
HAL Id: hal-02384604
https://inria.hal.science/hal-02384604

Submitted on 28 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

That’s My DNA: Detecting Malicious Tampering of
Synthesized DNA

Diptendu Mohan Kar, Indrajit Ray

To cite this version:
Diptendu Mohan Kar, Indrajit Ray. That’s My DNA: Detecting Malicious Tampering of Synthesized
DNA. 33th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec), Jul
2019, Charleston, SC, United States. pp.61-80, �10.1007/978-3-030-22479-0_4�. �hal-02384604�

https://inria.hal.science/hal-02384604
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

That’s My DNA: Detecting Malicious
Tampering of Synthesized DNA

Diptendu Mohan Kar and Indrajit Ray

Colorado State University, Fort Collins CO 80523, USA
{diptendu.kar, indrajit.ray}@colostate.edu

Abstract. The area of synthetic genomics has seen rapid progress in
recent years. DNA molecules are increasingly being synthesized in the
laboratory. New biological organisms that do not exist in the natural
world are being created using synthesized DNA. A major concern in this
domain is that a malicious actor can potentially tweak with a benevolent
synthesized DNA molecule and create a harmful organism[1] or create a
DNA molecule with malicious properties. To detect if a synthesized DNA
molecule has been modified from the original version created in the lab-
oratory, the authors in [13] had proposed a digital signature protocol
for creating a signed DNA molecule. It uses an identity-based signatures
and error correction codes to sign a DNA molecule and then physically
embed the digital signature in the molecule itself. However there are sev-
eral challenges that arise in more complex molecules because of various
forms of DNA mutations as well as size restrictions of the molecule itself
that determine its properties, the earlier work is limited in scope. In this
work, we extend the work in several directions to address these problems.

Keywords: Cyber-Bio Security · DNA · Identity-Based Signatures ·
Reed-Solomon Codes · Approximate String Matching · Pairing-Based
Cryptography

1 Introduction

Synthesizing DNA molecules in the laboratory is quite common these days. Such
a synthetic DNA molecule is often a licensed intellectual property. DNA sam-
ples are shared between academic laboratories, ordered from DNA synthesis
companies and manipulated for a variety of purposes, for example, to create
new biochemicals, reduce the burden of diseases, improve agricultural yields or
simply to study the DNA’s properties and improve upon them. There have also
been instances of new biological organisms that do not exist in the natural world
being created using synthesized DNA [1]. While the vast majority of such activ-
ities are pursued for beneficial purposes, there are concerns that malicious users
can use the technology malevolently, for example, to make harmful biochemicals,
or making existing bacteria more dangerous [1]. Recently, a DNA-based security
exploit was demonstrated as a proof of concept, where a synthesized DNA was
used to attack a DNA sequencer that has been deliberately modified with a vul-
nerability [16]. Preventing such malicious use of synthesized DNA is beyond the

2 D. M. Kar and I. Ray

scope of this current work. However, attribution of a physical DNA sample and
establishing proof of origin can contribute significantly to deter such malicious
activities.

Following the anthrax attack of 2001, there is an increased urgency to em-
ploy microbial forensic techniques to trace and track agent inventories. For in-
stance, it has been proposed that unique watermarks be inserted in the genome
of infectious agents to increase their traceability [12]. The synthetic genomics
community has demonstrated the feasibility of this approach by inserting short
watermarks into DNA without introducing significant perturbation to genome
function [8, 6, 20, 15]. The use of watermarks has also been proposed in order to
identify genetically modified organisms (GMOs) or proprietary strains. Heider et
al. [7] describe DNA-based watermarks using DNA-Crypt algorithm. This tech-
nique is applicable to provide proof of origin to a DNA molecule. However, there
is a major shortcoming with all watermark based approaches. The watermark
in all these works is generated from an arbitrary binary data and added to the
original sequence, and so is independent of the original sequence and provides
no integrity of the actual DNA sequence.

To enable effective trace back and eliminate the limitation of watermark-
based approaches, Kar et al. [13] had proposed a scheme to create digital signa-
tures of DNA molecules in living cells. The main idea is as follows: Take a DNA
molecule and sequence it. The result is a string over the alphabet A, C, G, and T,
representing the four nucleotide building blocks of DNA. The output of the se-
quencer is stored in what is called a FASTA file. For interpretability reasons, the
FASTA file is annotated by the researcher to create another file called the Gen-
Bank file. The authors then use Shamir’s identity-based signature scheme [23],
Reed-Solomon error-correction codes [19, 18] and the 16 digits Open Researcher
and Contributor ID (ORCID – https://orcid.org) of the researcher to create a
digital signature of the string in the FASTA file. The resulting signature is in
the form of a DNA sequence which is now synthesized as a physical molecule.
Finally, the signature molecule is inserted into the original DNA molecule using
DNA editing tools to obtain a signed DNA molecule. When this signed molecule
is shared, a receiver can sequence the signed molecule to verify that it was shared
by an authentic sender and that the sequence of the original molecule has not
been altered or tampered with.

