, fcb}, {fob, fcs}}
13 {{fcb}}
14 {{fcb}}
15 {{fob, fcb, fos}}
16 {{fob, fcb}, {fob, fcb, fos}}
17 {{fcb}, {fob, fcb}, {fcb, fos}}
18 {{fob, fcb}, {fob, fcb, fcs}}
19 {{fob, fcb, fcs}}
20 {{fob, fcb}, {fob, fcb, fos}}
21 {{fob, fcb}}
22 {{fob, fcb}}
23 {{fob, fcb}, {fob, fcb, fcs}}

Fig. 3. Temporal dictionary P~ (left) and relevant explanations (right).

Example 7. Consider the symptom O = [act , opn, sby , act , cls] in regard to the
temporal dictionary P~ outlined in Figure 3. The accepting states of O[i], i ∈
[0 .. 5], are 0, 1, 2, 5, 7, and 8, respectively, which are marked with the sets of diag-
noses∆(0) = {∅},∆(1) = {∅, {fob}, {fos}},∆(2) = {∅},∆(5) = {∅, {fcb}, {fcs}},
∆(7) = {{fcb}, {fcb, fos}}, and ∆(8) = {{fcb, fos}}. However, the sequence
[∆(0), ∆(1), ∆(2), ∆(5), ∆(7), ∆(8)] does not expand consistently and, hence,
can not be the temporal explanation of O.

Example 7 clearly shows that the temporal explanation of O cannot simply
be the sequence of the explanations of each O[i], because only a subset of the
trajectories implying O[i] are in general prefixes of the trajectories implying
O[i+1], as a consequence of the constraints imposed by the new observation oi+1.

Example 8. With reference to Example 7, we have [∆(0), ∆(1), ∆(2)] = [{∅},
{∅, {fob}, {fos}}, {∅}]. Clearly, ∆(2) = {∅} is not a consistent expansion of
∆(1) = {∅, {fob}, {fos}}. In fact, considering P~ outlined in Figure 4, initially
we have ∆0 = ∆(0) = {∅}. At the reception of the first observation act , the
accepting state in P~ is 1, thereby ∆(1) is the set of diagnoses associated with
the states within 1, namely {∅, {fob}, {fos}}. At the reception of the second
observation opn, the accepting state becomes 2, including just the X ∗ state
3 = ((awake, open), ε, ∅). Hence, we have ∆(2) = {∅}. The point is, after the
occurrence of the observation opn, as clearly indicated in Figure 4, the only tra-
jectory in P∗ that is consistent with [act , opn] is 0→ 1→ 3. Consequently, the

10 N. Bertoglio et al.

Fig. 4. Details of the temporal dictionary P~ outlined in Figure 3.

candidate diagnoses associated with the P∗ states 2, 4, and 5 in the state 1 need
to be removed from ∆1, thereby obtaining [∆0, ∆1, ∆2] = [∅, ∅, ∅], which, based
on Definition 1, is in fact the temporal explanation of [act , opn]. In the worst
case, this pruning needs to be propagated backward in ∆(O) up to ∆0.

When a DES X is being operated, a symptom of X is generated one observation
at a time. Assuming that the current symptom is O[i] = [o1, . . . , oi] and the
corresponding temporal explanation ∆(O[i]) has been generated already, the oc-
currence of a new observation oi+1 requires the diagnosis engine to expand the
temporal explanation by the insertion of ∆i+1 and, in the worst case, by the
backward pruning of ∆i, ∆i−1, . . . ,∆0, thereby generating the temporal expla-
nation ∆(O[i+1]). In order to perform this task efficiently, each diagnosis set ∆i

Diagnosis of Discrete-Event Systems with Dual Knowledge Compilation 11

in the temporal explanation is associated with additional information, leading
to the notion of a temporal abduction (Definition 3).

Definition 3. Let O = [o1, . . . , on] be a symptom of X . The temporal abduc-
tion A of O is a sequence A(O) = [α0, α1, . . . , αn], where ∀i ∈ [0 .. n], αi =(
X∗i , x

~
i , ∆i

)
, where x~i is the accepting state of O[i] in X~, while X∗i ⊆ bx

~
i c

and ∆i ⊆ ∆
(
x~i

)
are defined by the following rules:

1. X∗0 = ∅;
2. ∆n = ∆ (x~n);
3. If n 6= 0, then X∗n =

{
x∗n | (x∗n−1, on, x∗n) ∈ b(x~n−1, on, x~n)c

}
;

4. If i < n, then ∆i = {δi | x∗i = (Ci, Li, δi), 〈x∗i , oi, x∗i+1〉 ∈ b〈x
~
i , oi, x

~
i+1〉c,

x∗i+1 ∈ X∗i+1};
5. If i 6= 0 and i 6= n, then X∗i = {x∗i | (x∗i , x′i

∗
) ∈

∥∥x~i ∥∥ , 〈x′i∗, oi, x∗i+1〉 ∈
b〈x~i , oi, x

~
i+1〉c, x∗i+1 ∈ X∗i+1}.

