N
N

N

HAL

open science

0-logit : Dynamic Difficulty Adjustment Using Few Data
Points

William Rao Fernandes, Guillaume Levieux

» To cite this version:

William Rao Fernandes, Guillaume Levieux. d§-logit: Dynamic Difficulty Adjustment Using Few Data
Points. 1st Joint International Conference on Entertainment Computing and Serious Games (ICEC-

JCSG), Nov 2019, Arequipa, Peru. pp.158-171, 10.1007/978-3-030-34644-7 13 . hal-02436725

HAL Id: hal-02436725
https://hal.science/hal-02436725
Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-02436725
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

d-logit : Dynamic Difficulty Adjustment Using
Few Data Points

William Rao Fernandes and Guillaume Levieux

CNAM CEDRIC, Paris, France

{william.rao_fernandes,guillaume.levieux}@cnam.fr

Abstract. Difficulty is a fundamental factor of enjoyment and motiva-
tion in video games. Thus, many video games use Dynamic Difficulty
Adjustment systems to provide players with an optimal level of chal-
lenge. However, many of these systems are either game specific, limited
to a specific range of difficulties, or require much more data than one can
track during a short play session. In this paper, we introduce the d-logit
algorithm. It can be used on many game types, allows a developer to
set the game’s difficulty to any level, with, in our experiment, a player
failure error prediction rate lower than 20% in less than two minutes of
playtime. In order to roughly estimate the difficulty as quickly as possi-
ble, d-logit drives a single metavariable to adjust the game’s difficulty. It
starts with a simple +/-§ algorithm to gather a few data points and then
uses logistic regression to estimate the players failure probability when
the smallest required amount of data has been collected. The goal of this
paper is to describe d-logit and estimate its accuracy and convergence
speed with a study on 37 participants playing a tank shooter game.

Keywords: Difficulty - Dynamic Difficulty Adjustment - Game Balanc-
ing - Player Modeling - Motivation - Video Games

1 Introduction

Difficulty in video games is a fundamental factor of enjoyment and motivation
[16, 15,22, 20, 14]. Flow Theory suggests that one can reach a state of optimal
enjoyment when a task level of challenge is set with regard to their own per-
ceived skills [18]. To adjust the balance between challenge and skills, video games
can either use static, predefined difficulty levels or rely on Dynamic Difficulty
Adjustment (DDA) systems. However, few of these systems can target any level
of difficulty, are generic enough and use a small amount of data. In this paper,
we introduce and evaluate such a system, that we call §-logit.

First, we want our system to be as generic as possible: we want to be able
to use it with as many different games as possible and rely on a measure of
difficulty that allows comparison between games. Following our previous work,
we model a game as a follow up of challenges that can either be won or lost
and whose difficulty can be manipulated using a set of variables [3]. Indeed, the
notion of success and failure is at the core of video games: in many of them,

2 William Rao Fernandes and Guillaume Levieux

the players have clear goals and their performance is constantly evaluated. Each
of the players’ success or failure have an impact on the game’s progression and
are conveyed to them using audio, visual or haptic feedbacks. We thus propose
to start from these events to define a set of challenges, and then track players’
failures and successes to estimate their failure probability for these challenges.
Such a challenge can be, for instance, jump on a platform, shoot at another
player, or win a battle against enemy tanks. We consider that failure probability
to these challenges is close to how challenging and difficult a video game is.

Second, we want to be able to choose any level of difficulty. As we will see,
some simple algorithms only balance difficulty towards a 0.5 failure probability.
We, however, want to be able to instantly select any level of difficulty, as many
games do not target 0.5 balanced difficulty [1]. Indeed, some imbalance between
skills and challenge can lead to desirable emotional states e.g. arousal, control
or relaxation [18].