However, there are significant challenges related to the placement of the sig-
nature within the molecule and various types of mutations in more complex
molecules (discussed in more details in Section 2) that Kar et al. do not address.
The current work improves the previous scheme to address these problems (Sec-
tions 3 and 4). Moreover, we would like to shorten the size of the signature
sequence as much as possible without impacting security. While biologists be-
lieve that the size of the DNA has a correlation with its properties within certain
bounds, they still do not know by how much a DNA molecule can be expanded
without changing the properties of interest. The current work explores other
cryptographic algorithms towards this end (Section 5).

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 3

2 Limitations of Earlier Work and Current Contributions

2.1 Cyclic shifts and reverse complement

In [13], the signer is required to send the GenBank file along with the physical
DNA sample to the receiver. This is because the GenBank file is needed to align
the FASTA file (which is the output of a DNA sequencer) in the same order
as during the signature generation. Plasmid DNA is cyclic and double-stranded.
Following DNA sequencing, any cyclic permutation of the DNA structure is
possible. A sequence represented in a FASTA file, and consequently the GenBank
file, is thus one of several possible linear representations of a circular structure.
For example, in a FASTA file if the sequence was “ACGGTAA”, and the same
sample is sequenced again, the FASTA file might read as “TAAACGG”.

Moreover, since DNA is composed of two complementary, anti-parallel strands,
a DNA sequencer can read a sample in both the “sense” or “antisense” direction.
The sequence may be represented in a FASTA file in either direction. When the
sample is sequenced again, the output might be in the other direction, or what
is known as the reverse complement. The reverse complement of “A” is “T” and
vice-versa, and the reverse complement of “C” is “G” and vice-versa. The DNA
molecule has a polarity with one end represented as 5’ and the other repre-
sented as 3’. One strand adheres to its reverse complement in an anti-parallel
fashion. So if the sequence is - “5’-ACGGTAA-3’”, the reverse complement is
“3’-TGCCATT-5’”. The FASTA file will represent one strand of the DNA se-
quence in the 5’ to 3’ direction; so the FASTA file could read as “ACGGTAA” or
“TTACCGT”. Thus, by combining these two properties, for a DNA that contains
N number of bases, the possible number of correct representations of the same
sample is 2N : N cyclic permutations plus each reverse complement.

Let us now consider the implications of this characteristic of DNA on the sig-
nature generation and verification. The sender has a sequence say “ACCGTT”. The
sender synthesizes the sequence and sends it to the receiver. The receiver after
sequencing with an automated DNA sequencer may not have exactly “ACCGTT”.
It can be “TTACCG” which is a cyclic permutations. The receiver can also get
something like “AACGGT” which is the reverse complement of “ACCGTT”. Owing
to such domain challenges, the signature verification procedure is not as simple
as in digital messages.

Let us assume the signature sequence is “TTAA”. (The actual signature length
is 512 base pairs). In [13], the authors had defined a start and an end tag which
served as delimiters for the signature. Let “ACGC” and “GTAT” be the start and
end tags. For this discussion, we will use the term message to denote some linear
representation of the sequence generated by a DNA sequencer. There can be
three cases for including the signature sequence in the DNA sequence:

1. Append the signature after the message: In this case, the sender’s
message with the signature embedded looks like - “ACCGTT ACGC TTAA

GTAT”. The receiver, after sequencing the signed DNA sample may get some-
thing like – “GTT ACGCTTAA GTAT ACC” or something else depending

4 D. M. Kar and I. Ray

on which base position the sequencer considers as the beginning of the se-
quence. In the permutation, the DNA sequencer assumed the 4th base from
the left as the start of the sequence. The message is split but the delim-
iters and signature are intact. The simplest way to extract the message
and signature is to append the extracted sequence to itself. With the per-
mutation, this becomes “GTT ACGC TTAA GTAT ACC || GTT ACGC

TTAA GTAT ACC”. Now we can extract the message which will be con-
tained between two “ACGC TTAA GTAT” when the string is wrapped around.
The receiver reconstructs the message which is “ACCGTT”. The receiver can
then invoke the verification. Note that this scheme works no matter which
position the sequence considers as the start of the sequence.

2. Append the signature before the message: In this case, the sender’s
message with signature looks like - “ACGC TTAA GTAT ACCGTT”. The
receiver after sequencing the DNA might get something like - “AA GTAT

ACCGTT ACGC TT”. We observe that this is the same as the previous case.
We can append the extracted sequence to itself – “AA GTAT ACCGTT

ACGC TT || AA GTAT ACCGTT ACGC TT. Thus we can extract the
message using the same procedure as above and then invoke the verification.

3. Append the signature between the message: In this case, the sender’s
message with signature might look like - “ACC ACGC TTAA GTAT GTT”.
The receiver after sequencing the DNA might get something like “ACGC
TTAA GTAT GTT ACC”. The problem occurs in this scenario. Even if we
append the extracted sequence, we will not be able to recover the message.
After appending the sequence we get “ACGC TTAA GTAT GTT ACC ||

ACGC TTAA GTAT GTT ACC”. We can observe that the sequence con-
tained by the two “ACGC TTAA GTAT” is “GTTACC”. This is not the mes-
sage the sender signed. The sender signed the message on “ACCGTT”. But the
receiver has no way of knowing this and hence the verification will fail since
the message is not the same even though there is no modification to either
the message or the signature.