That is, the temporal abduction of O is a sequence of triples
(
X∗i , x

~
i , ∆i

)
, where

x~i is the accepting state of O[i] in the temporal dictionary X~, ∆i happens to
equal the homonymous element in ∆(O) (cf. Proposition 2 below), and X∗i is the
set of X ∗ states that are entered by the trajectories fulfilling Definition 1. When
a new observation occurs while monitoring X , the set X∗i is key to backward
pruning the temporal abduction, as illustrated in the next example.

Example 9. With reference to the temporal dictionary P~ (Figures 3 and 4),
consider the symptom O defined in Example 7, where O[4] = [act , opn, sby , act].
Based on Definition 3, we have A(O[4]) = [(∅, 0, {∅}), ({1}, 1, {∅}), ({3}, 2, {∅}),
({6}, 5, {{fcb}}), ({15, 27}, 7, {{fcb}, {fcb, fos}})], where the diagnosis set in the
last triple incorporates the diagnoses marking the P∗ states 15, 19, 27, and 28
(those included in the state 7 of P~). Then, assume the occurrence of the new
observation cls, leading to the accepting state 8 of P~. Based on Definition 3, we
have (rule 2) ∆5 = ∆(8) = {{fcb, fos}} and (rule 3) X∗5 = {18}. In other words,
α5 = ({18}, 8, {{fcb, fos}}). Now, backward pruning starts. First, based on X∗5 ,
we get (rules 4) ∆4 = {{fcb, fos}}, where {fcb, fos} is associated with the state
15 and the diagnosis {fcb} has been removed, and (rule 5) X∗4 = {15}, where
the state 27 has been removed. At this point, the application of the same rules
based on X∗4 has no effect on α3: since X∗3 = {6} is unchanged, the backward
pruning stops and eventually A(O[5]) fulfills Definition 3.

Proposition 2. If O is a symptom of X , then

∆(O) =
[
∆i | (X∗i , x~i , ∆i) ∈ A(O)

]
. (5)

Based on Proposition 2, the temporal explanation ∆(O) can be generated as a
projection of the abduction A(O). The temporal explanation is required to be
generated while the DES is being monitored: starting from the initial diagnosis
set ∆0, which corresponds to the empty symptom, the temporal explanation is
constructed one observation at a time. Assuming that the temporal explanation
∆(O[i]) of the current symptom up to the i-th observation is available, the
occurrence of the observation oi+1 requires the generation of ∆(O[i+1]).

12 N. Bertoglio et al.

Algorithm 1 Abduce

1: procedure Abduce(X~, O[i], A, oi+1)
2: X~ =

(
Σ,X~, τ~, x~0

)
: the temporal dictionary of X

3: O[i] = [o1, . . . , oi]: the prefix of a symptom of X up to the i-th observation
4: A = [α0, α1, . . . , αi]: the abduction of O[i]

5: oi+1: the next observation of X
6: begin
7: Let x~i be the state of X~ in the triple αi

8: x~i+1 ← τ~(x~i , oi+1)
9: ∆i+1 ← ∆(x~i+1)

10: X∗i+1 ←
{
x∗i+1 | (x∗i , oi+1, x

∗
i+1) ∈ b(x~i , oi+1, x

~
i+1)c

}
11: Extend A by the new triple αi+1 =

(
X∗i+1, x

~
i+1,∆i+1

)
12: for all j from i downto 0 do # Backward pruning of the temporal abduction
13: Let αj = (X∗j , oj ,∆j) be the j-th triple in A
14: ∆new ←

{
δj | x∗j = (xj , δj), (x

∗
j , oj , x

∗
j+1) ∈ b(x~j , oj , x

~
j+1)c, x~j+1 ∈ X

∗
j+1

}
15: if ∆new 6= ∆j then
16: Substitute ∆new for ∆j in αj

17: end if
18: if i 6= 0 then # Based on rule 1 of Definition 3, the value of X∗0 is fixed to ∅
19: X∗new ←