Third, we want to propose a model that uses as few data points as pos-
sible, gathered from one player only. We record one data point every time the
player tries a challenge, and want to predict difficulty using less than 20 points.
The two previous goals can be achieved using various techniques, but many of
them require a lot of data, either tracked from many players or generated. In this
paper, we want our system to handle a cold start and reach a sufficient accuracy
within the shortest playtime. This way, our model can be used in offline games,
where the only data available can be the data of a single local player starting
the game with no tracked data. Of course, we will thus have to define what
sufficient accuracy means for our game. In this study, we only use the predictive
part of our algorithm when the prediction error rate is higher than 40%, as we
thus consider that our predictions are too close to randomness to be used. Our
experiment shows that we can reach error rates lower than 20% in less than
two minutes of playtime, and our actual player failure rates will be close to our
targeted failure rates (fig. 2). Our experiment shows what our d-logit approach
is able to achieve in the context of a shooter game, but it is to note that the
required accuracy for a DDA system is still an open question, as perception of
difficulty is a very complex matter [7,6].

2 Simple DDA Algorithms

One of the simplest DDA algorithms is to slightly raise the difficulty when the
players won and slightly lower it when they failed. We call it the + /-6 algorithm.
Constant et al. used this algorithm to study the link between DDA and confi-
dence[6]. In the mainstream video game Crash Bandicoot, when the player dies a
lot, the game gives them power-ups or checkpoints so their progression is eased,
making the game more balanced [10].

Another approach is the rubber band Al, especially prevalent in racing games
like Mario Kart [24]. The goal of the rubber band Al is to adjust the parameters
of the computer-controlled opponents with regard to their distance to the player

d-logit : Dynamic Difficulty Adjustment Using Few Data Points 3

as if a rubber band was pulling them towards the player. Opponents ahead of
the player will be slowed down, while those behind him will be sped up.

Such simple systems can be manually tuned to provide a balanced play expe-
rience using a very small amount of data. However, none of them can’t directly
adapt the difficulty towards a specific failure probability. Moreover, rubberband
algorithm is only suited to games with opponents.

As we will see in section 4, §-logit uses +/-0 as a fallback strategy when not
enough data is available. But as soon as possible, we need to switch to a more
advanced strategy to be able to target any level of difficulty.

3 Advanced DDA Algorithms

Other difficulty adaptation methods were developed using learning algorithms.
Andrade et al. extended Q learning to dynamically adapt a policy when playing
against a human [2]. However, this approach is only possible for games involving
some sort of Al that can first play against itself to develop a policy. Spronck et
al. propose a similar technique called dynamic scripting, which can be consid-
ered close to Q-learning except that actions are replaced by manually authored
action scripts [21]. Thus, this DDA policy suffers from similar drawbacks as the
previous one. The same goes for DDA systems that rely on Monte Carlo Tree
Search (MCTS) to build an adapted opponent [11,8,13], or when real-time neu-
roevolution of opponents’ Al is used [19]. These approaches can only be used
when the game features some kind of opponent whose decision can be modeled
using either a tree structure or a neural network, and where the game features
some kind of synthetic player, allowing the Al to build its strategy while quickly
exploring the game space by fighting this player.

Hocine et al. adapt a therapeutic game using a generic DDA system, that can
be applied to any video game as long as a success probability can be estimated
[12]. They base their evaluation of difficulty on player failure probability, but
follow a strategy similar to the +/-0 algorithm, as they lower the difficulty
when the player loses and raise it when they succeed and thus can only target
a 0.5 balanced state. Zook et al. use tensor reduction to adapt the difficulty of
a custom RPG game [25]. Their approach allows to predict spell effectiveness
for a specific player at a specific time but does not provide a more generic
measure of difficulty like failure probability. Allart and Constant used a mixed-
effect logistic regression to evaluate both commercial and experimental games
difficulty [6, 7, 1]. Logistic regression seems indeed well suited to predict a failure
probability from few samples and binary outcomes. In these works, mixed-effect
logistic regression was used because these studies had access to the data of many
players with repeated trials of the same challenge. In our case, we want to use
few data points from the current player only and thus we can only use a fixed
effect logistic regression. Also, these studies did not use logistic regression to
dynamically balance the game, but to evaluate the difficulty for post-experiment
analysis purposes. Thus, they only compute the regression at the end, when all
the experiment data is available. We thus still need to experiment whether using

4 William Rao Fernandes and Guillaume Levieux

logistic regression from the start of the play session, in real time, is a viable
option or not.