The problem of recovering the message only occurs when the signature is
placed within the message. The other two cases when the signature is placed
before or after the message works perfectly fine. However, when working with
DNA molecules, it may not always be possible to place the signature at the end
or the beginning of the message. This is because there can be a feature present
at that location. The possible places to place the signature are most likely to
be within the original sequence. For this reason the GenBank file needed to be
shared. Only this way would the receiver be able to align the sequence in the
same order that the sender had when he signed.

There are several reasons why we may not want to share the GenBank file.
The GenBank file is created by the originator of the DNA molecule using a gene
editor. Its only purpose is to annotate the DNA sequence. If the DNA is an
intellectual property, then the creator of the DNA will be annotating the DNA’s
GenBank file with different features of different subsequences of the DNA. While
the creator may be willing to divulge the property of the synthesized DNA as

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 5

a whole, s/he may not be willing to divulge properties of various subsequences.
Sending the GenBank file jeopardizes the latter. Moreover, gene editors maintain
databases of DNA molecule properties. However, these databases may not be
consistent across different editors in the sense that receivers gene editor may not
have all the information about the same set of molecules that the sender’s gene
editor has. Finally, the GenBank file format is not the only format used by gene
editors, unlike the FASTA file format. In order to not share the GenBank file
with the receiver, we have changed the signature generation procedure in this
work, such that the verification is not dependent on where the signer placed the
signature. The details of the new signature generation procedure are explained
in section 3.

2.2 Mutations in identifying tags

In our previous work, we defined two identifying tags to demarcate the signature.
The start tag was chosen as “ACGCTTCGCA” and the end tag as “GTATCCTATG”.
These two delimiters were chosen not just randomly but for very specific rea-
sons. First biologists typically have some idea about what DNA sequence will
not occur in their specific project. Thus they can choose delimiters from these
non-occurring sequence. Second, from these possible delimiters, they will choose
the ones that are simple to synthesize and assemble since DNA synthesis is ex-
pensive. Finally, they will choose a sequence that are easy to identify visually,
are unlikely to develop secondary structures and have a balanced number of “A,
C, G and T”s. Our domain experts selected these delimiters for this project. We
also used error correction code to tolerate mutations within the DNA. However,
we assumed that the start and end tag do not mutate. If they do, our previous
work will fail to locate the signature and consequently, it will not be possible to
verify the signature.

To overcome this limitation, in this work we propose using partial matching
techniques such that the start and end tag can be located approximately. This
is used in conjunction with error correction codes. Note that since the start and
end tags are fixed, we know what we are searching for in the DNA molecule.
For example, we may want to look for strings similar to “ACGCTTCGCA” such as
“GCGCTTCGCG”. The different techniques we use for achieving this are discussed
in section 4.

2.3 Signature length

The length of the signature plays a very important role in this biology domain.
Shorter signatures imply less cost of synthesizing the signature into a physical
DNA molecule. Shorter signatures will also be less likely to impact the existing
functionality and stability of the plasmid during signature embedding. Previ-
ously, we used 1024 bit keys and that resulted in 512 base-pair signature. How-
ever, 1024 bit keys are no longer considered very strong and not recommended in
practice for digital signatures. Generally, 2048 bit keys are used. In our domain,

6 D. M. Kar and I. Ray

this would result in a 1024 base pair signatures. This length has a higher proba-
bility of affecting the characteristics and stability of the plasmid. Furthermore,
when synthesizing the signature, presently with a 512 base pair signature the
cost is $46.08 - 512 base pairs at $0.09 per base pair. With a 1024 base pair
signature, even if the plasmid remains stable and functional, the cost of synthe-
sizing the signature would be $92.16. The new signature scheme with a shorter
signature is described in section 5.

3 DNA Signature Generation and Verification Procedure

In our DNA sign-share-validate workflow, there are three players: (i) The DNA
signer will create the DNA signature and sign a DNA sequence. (ii) The verifier
will use the signature to verify whether the received DNA sequence was sent by
the appropriate sender and was unchanged after signing. (iii) A central authority,
which is trusted, provide the signer with an encrypted token that is associated
with the signer’s identity. The token contains the signer’s private key.

Trust model: For this work, we assume a polynomial-time adversary, Mal-
lory, who is trying to forge the signature of a reputed synthesized DNA molecule
creator, Alice. Alice is trying to protect her IP rights/reputation as she dis-
tributes DNA molecules synthesized by her to researcher Bob. If the attacker,
Mallory, is able to forge the signature of Alice then: (a) Mallory can replace the
actual DNA created by Alice with her own but keep the signature intact. (b)
Mallory can create her own DNA molecule and masquerade as Alice to sign it.
(c) Mallory can modify parts of the signed DNA molecule created by Alice.