{
x∗j | (x∗j , x′j

∗
) ∈

∥∥x~j ∥∥ , (x′j∗, oj , x∗j+1) ∈ b(x~j , oj , x
~
j+1)c, x∗j+1 ∈ X∗j+1

}
20: if X∗new 6= X∗j then
21: Substitute X∗new for X∗j in αj

22: else
23: break # If X∗new equals X∗j , then backward pruning has no effect
24: end if
25: end if
26: end for
27: end procedure

5 The Abduce Algorithm

In operational terms, the generation of the temporal explanation is specified by
the Abduce algorithm (Algorithm 1, lines 1–27). Given the temporal dictionary
X~, the current symptom O[i], the corresponding temporal abductionA, and the
new observation oi+1, the algorithm updates A to obtain the temporal abduction
of O[i+1]. To this end, the accepting state x~i+1 of O[i+1] is determined (lines 7
and 8). Then, based on the rules 3 and 4 of Definition 3, ∆i+1 and X∗i+1 are
generated (lines 9 and 10), thus allowing for the construction of the new triple
αi+1 (line 11). Backward pruning is performed in lines 12–26. Each triple αj ,
with j ranging from i down to 0, is updated based on the rules 4 and 5 of
Definition 3. However, this pruning may stop before the natural end of the loop,
namely when X∗new equals X∗j (line 23). If this condition holds, then, based on
Definition 3, all the triples α0, . . . , α

∗
j−1 keep the same value.

Example 10. With reference to Figure 3 and Figure 4, consider the temporal
dictionary P~. Let O = [act , opn, sby , act , cls] be a symptom of P. Traced in
Table 2 is the generation of the temporal abduction A(O), one observation at

Diagnosis of Discrete-Event Systems with Dual Knowledge Compilation 13

Table 2. Incremental generation of A([act , opn, sby , act , cls]) by the Abduce algorithm.

i α0 α1 α2 α3 α4 α5

0 (∅, 0, {∅})
1 (∅, 0, {∅}) ({1, 2}, 1, {∅, {fob}, {fos}})
2 (∅, 0, {∅}) ({1,�2}, 1, {∅,���{fob},���{fos}}) ({3}, 2, {∅})
3 (∅, 0, {∅}) ({1}, 1, {∅}) ({3}, 2, {∅}) ({6, 7}, 5, {∅, {fcb}, {fcs}})
4 (∅, 0, {∅}) ({1}, 1, {∅}) ({3}, 2, {∅}) ({6,�7}, 5, {�∅, {fcb},���{fcs}}) ({15, 27}, 7, {{fcb}, {fcb, fos}})
5 (∅, 0, {∅}) ({1}, 1, {∅}) ({3}, 2, {∅}) ({6}, 5, {{fcb}}) ({15,��27}, 7, {���{fcb}, {fcb, fos}}) ({18}, 8, {{fcb, fos}})

a time, where pruning is denoted by strike-through. Each row i of the table
represents the configuration of the temporal abduction after the reception of the
i-th observation. Initially (i = 0), based on rules 1 and 2 of Definition 3, we
have α0 = (∅, 0, {∅}). Upon the reception of o1 = act , according to Algorithm 1,
the accepting state is x~1 = 1, thereby ∆1 = ∆(1) = {∅, {fob}, {fos}} and X ∗1 =
{1, 2}. Backward pruning has no effect. Upon the reception of o2 = opn, the new
triple is α2 = ({3}, 2, {∅}). In this case, backward pruning removes the candidates
{fob} and {fos} from ∆1, as only the transition 〈1, opn, 3〉 in X∗1 is involved (cf.
Figure 4). However, since X∗1 is unchanged, no further pruning is applied. The
reception of o3 = sby moves to the accepting state x~3 = 5, thereby creating
the new triple α3 = ({6, 7}, 5, {∅, {fcb}, {fcs}}), without backward pruning. The
reception of o4 = act moves to the accepting state x~4 = 7, thereby creating the
new triple α4 = ({15, 27}, 7, {{fcb}, {fcb, fos}}). Since the involved transition
exits state 10 in x~3 = 5, ∆3 is reduced to {{fcb}}, where {fcb} is the diagnosis
marking the state 10. Furthermore, the state 7 is removed from X∗3 , because
it is not connected with 10. No further pruning is applicable. Finally, after the
reception of the last observation o5 = cls, the accepting state is x~5 = 8, thereby
generating the triple α5 = ({18}, 8, {{fcb, fos}}). Since the involved transition
exits the state 15 in x~4 = 7, ∆4 is reduced to {{fcb, fos}}. Also, the state 27
is removed from X∗4 . No other pruning is applicable. Eventually, according to
Proposition 2, we have∆(O) = [{∅}, {∅}, {∅}, {{fcb}}, {{fcb, fos}}, {{fcb, fos}}],
which in fact equals the temporal explanation determined in Example 4 based on
Definition 1. The sequence clearly shows to an operator in charge of monitoring
the system (and possibly of performing recovery actions) that no fault occurred
up to the second observation; then, two faults occurred in cascade, namely fcb
and fos. Without backward pruning, the list of sets of candidate diagnoses is
[{∅}, {∅, {fob}, {fos}}, {∅}, {∅, {fcb}, {fcs}}, {{fcb}, {fcb, fos}}, {{fcb, fos}}], the
interpretation of which may be misleading to the operator. After all, the latter
is not the temporal explanation of O.