4 é-logit : DDA using few Data Points

4.1 A single metavariable: 0

Our goal, as explained in the previous sections, is to develop a model that can
instantly target a specific failure probability while using as few data points as
possible, i.e. while having only observed a few attemps of the player to win
the challenge. To do so, we propose to only rely on a single meta-parameter to
balance the gameplay, that we name 6. Using this single parameter limits our
ability to fine-tune the game’s difficulty, but also drastically limits the search
space of our d-logit algorithm.

Following [3], we define a challenge as a goal players are trying to reach, and
for which they may win or fail e.g. shoot a target, jump on a platform, finish
a mission. We then find a subset of variables that we can modify to change
this challenge’s difficulty, from one player’s try to another. Then, we define two
challenge configurations, that is, two sets of values for these variables. Those two
configuration have to be defined manually by a designer. The first configuration
is the easiest challenge that the algorithm is allowed to create, while the second is
the hardest. These extreme configurations prevent us from proposing challenges
that we consider undesirable to any player, due to their extreme values. Then,
0 is used to linearly interpolate each parameter between the very easy and very
hard challenge configurations. d-logit thus only drives 6 to adjust the game’s
difficulty for each specific player. 6 varies between 0 and 1, if the parameter is
not continuous, we interpolate it and then round it to the nearest integer.

Get the difficulty | |Design the Easy and)| Load previous Update
parameters of | Hard gameplay > attempts | Logistic
the game configurations if available Regression

Save the data

Can
Logistic
Regression be

Get B using the

3 +/-6 algorithm «—NO

Interpolate between
Easy and Hard
gameplay
configurations with 6

Get 8 using
l«— Logistic Regression

Play

Fig. 1. Flowchart of the d-logit algorithm
Steps in italic are design steps that needs to be done manually

d-logit : Dynamic Difficulty Adjustment Using Few Data Points 5
4.2 Exploring with +/-§ Algorithm

When no data is available, as the player starts playing for the first time, -logit
uses a very simple algorithm to explore the game space while balancing the
gameplay. We chose to use the +/-¢ algorithm as it is not specific to a particular
game genre and adapts the difficulty using only the player’s last result. If the
player wins, +/-6 raises the difficulty by dyn, if they fail it lowers it by d7q.. If
dwin = Ofaqi1, the difficulty eventually oscillates around a gameplay configuration
where the player has a 0.5 failure probability.

During this exploration phase, we are just able to drive the difficulty toward
a balanced state and can’t target a specific failure probability. But if we do not
simulate the game in advance using a synthetic player and do not possess any
data about the player, this exploration phase is mandatory. We propose to start
from the very easy challenge configuration and let the +/-§ raise the difficulty.

More specifically, we propose to use a dyin and dfqy value close to 0.05.
Indeed, it is often considered that logistic regression can only be performed with
a minimum of 10 to 20 data points per variable [5]. Thus, if we start from
the very simple case where § = 0, we can reach § = 0.5, just in between the
hardest and easiest configuration, if the player wins 10 times and the +/-§ adds
10 % 0.05 = 0.5 to #. This would allow us to have data points spread between
f# =0 and § = 0.5 as soon as we start to estimate the logistic regression, as it
is the case in our experiment. However, this is just a rule of thumb we followed
and one may choose to use different values of d,in and drq4 to provide players
with a slower or steeper learning curve.

It is to note that if 4y, and 74, are fixed values, the +/-0 will always sample
a limited set of data points. Indeed # may start at 0, then be 0.05 if the player
wins and then again 0 if they fail. But we will never sample values between 0 and
0.05. To ensure a better exploration of 6 values, we apply a random uniform noise
t0 dywin and dfqi. In our experiment, d,in, and df4; were drawn from a uniform
distribution 2/(0.05,0.1), ensuring that 6 was never under 0.05 but could still
vary up to twice this value, allowing us to sample 6 values at a wider, variable
range.

4.3 Adding Logistic Regression

o0-logit switches to logistic modeling of difficulty as soon as the +/-¢ provided
enough data points. Logistic regression allows us to estimate a probability of
failure from binary results, in a continuous way, that can start to provide an
estimation with as few as 10 data points[5]. Once the regression is performed,
the model is able to estimate the value of € that corresponds to the desired
probability of failure.

To update the logistic regression, we iteratively fit a logistic function to the
available data points using the Newton-Raphson method. We adapted the C#
code provided by McCaffrey to use it in the Unity Game Engine to perform our
experiment [17].