Use of error correction in DNA signature: In the digital domain, the
digital signature on a message can be used to detect integrity violations. If
a violation is detected, the sender can always re-transmit the signed message
without incurring much extra cost. However, in the DNA world, we are primarily
shipping physical DNA samples. This implies that if a DNA signature identifies
that there is an error in the signature validation, then the sample needs to be
physically transported and/or synthesized again. This incurs significant cost.
DNA mutation is a very natural and common phenomenon. Thus, there is a
good likelihood that signature validation will fail. Moreover, associated with the
problem of mutation lies the problem of sequencing. When the DNA is processed
by an automated DNA sequencer, the output is not always one hundred percent
correct. It is dependent on the depth of sequencing, and increased sequencing
depth means higher costs. Sequencing a small plasmid to sufficient depth is
relatively inexpensive, but for larger sequences, sequencing errors can be an
issue. In order to overcome these limitations, we use block-based error correction
codes, such as a Reed-Solomon code [19], together with signatures. The presence
of error correction codes helps the receiver to locate a limited number of errors
(as set by the signer) in the sequenced DNA as well as correct them. The position
of the errors and the corrected values are conveyed to the verifier. The verifier
can then decide if the errors are in any valuable feature of the DNA or not. If
a valuable feature has been corrupted, the verifier can ask for a new shipment,

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 7

else if the error was in a non-valuable area in the DNA, the verifier can disregard
the error and continue to work with it.

We now describe our new DNA signature scheme. The steps are shown in Al-
gorithm 1 (for signing) and Algorithm 2 (for verification). To avoid confusion we
use the following conventions. The term sample is used to indicate the physical
DNA molecule. The term sequence is used to signify the digital counterpart of a
DNA molecule. This is generated by sequencing a sample in a DNA sequencer.
The raw sequence (output of sequencing) is stored in a FASTA file. The anno-
tated sequence is stored in a GenBank file. The signer creates a physical DNA
sample from the signed sequence and sends the sample (only) to the verifier. The
verifier sequences this sample to get another sequence that is then verified.

For ease of understanding, we denote the sequence to be signed by the string
SEQUENCE, the signature by SIN, the begin and end tags as BESN and EDSN and
the error correction code as ECC. Each of these strings is really a sequence of
bases that can be synthesized into a physical DNA molecule and embedded
in the sample. Any location reference in SEQUENCE for subsequence discussion is
specific to the location within the sequence. For instance, location 3 in the string
contains character Q. However, in the real sequence, the subsequence denoted
by Q may occur in position 350 (for example) depending on how many bases
constitute S and E.

Signature generation: The signature generation procedure begins by scan-
ning the GenBank file for the keyword ORIGIN and locating the actual DNA
sequence. Let there exists a feature from location 1 to 3 in the sequence, which
corresponds to SEQ. Next, the location of the signature placement specified by
the signer is checked. If the location collides with a feature, the user is alerted to
change the location. In our example, if the user had provided 2, the algorithm
will alert the user that there is already a feature SEQ there and ask for a new
location. If the user chooses 4 which is after Q, it will be allowed. Next, the
ORCID and Plasmid ID (which are integers) are converted to the corresponding
A C G T sequence by the following conversion method – [0 - AC, 1 - AG, 2 - AT,

3 - CA, 4 - CG, 5 - CT, 6 - GA, 7 - GC, 8 - GT, 9 - TA]. The reason for choosing
this conversion type is that if any ORCID or Plasmid ID has repetitions e.g. if
ORCID is 0000-0001-4578-9987, the converted sequence will not have a long run
of a single base. Long runs of a single nucleotide can result in errors during
sequencing. Let the converted ORCID and Plasmid ID sequences be ORCID and
PID respectively.

To account for the problem of placing the signature within the sequence
mentioned earlier in section 2, the signature is generated on the hash of a tweaked
version of the sequence. We left rotate a copy of the sequence by n−1 where n is
the location within the sequence where the signature needs to be placed. For this
example, the sender wants to place the signature after Q. The sequence will be
shifted as – UENCESEQ. The signature is generated on the hash of the left rotated
sequence UENCESEQ. The signature bits are then converted to A C G T sequence. Let
this signature sequence be SIN. Let the start tag be BESN and end tag be EDSN.
The signature sequence is concatenated with ORCID and PID and then placed

8 D. M. Kar and I. Ray

Algorithm 1: DNA Signature Algorithm Accommodating Cyclic Shifts,
Reverse Complement and Mutating Tags

Input: The GenBank (.gb) file: file, ORCID: a 16 digit number in
xxxx-xxxx-xxxx-xxxx format, Plasmid ID: a 6 digit number, Location of
signature placement: number, Error tolerance limit: number (can be 0
meaning no error tolerance)

Output: Signed GenBank (.gb) and FASTA (.fa) file: file
1 Input checks e.g. correct file extension, ORCID format, integers etc.
2 Parse GenBank file. Split content and sequence based on keyword ORIGIN.

Parse content to get the list of feature locations.
3 if Location of signature placement NOT within a feature then
4 Make the position as start of the sequence and wrap everything before the

location to the end. If position is 0 or length of sequence - no wrap is
needed.

5 Generate hash (SHA-256) of this sequence.
6 Generate signature on the hash.
7 Convert the signature bytes,ORCID and Plasmid ID to ACGT sequence.

Create the following string by concatenating parts :
8 BESN+ORCID+Plasmid ID+SIN+EDSN
9 if error tolerance NOT 0 then

10 Append MSG (shifted sequence) before
BESN+ORCID+PLASMID ID+SIN+ESN.

11 Pass SEQUENCE+BESN+ORCID+PLASMID ID+SIN+ESN to
Reed-Solomon Encoder.

12 Convert the parity bytes to ACGT. (call this ECC)
13 Signature Sequence =

BESN+ORCID+PLASMID ID+SIN+ECC+EDSN.