6 Dual Knowledge Compilation

A temporal dictionary X~ is an extremely efficient tool for supporting the diag-
nosis of DESs. In theory, the temporal dictionary allows the DE to operate always
in quick mode by Engine 1, with Engine 2 never coming into play. However, the

14 N. Bertoglio et al.

temporal dictionary requires total knowledge compilation, which is out of dispute
for practical reasons. So, in order to escape from total knowledge compilation
and somewhat retaining the advantage of Engine 1, we propose a restricted dic-
tionary that expands over time either by experience or by the injection of specific
knowledge. In other words, we propose dual knowledge compilation based on an
open dictionary. Intuitively, an open dictionary is a subgraph of the temporal
dictionary whose language is a subset of the language of the temporal dictio-
nary (the set of symptoms of the DES). As such, each symptom O in the open
dictionary is associated with ∆(O), the sound and complete set of candidate
diagnoses that explain O. Hence, despite being sound (but not complete) in the
set of symptoms, the open dictionary is sound and complete in the explanation
of the symptom, provided that the symptom is included in the language of the
open dictionary. What is the initial configuration of the open dictionary? We
suggest to initialize the open dictionary with a prefix of the temporal dictionary,
as specified in Definition 4.

Definition 4. Let X~ be a temporal dictionary. The distance of a state x~ in
X~ is the minimum number of transitions connecting the initial state of X~ with
x~. The prefix of X~ up to a distance d ≥ 0, denoted X~

[d], is the subgraph of

X~ comprehending all the states at distance ≤ d and all the transitions exiting
the states at distance < d.

Example 11. With reference to Figure 3, the prefix of P~ up to distance 2,
namely P~

[2], is displayed on the left side of Figure 5.

A prefix X~
[d] provides the explanation of every symptom that is not longer than

d. If X~
[d] embodies a cycle (which is not the case in P~

[2]), it also provides the

explanation of the infinite set of symptoms encompassing this cycle. However,
any symptom longer than d may not belong to the language of X~

[d], such as

O = [act , sby , opn] in P~
[2]. In this case, comes into play Engine 2, which generates

the temporal explanation ∆(O) based on the abduction of O, namely a DFA
whose language is the subset of the trajectories of X implying O. To this end,
Engine 2 performs model-based reasoning to reconstruct the subspace of X~

required. Once provided the temporal explanation ∆(O), the experience acquired
by the DE can be integrated into the open dictionary based on the symptom

Fig. 5. From left to right, expansion of the open dictionary: P~
[2], P

~
[2,O], and P~

[2,O,S].

Diagnosis of Discrete-Event Systems with Dual Knowledge Compilation 15

Fig. 6. (Simple) symptom pattern O∗, where O = [act , sby , opn].

pattern of O. However, the notion of a symptom pattern goes beyond a (plain)
symptom, as specified below.

Definition 5. A symptom pattern of a DES X is a DFA whose language is a
subset of the symptoms of X .

A special (and very simple) case of symptom pattern is associated with each
symptom O, denoted O∗, which is the DFA recognizing O (the language of O∗
is the singleton {O}).

Example 12. Displayed in Figure 6 is the symptom pattern ofO = [act , sby , opn].
Another (circular) symptom pattern is displayed on the bottom-right side of Fig-
ure 7 (cf. Example 16).