6 William Rao Fernandes and Guillaume Levieux

To estimate if we can switch from the +/-¢ algorithm to the Logistic Re-
gression, we perform several tests, summarized in Figure 1. First, we do not
compute the regression if we gathered less than 10 data points, following [5].
Then, as these first data points are mostly sampled on the lowest difficulty lev-
els, we only start to perform the regression if we gathered at least 4 successes
and 4 failures. If these basic conditions are met, we perform the logistic regres-
sion and check its accuracy using 10-fold cross-validation. Cross-validation is
computed by using our logistic regression as a binary predictor® of success and
failure and by comparing predictions to actual results. In our experiment, we
only use the logistic regression if it’s estimated accuracy is higher than 0.6. We
empirically chose to use 4 successes/failures and a 10-fold cross-validation score
higher than 0.6. These values performed well in our experiment but it might be
worth running other experiments to investigate different values.

When it has switched to the logistic regression, d-logit is thus able to estimate
the value of 6 that corresponds to a specific failure probability. This value can
be driven by any process: for instance, a designer might want to target difficulty
values following a curve that oscillate around an 0.5 value, allowing the player to
experience a globally balanced gameplay, while having periods of arousal when
the difficulty is higher and a feeling of control when it is lower, as suggested by
[18].

As for the +/-6, we want our algorithm to keep exploring different values
of #. To do so, we propose to add noise to the failure probability requested
by the game. Empirically, we add a value drawn from a uniform distribution
U(—0.05,0.05) to the requested failure probability when using the logistic re-
gression to estimate §. That way, if a designer asks for a difficulty of 0.2, the
model will estimate the value of 6 for a difficulty randomly picked between 0.15
and 0.25. This allows us to have values of 6 that always vary and we consider
that the player’s perception of difficulty is not accurate enough to perceive such
a subtle difference [7]. However, difficulty perception is a complex matter and
in further studies, we should investigate the impact of this parameter on both
perception of difficulty and difficulty estimation accuracy.

5 Adapting a Shooting Game

We implemented §-logit in a tank shooting game (Figure 2). We started from
the Unity Tutorial Tank Shooter Game[23], modified the controls so that the
player still manipulates the tank using the keyboard arrows but can shoot in
any direction using the mouse. We also added Al to the enemy tanks. The flow
of the game is very simple: the player and one or two enemy tanks are spawned.
They can shoot at each other and move. A tank shell explodes when it hits the
ground or a tank and applies damage to the tanks close to the explosion. If the
player kills the enemies they win and if they die they fail. Every time, we record
the value of # and the game’s result, i.e. whether enemy tanks were destroyed

L If p(fail) > 0.5, predict failure and predict success otherwise

d-logit : Dynamic Difficulty Adjustment Using Few Data Points 7

or not. At the beginning, we do not have enough samples so d-logit starts from
the easy condition # = 0 and follows the 4 /- algorithm. Then, as soon as the
logistic regression is ready (see Section 4.3), d-logit uses it to estimate the value
of @ corresponding to the chosen difficulty and spawn the player and the enemy
tanks again.

The enemy tanks have different characteristics that can be modified to change
the game’s difficulty, as shown in Table 1. It is to note that the number of enemies
will double as 6 crosses the 0.5 value. We compute the value of § with our DDA
system and use it to interpolate these parameters between easy and hard settings.

Table 1. Easy and Hard Settings

Game Parameters |Easy Setting|Hard Setting
Nb of Enemies 1 2
Moving Speed 1.2 9.6
Turning Speed 18 900

Time Between Shot 3s 0.5s
Accuracy 0 15

Turning speed in degrees.s~'. Moving Speed is in unit.s ™!, a tank’s length is 2
units and the game space is 76 units per 47 units. Accuracy: we add a random
2D vector of size 0 to 15 units to the targeted position.

5.1 Methodology

Participants played 60 turns, thus spawned 60 times, corresponding on aver-
age to less than ten minutes of gameplay. Play sessions were short because we
wanted players to stay concentrated, and because the experiment’s main goal is
to evaluate the accuracy of our model when few data points are available. We
use d-logit described in section 4, starting with no data and thus with the +/-6
algorithm.