14 else
15 Signature Sequence = BESN+ORCID+PLASMID ID+SIN+EDSN.

16 if signature placement location is start of the original sequence then
17 Final Sequence = SEQUENCE+Signature Sequence

18 else if signature placement location is end of the original sequence then
19 Final Sequence = Signature Sequence+SEQUENCE

20 else
21 part1 = prefix of SEQUENCE of length n− 1 (where signature is to be

placed at location n
22 part2 = suffix of SEQUENCE of length len(SEQUENCE)− n + 1
23 Final Sequence = part1+Signature Sequence+part2

24 Write the Final Sequence to a new GenBank file and FASTA file.

25 else
26 Alert user about collision. Allow user to input new location. Go to step 3

with new location.

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 9

between the start and end tags as BESN ORCID PID SIN EDSN. This entire string
is then placed at the position specified by the user. We chose 4 in our example.
Hence, the signed sequence looks like - SEQ BESN ORCID PID SIN EDSN UENCE.

Next, this sequence is passed into the error correction encoder. According
to the number of tolerable errors specified by the user, the error correcting
parity bits are generated. These parity bits are then converted to some A C G T

sequence. Let this sequence be ECC. When the encoder output is generated, the
sequence would look like – SEQ BESN ORCID PID SIN EDSN UENCE ECC. Next, the ECC
is separated and is placed before the signature and end tag. So the final output
sequence is - SEQ BESN ORCID PID SIN ECC EDSN UENCE. Note that the error correc-
tion code is generated after generating the signature sequence and combining
with original sequence. Hence any error in that string can be corrected provided
it is within the tolerable limit. For instance, if we put 2 as our error tolerance
limit, then any 2 errors within the string SEQ BESN ORCID PID SIN ECC EDSN UENCE

can be tolerated. If there is 1 error in SEQ and 1 error in SIN, or 2 errors in
SIN, or 1 error in SIN and 1 error in ECC, these can be corrected. But if there
are more than two errors it cannot be corrected. The final output sequence
- SEQ BESN ORCID PID SIN ECC EDSN UENCE is written into another GenBank file.
The descriptions are updated i.e. the locations of the signature, start, end, ecc
are added and if there were features after location 4 in the original DNA, the
locations of these features are also updated. This GenBank file is for reference
of the sender. It is not required for signature verification and there is no need to
share it with the receiver unless there are other reasons. The output sequence is
now synthesized into the signed DNA sample.

Signature verification: The signature verification procedure is described
below in Algorithm 2.

The receiver sequences the shared DNA using an automated DNA sequencer.
The sequence in the FASTA file might not be the in the same order when the
sender signed it. That is, after sequencing the shared DNA, the FASTA file may
look like - ORCID PID SIN ECC EDSN UENCE SEQ BESN which is a cyclic permutation
of the sender’s sequence.

The first step in the verification procedure is to extract the BESN and EDSN

tags. If they are not mutated they are retrieved directly. If the tags cannot
be located directly, we use Algorithm 3 to retrieve their closest matches and
use them as BESN and EDSN tags. We defer the discussion on Algorithm 3 to
section 2.2. The verification step now will concatenate the FASTA sequence -
ORCID PID SIN ECC EDSN UENCE SEQ BESN + ORCID PID SIN ECC EDSN UENCE SEQ

BESN.

Now, it looks for 2 BESN tags and extracts the content between them. After
obtaining the start tag, 32 bases are counted, this is the ORCID sequence, next
12 bases are counted, this is the plasmid ID sequence, then 512 bases are counted,
this is the signature sequence. Next the substring after this signature sequence
to the EDSN tag is retrieved, this is the error correction sequence. Finally, the
substring between EDSN and BESN is the message for signature verification.

10 D. M. Kar and I. Ray

Algorithm 2: New signature verification procedure

Input: A FASTA file generated from sequencing the DNA sample received
Output: Prompt - Signature Valid or Invalid.

1 Input checks: file extension and only ACGT content.
2 Parse FASTA file and create reverse complement of the file
3 Use Algorithm 3 to get the BESN and EDSN tags.
4 if (file contains BESN or EDSN) OR (reverse contains BESN or EDSN) then
5 if file contains BESN or EDSN then
6 Create content string by appending FASTA file content thrice.
7 Get the sequence between two BESN tags. Create the following parts by

counting: ORCID = first 32 chars; PLASMID ID = next 12 chars; SIN
= next 512 chars; ECC = chars between SIN and END (may be
empty); MSG = chars from END to end of string.

8 else
/* When input FASTA file is in reverse complement form. */

9 Create content string by appending reverse complement of FASTA file
content thrice.

10 Same as Step 6. i.e. get the parts from reverse complement.

11 Generate hash (SHA-256) of MSG
12 Invoke signature verification
13 if signature is valid then
14 Alert user about success.

15 else
16 Alert user about failure and start error correction procedure.
17 if ECC length is 0 then
18 Alert user there is no ECC and correction not possible.

19 else
20 Create the following string from the parts:

SEQUENCE+BESN+ORCID+PID+EDSN+ECC and send to
Reed-Solomon decoder.

21 if decoder outputs null or same as input then
22 Alert user errors are more than tolerable limit.

23 else
24 Get the corrected parts and re-invoke verification.
25 if re-verification is success then
26 Alert user that verification succeeded after error correction.