Given a symptom pattern O∗, the language of an open dictionary X~ can be
extended by the language of O∗ by means of the Dictionary Extension algorithm
listed below (cf. Algorithm 2, lines 1–31). We assume that each state x~ in
X~ is equipped with a labeling set, denoted Ω(x~) (initially empty), which
is instantiated with states in O∗. The algorithm aims to match O∗ with the
language of X~. When the matching of an observation o succeeds, the labeling
set of the state reached in X~ is extended by the state reached in O∗(provided it
is not included). If the matching fails, then X~ is extended by a new transition
and, possibly, by a new state. Let 〈x~, o, x′~〉 be the missing transition in X~.
Based on lines 13–15, the new state x′

~
is generated first by determining the set

of X ∗ states exited by a transition marked by o and, then, by extending this set
with all the transitions exiting these states that are marked by an unobservable
component transition. It should be clear that X ∗ is not materialized: only the
states required are actually generated starting from the X ∗ states within x~ and
stored in X~. Once all the transitions exiting the state ω ∈ O∗ considered have
been processed, ω ∈ Ω(x~) is marked (line 27). Given ω ∈ Ω(x~), two cases are
possible. If ω is not marked, then the transition function of x~ in X~ needs to
be checked against O∗. If, instead, ω is marked, then the update of the transition
function of x~ is completed. Hence, since it is impossible to insert ω into Ω(x~)
if included already, once ω is marked, the processing of ω is inhibited, thereby
preventing the infinite matching of cycles in O∗.

Example 13. Consider the open dictionary P~
[2] in Figure 5 (left) and the symp-

tom pattern O∗ in Figure 6. The extension of P~
[2] based on O∗ by Algorithm 2

is performed as follows (to distinguish from O∗ states, the states of the open
dictionary are in bold). Initially, the labeling set Ω(0) is {0}, where 0 is the
initial state of O∗. Since both act and sby are matched, the labeling sets of the

16 N. Bertoglio et al.

Algorithm 2 Dictionary Extension

1: procedure Dictionary Extension(X~, O∗)
2: X~ = (Σ,X~, τ~, x~0): an open dictionary of X
3: O∗ = (Σω, Ω, τω, ω0, Ωf): a symptom pattern of X
4: begin
5: Insert ω0 into the labeling set Ω(x~0)
6: repeat
7: Choose a state x~ ∈ X~ such that there is an unmarked ω ∈ Ω(x~)
8: for all unmarked ω ∈ Ω(x~) do
9: for all transitions 〈ω, o, ω′〉 ∈ τω do

10: if 〈x~, o, x′~〉 ∈ τ~ then
11: Insert ω′ into Ω(x′

~
) only if ω′ /∈ Ω(x′

~
)

12: else
13: X∗o ← {x′

∗ | x∗ ∈ x~, 〈x∗, o, x′∗〉 ∈ τ(X ∗)}
14: X̂∗o ← the set of states in X ∗ that are reachable from a state in X∗o by

a sequence of transitions 〈x∗i , t, x∗j 〉 with t being unobservable

15: X̄∗o ← X∗o ∪ X̂∗o
16: if X~ includes a state x′

~
= X̄∗o then

17: Insert into τ~ the new transition 〈x~, o, x′~〉
18: Insert ω′ into Ω(x′

~
) only if ω′ /∈ Ω(x′

~
)

19: else
20: Insert into X~ the new state x′

~
= X̄∗o

21: ∆(x′
~

)← {δ | x∗ ∈ x′~, x∗ = (C,L, δ)}
22: Label x′

~
with the singleton Ω(x′

~
) = {ω′}

23: Insert into τ~ the new transition 〈x~, o, x′~〉
24: end if
25: end if
26: end for
27: Mark ω within the labeling set Ω(x~)
28: end for
29: until there is no x~ ∈ X~ such that Ω(x~) includes an unmarked state
30: Empty all the nonempty labeling sets Ω(x~)
31: end procedure

involved states become Ω(1) = {1} and Ω(4) = {2}. Now, since no transition
marked by opn exits 4, the missing dictionary state x′

~
= 3 is generated first

computing X∗opn = {13}, where 13 is the state reached by the P∗ state 9 (cf.