When §-logit switches to the logistic regression, as described in section 4.3,
we target specific levels of difficulty. We chose to evaluate our model for failure
probabilities of 0.2, 0.5 and 0.7. The 0.2 difficulty is far from the 0.5 balanced
setting that can be reached with the simple +/-¢ algorithm, while still being
a bit challenging. It is also close to the average difficulty of some AAA games
[1]. We target the 0.2 difficulty until turn 44. Then we test if, having sampled
many data points while playing at a low difficulty level, we are able to create
accurate difficulty peaks. So from turn 45, we start a cycle of three turns with
different difficulties, beginning at 0.2, rising to 0.5, ending at 0.7. We repeat this
cycle five times, up to turn 60. Each turn takes on average less than 8 seconds
to complete if the player understands the goal of the game. We follow such a
difficulty curve because it follows many game’s difficulty pacing: slowly raise the
difficulty when the player discovers the game rules, then propose a certain level
of challenge, until you reach a difficulty peak, like the bosses of many games.

8 William Rao Fernandes and Guillaume Levieux

6 Results

37 participants played our shooter game (26 male, 11 female), with a mean age
of 30 (o = 8.6). All participants played 60 turns, for an average of 7 minutes
of playtime (o = 82 seconds). Figure 3 describes the evolution of the difficulty
parameter 6 for all the participants.

k)
T ©
L 5 ST
=
S <« |
g o
P
B
g o
£
© e
© T T T T T T 1
'@ 0 10 20 30 40 50 60
Game Step
Fig. 2. The tank shooting game Fig. 3. Evolution of difficulty parameter 0
The player, at the bottom of the screen, is One can distinguish the +/-d phase for 15
being shot at by an enemy tank. turns on average, followed by the 0.2 diffi-

culty phase up to turn 44, and then the 5
difficulty peaks.

We first checked the level of the participants, by using the mean of our
difficulty parameter 6 across the whole game session. As difficulty is dynamically
adapted to have all players experience the same failure probabilities, best players
will have higher values of 6. Players levels are ranging from 0.3 to 0.6 (u = 0.46,
o = 0.05).

6-logit performs logistic regression to estimate the failure probability from the
values of # and each turn outcome. Figure 5 illustrates this estimation : for most
of the participants, the game starts to be challenging when failure probability
starts raising, at § = 0.4 and is very hard when 6 >= 0.6 as failure probability
is above 0.75.

We then looked at the model convergence? speed. We first calculated, for each
participant, the number of +/-§ turns before the model switched to the logistic
regression for the first time. The model took on average 15 turns to converge
(o = 1.82 turns), corresponding to 105 seconds of gameplay (o = 24.52 seconds).

We also calculated the model variability for each turn. We used the model
at turn t to predict the failure probability for 21 values of 8, from 0 to 1 by

2 We consider that our model has converged when it is able to use logistic regression
to adapt the difficulty

d-logit : Dynamic Difficulty Adjustment Using Few Data Points 9

©
e 1.00
.
&
s o4 9
2 o »075
= . ° o
@ B
. T S ﬁﬁ %
3 °] & 0.50
o ~ &3 (=
= N o 2
S 7 g
& 3 %025
LY
PRI RS-
o
T T T T T 1 6,50 = —
0 10 20 30 40 50 60 0.00 0.25 050 075 1.00
Theta
Game Step

Fig. 5. Logistic regression for each partic-
Fig. 4. Model’s variation for each partici- ipant at the 60th turn

pant at each step Players always win on the easy setting,

Logistic regression’s variation between always fail on the hard ome. Difficulty
each turn. Variability drops when 20 data changes very quickly around 6 = 0.5, being

points are gathered. Variability peaks at i very low at § = 0.4 and already very
turn 45, when we create the 5 difficulty high at = 0.6.

pikes.

steps of 0.05. We then computed the root-mean-square error (RMSE) between
predictions at step ¢ and those at steps t — 1, t — 2 and ¢ — 3 as given by the
equation (1). We computed the distance with the last steps to have larger values
for models varying in the same direction than for those oscillating around a
value.