Compare the parts before and after error correction and
display the errors.

27 else
28 Alert user that verification failed even after successful

correction.

29 else
30 Alert user that BESN and EDSN tags are not present.

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 11

Until this point, we have retrieved UENCESEQ, ORCID, PID, SIN, and ECC. The
UENCESEQ, ORCID and SIN is used for signature verification. With our previ-
ous signature generation method, since the message signed by the sender was
SEQUENCE and the message retrieved by the verifier is ENCESEQ the hashes will be
different and the validation would fail. With the new procedure, we can see that
the although the sender’s file contained the sequence SEQUENCE, the signature
was actually generated on the shifted UENCESEQ. Due to this shift, the retrieved
sequence and the sender’s sequence will always be the same under any rotations.
We have shifted the message of the sender to make the signature placement at
the start of the message. We call this new generation scheme as force shift 0.

If the FASTA file contains the reverse complement of the sender’s DNA
sequence, the entire FASTA file is reverse complemented and then we look for
the BESN and EDSN tags. If there is a match, we arrive at the conclusion that the
FASTA file contains the reverse complement. Then we start the same verification
steps on the reverse complemented FASTA sequence.

4 Allowing Mutations in Start and End Tags

The approximate matching technique, shown in Algorithm 3, breaks the entire
string in which we are looking for the result into substrings of the length of the
input string. Each of the broken substring in the larger string is assigned a score
based on how similar it is to the input string. A match is inferred using the
highest score. Now in the real DNA, we are looking for sequences of A, C, G,
and T. So there might be a case that there are multiple close matches which
means that there are multiple starts (or end) tags. In those cases, we use the
end tags (or start tags respectively) to narrow our results. The following steps
describe how the approximate matching technique works. There can be a total
of four scenarios:

1. Case 1: No mutation in either start or end tags. - In this case, we
can find the exact locations of the tags and hence approximate matching
techniques are not needed. There can be mutations in any other place which
will be handled by the error correction code.

2. Case 2: Mutation in BESN tag only. - In this case, the EDSN tag is found
directly. The algorithm looks for the closest match to BESN. If there is a
single match with the highest score, then we can be quite certain that the
BESN tag has been located correctly. However, there can be multiple matches
with close scores, i.e., there is no single stand out high score. In that case,
we use the EDSN tag for further elimination of choices. We already know that
the content within the start tag and the end tag is more than 556 base pairs.
Hence we choose only those potential BESN tags which are at distance of 556
base pairs/characters or more away from the EDSN tag. The logic is set to
556 or more because the length of the error correction can be 0 if the user
chooses no error correction.

3. Case 3: Mutation in EDSN tag only. - In this case, the BESN tag is found
directly. The tool looks for the closest match to EDSN. As in case 2, if there

12 D. M. Kar and I. Ray

is a single match with the highest score then we can be quite certain that
the EDSN tag has been located correctly. For multiple matches with close
scores, we use the same logic as described in case 2 above, using the distance
between the BESN and EDSN tags to be more than or equal to 556 base pairs.

4. Case 4: Mutation in both BESN and EDSN tags. - In this case, we try
to locate the closest matches for both tags. If there is a single match with
the highest score for both of them then we can be pretty certain that we
have located them both correctly. Also, we invoke the criteria of length more
than or equal to 556 between them for more certainty. In case of multiple
potential BESN and EDSN tags, we employ the length counting criteria for
each BESN and EDSN tag pair possible from the obtained results and narrow
down the results.

We used the Optimal String Alignment variant of the Damerau-Levenshtein
algorithm [2] as our preferred method for string matching. For a discussion on
the experiments we performed to arrive at this decision please refer to Appendix
1.

5 New Identity-based Signature Scheme with Shorter
Signature Size

There are several identity-based digital signature schemes using pairings. Some
of the notable schemes are: Sakai-Kasahara [22], Sakai-Ohgishi-Kasahara [21],
Paterson [17], Cha-Cheon [3], and Xun Yi [24]. The Sakai-Kasahara scheme
described two types of identity-based signatures. One is El-Gamal type and
the other is Schnorr type. To identify the most appropriate scheme we first
implemented all the above schemes using the Java Pairing Based Cryptography
library (jPBC) [5]. We then investigated the signature lengths based on different
types of curves that can be used. The time to generate and validate a signature
depends on the type of the curve used. We evaluated both aspects: time to sign
and verify, and the size of the signature using this algorithm for all the different
types of curves present in the jPBC library.

Based on the signature size and the computation cost of signature generation
and verification, we identified the best scheme to be the Sakai-Kasahara Schnorr
type. We now describe the Sakai-Kasahara Schnorr type identity-based signature
scheme. It has four steps: setup, extract, sign and verify.

Setup: The setup generates the curve parameters. The different curves pro-
vided in the jPBC library can be used to load the parameters. Let g1 be the
generator of G1, g2 be the generator of G2. A random x ∈ Z∗

n is chosen to be
the master secret. Two public keys P1 and P2 are calculated as - P1 = x · g1 and
P2 = x · g2. An embedding function H is chosen such that H(0, 1)∗ → G1.

Extract: Takes as input the curve parameters, the master secret key x, and
a user’s identity and returns the users identity-based secret key. This step is
performed by the central authority for each user A with identity IDA.