Figure 2). However, since no transition exits 13 in P∗, we have X̂∗opn = ∅ and,

hence, X̄∗opn = {13} = 3. Since it is missing, the state 3 is inserted into P~
[2]

and marked by the explanation ∆(3) = {{fob, fcs}}. Eventually, the state 3
is labeled with Ω(3) = {3} and the transition 〈4, opn,3〉 is created. Since no
transition exits the state 3 in O∗, the processing of ω = 3 has no effect and the
condition of termination in line 29 is true, thereby ending the loop. The updated
open dictionary, namely P~

[2,O], is shown in the center of Figure 5.

Based on Example 13, one may argue that, since the prefix of the symptom
O = [act , sby , opn] up to the second observation, namely [act , sby], is already in

Diagnosis of Discrete-Event Systems with Dual Knowledge Compilation 17

the language of P~
[2], it might be convenient to avoid generating the abduction of

O by Engine 2. Instead, the extension of the dictionary might be performed on
the fly to eventually obtain the explanation from the state 3 created. Actually,
this is reasonable in general: Algorithm 2 can actually serve two purposes: either
to extend the language of the open dictionary with the language of the symptom
pattern or to perform the diagnosis of a given symptom. In either case, Engine 1
matches the observation pattern with the dictionary, whereas Engine 2 performs
model-based reasoning to generate the portion of the dictionary that is missing.

7 Scenarios

An open dictionary X~ can be extended with (a possibly infinite number of)
new symptoms. The simplest way is adding a symptom O that was previously
explained by Engine 2, as in Example 13. If O is generated in X~ by a path of
transitions involving a cycle, then the language of X~ will be extended not only
with O, but also with the infinite symptoms involved in the circular path. For
example, extending P~

[2] in Figure 5 with the symptom [act , opn, sby , cls] actually

extends P~
[2] with the infinite set of symptoms generated by the circular path

0 → 1 → 2 → 5 → 0. The dictionary can also be extended based on particular
behavioral patterns of the DES, called scenarios. A scenario is a behavior of
the DES that is considered either most probable or most critical and, hence,
is required to be explained efficiently. The idea is to generate the symptom
pattern of the scenario and to extend the language of the open dictionary with
its language. This way, each symptom generated from now on by a trajectory
that conforms with the scenario will be explained by Engine 1 quickly.

Definition 6. A scenario of a DES X is a pair S = (Σ,L), where Σ is a subset
of the component transitions in X and L is a regular language on Σ.

Since Σ is a subset of the component transitions in X , all the transitions not
included in Σ are irrelevant to the scenario. Therefore, in general, a string in L
is not a trajectory of X .

Example 14. The scenario in which the breaker is stuck closed can be defined
as S = (Σ,L), where Σ = {s3, s4, b1, b2, b3, b4} and L is specified by the regular
expression b3 b3 b

∗
3 (namely, b3 repeated at least twice).3

Definition 7. Let S = (Σ,L) be a scenario of X . The restriction of a trajectory
T in X ∗ on Σ is the sequence TΣ = [t | t ∈ T, t ∈ Σ]. The abduction of S,
denoted X ∗S , is a DFA whose language is the set {T | T ∈ X ∗, TΣ ∈ L}.

In other words, the abduction of a scenario S is a subspace of X ∗ where each
trajectory T conforms to one string of the scenario, in the sense that the subse-
quence of the component transitions in T that are in Σ is a string in L.

3 A regular expression is defined inductively on the alphabet Σ. The empty symbol
ε is a regular expression. If a ∈ Σ, then a is a regular expression. If x and y are
regular expressions, then the followings are regular expressions: x | y (alternative),
x y (concatenation), x? (optionality), and x∗ (repetition zero or more times).

18 N. Bertoglio et al.

Fig. 7. L̂ (top-left), P∗S (top-right), and O∗S (bottom).

Example 15. Consider the scenario S defined in Example 14. The generation of
the abduction P∗S is based on the DFA recognizing the language L, namely L̂,
shown on the top-left of Figure 7. The DFA representing P∗S is displayed on the

top-right of the same figure, where each state is a pair (p∗, ˆ̀), where p∗ is a state

of P∗ and ˆ̀ a state of L̂. A state (p∗, ˆ̀) is final when ˆ̀ is final.

Definition 8. Let S = (Σ,L) be a scenario of a DES X and X ∗S the abduction
of S. Let N be the NFA obtained from X ∗S by substituting 〈x, o, x′〉 for every
transition 〈x, t, x′〉, where (t, o, f) ∈ µ(X). The symptom pattern of the scenario
S, denoted O∗S , is the minimum DFA equivalent to N .