RMSE = (1)

233 3 20(p(8 = 5/20) —pe—i(9 = j/20))?
p 3x21

The model variability can be examined over time, as shown in Figure 4. On
average, the logistic regression was used after 15 turns, and we can see that from
turn 20, the prediction tends to be much more stable. One can also notice a peak
of variation after turn 45, corresponding to the difficulty peaks we included in
the game. Those peaks forced the model to explore higher values of 8, and thus
to readjust accordingly.

Another way to look at the model accuracy and convergence speed is to look
at the cross-validation result over time. When logistic regression is used, the
obtained accuracy has a mean of 0.82 (¢ = 0.06). Interestingly, it is to note that
for 4 out of 31 players, we switched back to +/-¢ algorithm even long after the
15 first steps. These players stayed in +/-6 for an average of 2.75 steps (o =
2.22), meaning that the model can occasionally lose accuracy.

We targeted three levels of difficulty (p(fail) = 0.2, 0.5 and 0.7) and the
model was able to achieve the failure probabilities presented in Table 2. Actual
failure probabilities are estimated for all participants by taking the mean of their
actual success (1) and failures (0) when the model was either targeting p(fail) =
0.2, 0.5 or 0.7. It is to note that the model never exactly targeted these values, as

10 William Rao Fernandes and Guillaume Levieux

a uniform noise U(—0.05,0.05) was applied to them, see Sec. 4.3. Target failure
probabilities are centered on 0.2, 0.5 and 0.7, but have a standard deviation of
0.03.

Table 2. Actual failure frequencies for each target failure probabilities

Target difficulty|Objective difficulty
0.2 0.14 [0.12, 0.16]
0.5 0.55 [0.47, 0.62]
0.7 0.74 [0.67, 0.80]

For each target difficulty, we provide the observed failure frequencies. Values
between brackets are the 95% CI values given by an Exact Binomial Test.

7 Discussion

Our algorithm was able to successfully adapt the difficulty of the game to match
the difficulty curve wanted by a designer, see Table 2. One can note, however,
that for p(fail) = 0.2 we are slightly lower (0.14), whereas for p(fail) = 0.5 and
0.7 we are slightly above (0.53 and 0.76). This might be explained by the nature
of gameplay’s progression.

As explained before, we change the difficulty variables all together following 6:
tanks become more accurate, faster and come in larger numbers at the same time.
On the one hand, this allows us to have a continuous and monotonic difficulty:
if we had chosen to first change speed and then accuracy, both these variables
may not have the same impact on objective difficulty and create a change in
progression when switching from one variable to the other. On the other hand,
this approach might have the drawback of compressing objective difficulty in a
short range of 0. Indeed, the objective difficulty might grow exponentially with
0 as all the parameters raise at the same time. This can clearly be seen in our
difficulty curve mapping 6 to objective difficulty (Figure 5): the game is very
easy when 8 <= 0.4 and very hard when 6 >= 0.6.

Moreover, we chose to have a gameplay progression variable that has only
two values: the number of enemy tanks. We think that this might explain why
objective difficulty is lower than the targeted difficulty in the easy setting and
higher in the hard setting: when 6 > 0.5, meaning there are two tanks to beat,
the difficulty rises much faster than when 6 < 0.5. A tank at 6§ = 0.49 is almost
as strong as a tank at # = 0.5, but the number of tanks creates a difficulty peak
at # = 0.5 and changes the slope of the impact of 6 on objective difficulty when
0 crosses 0.5.

Our model takes on average 15 turns (an average 105 seconds of gameplay)
to converge, which is quick enough for our game, allowing players to discover
the gameplay during few minutes starting from the easy condition. It is to note
that each turn is relatively quick, taking less than 10 seconds. As we estimate a

d-logit : Dynamic Difficulty Adjustment Using Few Data Points 11

probability, we need to be able to gather player failures/successes. To have the
model converge as quickly as possible, it is thus important to be able to split
the gameplay into multiple short challenges, as explained in [3].