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 13

Algorithm 3: Approximate matching of tags

Input: Content of FASTA file: String
Output: BESN and EDSN tags: 2 Strings

1 begin = ACGCTTCGCA; end = GTATCCTATG /* hardcoded */

2 revcomp = reverse complement of input string
3 if input contains (begin and end) then
4 BESN = begin; EDSN = end

5 else if input contains end and NOT begin then
6 EDSN = end; Split input into substrings of length 10
7 foreach substring do
8 Calculate score with begin; Store each substring and score. Sort by

score.

9 if single highest score then
10 BESN = highest score substring

11 else if multiple high scores then
12 Calculate distance between each substring to end.
13 BESN = substring where distance > 556
14 if multiple pairs with distance > 556. then
15 Alert user about failure to extract tags. Exit

16 else if input contains begin and NOT end then
17 BESN = begin; Split input into substrings of length 10
18 Same as step 7 and 8. Replace begin with end

19 Same as step 9. Set EDSN = highest score substring as in step 10.
20 Same as step 11. Replace end with begin in step 12. Set EDSN as in step 13.
21 Same as step 14 and 15.

22 else if input does NOT contain begin and end then
23 Split input into substrings of length 10
24 foreach substring do
25 Calculate score with both begin and end;
26 Store each substring and score for both. Sort by score.

27 if single highest score in both then
28 BESN = highest score substring;EDSN = highest score substring;

29 else if multiple high scores in both then
30 Calculate distance between each pair of substrings. Set BESN and

EDSN where distance > 556.
31 if multiple pairs with distance > 556. then
32 Alert user about failure to extract tags. Exit

33 Repeat the same four conditions as in step 3, 5, 16 and 22 with revcomp instead
of input. e.g. revcomp contains (begin and end)

34 return BESN and EDSN

14 D. M. Kar and I. Ray

1. For an identity IDA, calculate CA = H(IDA). That is map the identity
string to an element of G1.

2. Calculate VA = x · CA.

User A’s secret key is (CA, VA) and is sent to the user via a secure channel.
Sign: To sign a message m, a user A with the curve parameters and the

secret key (CA, VA) does the following:

1. Choose a random r ∈ Z∗
n. Compute ZA = r · g2.

2. Compute e = en(CA, ZA), where en is the pairing operation.
3. Compute h = H1(m ‖ e), where H1 is a secure cryptographic hash function

such as SHA-256 and ‖ is the concatenation operation.
4. Compute S = hVA + rCA .

A’s signature for the message m is - (h, S)
Verify: The verification procedure is as follows:

1. Compute w = en(S, g2) ∗ en(CA,−hP2)

2. Check H1(m ‖ w)
?
= h

The above equation works because:

e = en(CA, ZA) = en(CA, r · g2) = en(CA, g2)r

w = en(S, g2) ∗ en(CA,−hP2)

= en(hVA + rCA, g2) ∗ en(CA,−hx · g2)

= en(hx · CA + rCA, g2) ∗ en(CA, g2)−hx

= en((hx + r) · CA, g2) ∗ en(CA, g2)−hx

= en(CA, g2)hx+r ∗ en(CA, g2)−hx

= en(CA, g2)r

Hence, h = H1(m ‖ e) = H1(m ‖ w).
The signature is a tuple (h, S) where h is the result of a hash function and

is dependent on the choice of the hash function. If h is SHA-1, then length is 20
bytes, if h is SHA-256, the length is 32 bytes. The value S is an element of the
group G1. Hence its length will be dependent on the curve type and the length
of the prime. There are six types of curves in the jPBC library namely – a, a1,
d, e, f, and g. The different types of curves and their parameters are provided
in the library as “properties” files. Table 1 summarizes the comparison of the
signature length using the different curves.

Based on the signature size, the best performance is provided by the d159, f,
and g149 curves. However, the length of the primes are a bit different and also
the embedding degree is different. In the d159 curve, the prime is 159 bits and the
embedding degree is 6. In the f curve, the prime is 158 bits and the embedding
degree is 12. In the g149 curve, the prime is 149 bits and the embedding degree
is 10. Keeping in view the small difference in signature sizes and the security
related to each type, the better choice is the f curve.

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 15

Table 1. Signature size using different curves for the Sakai-Kasahara scheme.

Curve Name
Signature Size using SHA-1

(Bytes)
Signature Size using SHA-256

(Bytes)

a.properties (20, 128) = 148 (32, 128) = 160

a1.properties (20, 260) = 280 (32, 260) = 292

d159.properties (20, 40) = 60 (32, 40) = 72

d201.properties (20, 52) = 72 (32, 52) = 84

d224.properties (20, 56) = 76 (32, 56) = 88

e.properties (20, 256) = 276 (32, 256) = 288

f.properties (20, 40) = 60 (32, 40) = 72

g149.properties (20,38) = 58 (32, 38) = 70

The time to generate the signature and verify also depends on the type of
the curve because of their properties. Table 2 summarizes the time to sign and
verify using the different types of curves.

Table 2. Average time taken to sign and verify for different types of curves for the
Sakai-Kasahara scheme.