Example 16. With reference to the abduction P∗S determined in Example 15
(top-right of Figure 7), shown on the bottom-left side of Figure 7 is the DFA
obtained by determinization of N (cf. Definition 8), where the states {5, 6} and
{6, 9} are equivalent. The minimal DFA, namely the symptom pattern O∗S , is
shown on the bottom-right side of Figure 7.

The language of the symptom pattern O∗S of a scenario S is composed of all the
symptoms with which S manifests itself to the observer. Still, any such symptom
can be implied not only by the trajectories that conform with the scenario, but
also by other trajectories. The extension of the open dictionary based on O∗S
allows for the sound and complete explanation of any symptom in O∗S .

Example 17. Based on Algorithm 2, extending the open dictionary P~
[2,O] (center

of Figure 5) with the symptom pattern O∗S results in the new open dictionary
P~
[2,O,S] shown on the right side of Figure 5.

8 Conclusion

The diagnosis technique presented in this paper is viable and becomes increas-
ingly efficient without requiring the generation of the whole space of the DES;
that is, it works while avoiding total knowledge compilation. The open dictio-
nary is assumed to be initialized before the DES is being operated, starting from
a prefix of the temporal dictionary, which is then integrated with the symptoms
and the candidate diagnoses relevant to a set of scenarios of the DES that are
considered worth being diagnosed efficiently. When the DES is being operated,
dual knowledge compilation can be applied, in other words, the open dictionary

Diagnosis of Discrete-Event Systems with Dual Knowledge Compilation 19

can be enlarged at any time in two ways, either: (a) by incorporating new com-
piled knowledge coming from additional scenarios, or (b) by coping with new
symptoms explained by Engine 2. We are implementing the diagnosis technique
presented in this paper in C++. As future research, we plan to extend the tech-
nique to other classes of DESs, including complex DESs [10, 17, 18, 16, 14].

References

1. Baroni, P., Lamperti, G., Pogliano, P., Zanella, M.: Diagnosis of
large active systems. Artificial Intelligence 110(1), 135–183 (1999).
https://doi.org/10.1016/S0004-3702(99)00019-3

2. Brand, D., Zafiropulo, P.: On communicating finite-state machines. Journal of the
ACM 30(2), 323–342 (1983). https://doi.org/10.1145/322374.322380

3. Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems, The Kluwer
International Series in Discrete Event Dynamic Systems, vol. 11. Kluwer Academic,
Boston, MA (1999). https://doi.org/10.1007/978-0-387-68612-7

4. Cimatti, A., Pecheur, C., Cavada, R.: Formal verification of diagnosability via
symbolic model checking. In: 18th International Joint Conference on Artificial In-
telligence (IJCAI 2003). pp. 363–369 (2003)

5. Console, L., Picardi, C., Ribaudo, M.: Diagnosis and diagnosability using PEPA.
In: 14th European Conference on Artificial Intelligence (ECAI 2000). pp. 131–135.
IOS Press, Amsterdam (2000)

6. Hamscher, W., Console, L., de Kleer, J. (eds.): Readings in Model-Based Diagnosis.
Morgan Kaufmann, San Mateo, CA (1992)

7. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading, MA, third edn. (2006)

8. Jiang, S., Huang, Z., Chandra, V., Kumar, R.: A polynomial algorithm for testing
diagnosability of discrete event systems. IEEE Transactions on Automatic Control
46(8), 1318–1321 (2001)

9. Kahneman, D.: Thinking, Fast and Slow. Farrar, Straus and Giroux, New York
(2011)

10. Lamperti, G., Quarenghi, G.: Intelligent monitoring of complex discrete-event
systems. In: Czarnowski, I., Caballero, A., Howlett, R., Jain, L. (eds.) Intel-
ligent Decision Technologies 2016, Smart Innovation, Systems and Technolo-
gies, vol. 56, pp. 215–229. Springer International Publishing Switzerland (2016).
https://doi.org/10.1007/978-3-319-39630-9 18

11. Lamperti, G., Zanella, M.: Diagnosis of discrete-event systems from uncer-
tain temporal observations. Artificial Intelligence 137(1–2), 91–163 (2002).
https://doi.org/10.1016/S0004-3702(02)00123-6

12. Lamperti, G., Zanella, M.: A bridged diagnostic method for the monitoring of
polymorphic discrete-event systems. IEEE Transactions on Systems, Man, and
Cybernetics – Part B: Cybernetics 34(5), 2222–2244 (2004)