During the first steps of d-logit, we rely on the + /-9 algorithm. Of course, it
is impossible for us to predict the difficulty of the game without having explored
the player’s abilities a little bit. We tuned the + /-4 so that it starts with a low
difficulty level and slowly raises the difficulty (or lower it when the player fails).
This is consistent with self-efficacy theories stating that failure, when a subject
discovers a new task, can dampen their motivation [4]. However, 4+ /-6 might be
configured to start from any difficulty level, for instance from a difficulty level
chosen by the player. As we designed a very easy and very hard difficulty setting,
we could interpolate between them to provide the player with a starting easy,
medium and hard difficulty setting. However, when starting from an easy setting,
we quickly explore the easy difficulty levels, gaining quickly more information
about the player’s abilities with low 0 values than if we started from a medium
level and adapted toward p(fail) = 0.5.

As long as a game can be expressed as challenges that the player repeatedly
tries to achieve and that these challenges are driven by a set of variables that
have a monotonic impact on this failure probability, our model could be used
to drive these challenges’ difficulty. Of course, such challenges can be harder to
identify in more complex games. In an open world AAA game like The Legend
of Zelda: Breath of the Wild, when the player finds a new object, does it only
change the difficulty of the current challenge (e.g. for a slightly more powerful
weapon), or does it change the gameplay so much that a new challenge is to
be defined (e.g. when using a bow instead of a sword) [9]7 And if the player
rides a horse while using their bow, is it a new challenge or an extension of the
bow one? However, as our model uses very few samples, we think that J-logit
could be used to drive these challenges difficulty, when properly identified. We
may indeed postulate that few games propose original challenges that the player
can’t try more than 15 times.

8 Conclusion

In this paper, we propose a DDA algorithm that starts with no data and then
uses as few data points as possible gathered from a single player. Many models
have been proposed to dynamically adjust the difficulty of a game, but none of
them really addresses the problem of using very few data from one player while
targeting any failure probability.

Our model starts with a +/-¢ algorithm that drives difficulty towards a 0.5
failure probability and then uses logistic regression as soon as possible to follow
a specific difficulty curve, described in terms of failure probabilities, with correct
accuracy. In our example, a tank shooting game, the model takes on average
105 seconds to switch from +/-d to logistic regression and targets difficulties
of 0.2, 0.5 and 0.7, with actual difficulties of 0.14, 0.55 and 0.74. The model’s
failure prediction accuracy was 0.82 (¢ = 0.06). We evaluate our model in a

12 William Rao Fernandes and Guillaume Levieux

realistic and challenging setting: shooting is a widely used game mechanic, we
adapt enemy’s Al number and behavior, and follow a difficulty curve providing
a learning phase, a low difficulty plateau and difficulty peaks at levels that were
almost never sampled before.

Of course, we discuss that our approach has drawbacks. Having only one
metavariable must have an impact on accuracy. Also, our model is continuous
and discontinuities in gameplay variables might not be correctly modeled.

We think that our model might be very useful for the design of many games.
Even more, we think that by considering any game as a collection of various chal-
lenges [3], one may use multiple instances of our model to adapt more complex
gameplays.

9 Acknowledgement

This research is part of the Programme d’investissement d’avenir E-FRAN project
DysApp, conducted with Caisse des Dépdts and supported by the French Gov-
ernment.

References

1. Allart, T., Levieux, G., Pierfitte, M., Guilloux, A., Natkin, S.: Difficulty influence
on motivation over time in video games using survival analysis. In: Proceedings
of the 12th International Conference on the Foundations of Digital Games. p. 2
(2017)

2. Andrade, G., Ramalho, G., Santana, H., Corruble, V.: Extending reinforcement
learning to provide dynamic game balancing. In: Proceedings of the Workshop on
Reasoning, Representation, and Learning in Computer Games, 19th International
Joint Conference on Artificial Intelligence (IJCAI). pp. 7-12 (2005)

3. Aponte, M.V., Levieux, G., Natkin, S.: Measuring the level of difficulty in single
player video games. Entertainment Computing 2(4), 205-213 (2011)

4. Bandura, A.: Self-efficacy: toward a unifying theory of behavioral change. Psycho-
logical review 84(2), 191 (1977)

5. Concato, J., Peduzzi, P., Holford, T.R., Feinstein, A.R.: Importance of events per
independent variable in proportional hazards analysis i. background, goals, and
general strategy. Journal of clinical epidemiology 48(12), 1495-1501 (1995)

6. Constant, T., Levieux, G.: Dynamic difficulty adjustment impact on players’ con-
fidence. In: Proceedings of the 2019 CHI Conference on Human Factors in Com-
puting Systems. pp. 463:1-463:12. CHI 19 (2019)

7. Constant, T., Levieux, G., Buendia, A., Natkin, S.: From objective to subjective
difficulty evaluation in video games. In: IFIP Conference on Human-Computer
Interaction. pp. 107-127. Springer (2017)

8. Demediuk, S., Tamassia, M., Raffe, W.L., Zambetta, F., Li, X., Mueller, F.: Monte
carlo tree search based algorithms for dynamic difficulty adjustment. In: 2017 IEEE
Conference on Computational Intelligence and Games (CIG). pp. 53-59 (Aug 2017)

9. Fujibayashi, H., Aonuma, E., Toda, A., Takizawa, S.: The legend of zelda: Breath
of the wild. Game [Nintendo Switch].(3 March 2017) (2017)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

d-logit : Dynamic Difficulty Adjustment Using Few Data Points 13

Gavin, A.: Making crash bandicoot part 6 (2011), https://all-things-andy-
gavin.com/2011/02/07 /making-crash-bandicoot-part-6, accessed: 2018-09-06

Hao, Y., He, S., Wang, J., Liu, X., Huang, W., et al.: Dynamic difficulty adjustment
of game ai by mcts for the game pac-man. In: Natural Computation (ICNC), 2010
Sixth International Conference on. vol. 8, pp. 3918-3922. IEEE (2010)

Hocine, N., Gouaich, A.: Therapeutic games’ difficulty adaptation: An approach
based on player’s ability and motivation. In: Computer Games (CGAMES), 2011
16th International Conference on. pp. 257-261. IEEE (2011)

Ishihara, M., Ito, S., Ishii, R., Harada, T., Thawonmas, R.: Monte-carlo tree search
for implementation of dynamic difficulty adjustment fighting game ais having be-
lievable behaviors. In: 2018 IEEE Conference on Computational Intelligence and
Games (CIG). pp. 1-8. IEEE (2018)

Klimmt, C., Blake, C., Hefner, D., Vorderer, P., Roth, C.: Player performance,
satisfaction, and video game enjoyment. In: ICEC. pp. 1-12 (2009)

Lazzaro, N.: Why we play games: Four keys to more emotion without story (2004)
Malone, T.W.: Heuristics for designing enjoyable user interfaces: Lessons from
computer games. In: Proceedings of the 1982 conference on Human factors in
computing systems. pp. 63-68. ACM (1982)

McCaflrey, J.: Test run - coding logistic regression with newton-raphson (2012),
https://msdn.microsoft.com/en-us/magazine/jj618304.aspx, accessed: 2018-09-19
Nakamura, J., Csikszentmihalyi, M.: The concept of flow. In: Flow and the foun-
dations of positive psychology, pp. 239-263. Springer (2014)

Olesen, J.K., Yannakakis, G.N., Hallam, J.: Real-time challenge balance in an rts
game using rtneat. In: Computational Intelligence and Games, 2008. CIG’08. IEEE
Symposium On. pp. 87-94. IEEE (2008)

Ryan, R.M., Rigby, C.S., Przybylski, A.: The motivational pull of video games: A
self-determination theory approach. Motivation and emotion 30(4), 344-360 (2006)
Spronck, P., Sprinkhuizen-Kuyper, 1., Postma, E.: Difficulty scaling of game ai. In:
Proceedings of the 5th International Conference on Intelligent Games and Simula-
tion (GAME-ON 2004). pp. 33-37 (2004)

Sweetser, P., Wyeth, P.: Gameflow: a model for evaluating player enjoyment in
games. Computers in Entertainment (CIE) 3(3), 3-3 (2005)

Unity: Tanks tutorial (2015), https://unity3d.com/fr/learn/tutorials/s/tanks-
tutorial, accessed: 2018-09-19

Yasuyuki, O., Katsuhisa, S.: Racing game program and video game device (2003),
https://patents.google.com/patent /US7278913, accessed: 2018-09-18

Zook, A., Riedl, M.O.: A temporal data-driven player model for dynamic difficulty
adjustment. In: AIIDE (2012)