13. Lamperti, G., Zanella, M.: Monitoring of active systems with strati-
fied uncertain observations. IEEE Transactions on Systems, Man, and
Cybernetics – Part A: Systems and Humans 41(2), 356–369 (2011).
https://doi.org/10.1109/TSMCA.2010.2069096

14. Lamperti, G., Zanella, M., Zhao, X.: Abductive diagnosis of complex active systems
with compiled knowledge. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Principles
of Knowledge Representation and Reasoning: Proceedings of the 16th International
Conference (KR2018). pp. 464–473. AAAI Press, Tempe, Arizona (2018)

20 N. Bertoglio et al.

15. Lamperti, G., Zanella, M., Zhao, X.: Introduction to Diagnosis of Active Systems.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92733-6

16. Lamperti, G., Zanella, M., Zhao, X.: Knowledge compilation techniques for model-
based diagnosis of complex active systems. In: Holzinger, A., Kieseberg, P.,
Tjoa, A.M., Weippl, E. (eds.) Machine Learning and Knowledge Extraction, Lec-
ture Notes in Computer Science, vol. 11015, pp. 43–64. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99740-7 4

17. Lamperti, G., Zhao, X.: Diagnosis of complex active systems with uncertain tem-
poral observations. In: Buccafurri, F., Holzinger, A., Tjoa, A.M., Weippl, E. (eds.)
Availability, Reliability, and Security in Information Systems, Lecture Notes in
Computer Science, vol. 9817, pp. 45–62. Springer International Publishing AG
Switzerland (2016). https://doi.org/10.1007/978-3-319-45507-5 4

18. Lamperti, G., Zhao, X.: Viable diagnosis of complex active systems. In: IEEE
International Conference on Systems, Man, and Cybernetics (SMC 2016). pp. 457–
462. Budapest (2016). https://doi.org/10.1109/SMC.2016.7844282

19. Liu, F., Qiu, D.: Diagnosability of fuzzy discrete-event systems: A fuzzy
approach. IEEE Transactions on Fuzzy Systems 17, 372–384 (2009).
https://doi.org/10.1109/TFUZZ.2009.2013840

20. Paoli, A., Lafortune, S.: Diagnosability analysis of a class of hierarchical state
machines. Journal of Discrete Event Dynamic Systems: Theory and Applications
18(3), 385–413 (2008)

21. Pencolé, Y.: Diagnosability analysis of distributed discrete event systems. In: 16th
European Conference on Artificial Intelligence (ECAI 2004). pp. 43–47. Valencia,
Spain (2004)

22. Pencolé, Y., Steinbauer, G., Mühlbacher, C., Travé-Massuyès, L.: Diagnosing dis-
crete event systems using nominal models only. In: 28th International Workshop
on Principles of Diagnosis (DX 2017). pp. 169–183. Brescia, Italy (2017)

23. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

24. Rintanen, J., Grastien, A.: Diagnosability testing with satisfiability algorithms. In:
20th International Joint Conference on Artificial Intelligence (IJCAI 2007). pp.
532–537. Hyderabad, India (2007)

25. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.:
Diagnosability of discrete-event systems. IEEE Transactions on Automatic Control
40(9), 1555–1575 (1995)

26. Schumann, A., Huang, J.: A scalable jointree algorithm for diagnosability. In: 23rd
National Conference on Artificial Intelligence (AAAI 2008). pp. 535–540. Chicago,
IL (2008)

27. Su, X., Zanella, M., Grastien, A.: Diagnosability of discrete-event systems with
uncertain observations. In: 25th International Joint Conference on Artificial Intel-
ligence (IJCAI 2016). pp. 1265–1571. New York, NY (2016)

28. Thorsley, D., Teneketzis, D.: Diagnosability of stochastic discrete-event
systems. IEEE Transactions on Automatic Control 50, 476–492 (2005).
https://doi.org/10.1109/TAC.2005.844722

29. Ye, L., Dague, P., Yan, Y.: An incremental approach for pattern diagnosability
in distributed discrete event systems. In: 21st IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2012). pp. 123–130. Newark, NJ (2009).
https://doi.org/10.1109/ICTAI.2009.75

30. Yoo, T., Lafortune, S.: Polynomial-time verification of diagnosability of partially
observed discrete-event systems. IEEE Transactions on Automatic Control 47(9),
1491–1495 (2002)