Curve Name
Signature Size using SHA-1

(Bytes)
Signature Size using SHA-256

(Bytes)

a.properties 56 60

a1.properties 594 448

d159.properties 102 98

d201.properties 121 138

d224.properties 129 131

e.properties 262 214

f.properties 133 251

g149.properties 170 219

From the speed perspective, the a type curve is the fastest for generating and
verifying the signature. But the size of the signature is way larger. The short
signature size generating curves i.e. d159, f and g149 take a bit more time. It is,
therefore, a matter of priority - signature size over speed. If we need to sign and
verify a lot of messages and not care about the signature size then type A curve
is a good choice. However, if the size of the signature is more important than
speed like in our application, the f type curve is a better option. Also, the f type
curve offers the best security among the three as its embedding degree is higher.
Using this Sakai-Kasahara scheme we have reduced the signature size from 512
base pairs to 288 base pairs. The only thing it affects in our earlier algorithms
is determination of BESN and EDSN in Section 4 when these tags mutate and we
need to rely on counting base pairs to locate those tags.

16 D. M. Kar and I. Ray

Security of scheme : Since we use well-known signature schemes that assume that
no polynomial-time adversary can forge a genuine signature without knowing the
secret used to sign, it trivially follows that our scheme is also secure.

6 Conclusion and Future Work

In this work, we improve the previous DNA signing scheme [13] in several di-
rections. First, we remove the need to share the genbank file by eliminating the
requirement of alignment at the sample receiver’s end. The new signature gener-
ation procedure is independent of where the signer wants to place the signature.
Notwithstanding any cyclic shifts or reverse complements that the receiver may
get during sequencing, the signature can still be verified. To account for DNA
mutations, we use error correction codes in the signature protocol to correct
errors within pre-specified tolerable limits. Our second improvement is a way
to locate mutated tags using approximate string matching techniques. This al-
lows us to overcome mutation in the identifying tags and hence we can correctly
recover the error correction code. This was a major problem in previous scheme

Our third improvement is the reduction of signature size. We used pairing
based cryptography to improve the previous signature scheme which generated
512 base pair signature to the Sakai-Kasahara scheme which generates 288 base
pair signature. That is almost 43% gain in signature length.

One of the future directions in this work would involve signing and verifying
the same DNA molecule multiple times by different users. Alice signs and sends
a DNA sample to Bob and Bob validate Alice’s DNA. Then Bob continues
to modify it, signs it and sends it to Mallory. Can Mallory only verify Bob’s
signature, or is there a way for Mallory to track the entire pathway starting
from Alice? It would be interesting to see if the concept of aggregate signatures
can be applied in these scenarios. Also, it would be interesting to see if we put a
signature on top of an existing signature whether the characteristic of the DNA
changes or not. If it does not, how many signatures can be inserted before the
characteristics of the original DNA molecule begin to change? Also, if we cannot
put multiple signatures within the same DNA molecule, how do we remove the
signature that was present before signing it again. Finally, does removing the
signature also alters the property of the DNA?

Acknowledgment

This work is partly based on research supported by the Office of the Vice Pres-
ident of Research, Colorado State University. This material is also based upon
work performed by Indrajit Ray while serving at the National Science Founda-
tion. Research findings presented here and opinions expressed are solely those of
the authors and in no way reflect the opinions of Colorado State University, the
U.S. NSF or any other federal agencies. The authors would like to thank Jenna
Gallegos and Jean Peccoud for their comments and suggestions.

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 17

References

1. Biodefense in the Age of Synthetic Biology. National Academies of Sciences, En-
gineering and Medicine (Jun 2018)

2. Damerau – Levenshtein Distance. Wikipedia (Feb 2019)
3. Choon, J.C., Hee Cheon, J.: An Identity-Based Signature from Gap Diffie-Hellman

Groups. In: Desmedt, Y.G. (ed.) Public Key Cryptography — PKC 2003. pp. 18–
30. Lecture Notes in Computer Science, Springer Berlin Heidelberg (2002)

4. Damerau, F.J.: A Technique for Computer Detection and Correction of Spelling
Errors. Communications of ACM 7(3), 171–176 (Mar 1964)

5. De Caro, A., Iovino, V.: jPBC: Java Pairing Based Cryptography. In: Proceedings
of the 16th IEEE Symposium on Computers and Communications, ISCC 2011. pp.
850–855. IEEE, Kerkyra, Corfu, Greece, June 28 - July 1 (2011)

6. Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.Y., Algire, M.A.,
Benders, G.A., Montague, M.G., Ma, L., Moodie, M.M., Merryman, C., Vashee,
S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E.A.,
Young, L., Qi, Z.Q., Segall-Shapiro, T.H., Calvey, C.H., Parmar, P.P., Hutchi-
son, C.A., Smith, H.O., Venter, J.C.: Creation of a Bacterial Cell Controlled by a
Chemically Synthesized Genome. Science 329(5987), 52–56 (2010)

7. Heider, D., Barnekow, A.: DNA-based Watermarks Using the DNA-Crypt Algo-
rithm. BMC Bioinformatics 8(1) (May 2007)

8. Hutchison, C.A., Chuang, R.Y., Noskov, V.N., Assad-Garcia, N., Deerinck, T.J.,
Ellisman, M.H., Gill, J., Kannan, K., Karas, B.J., Ma, L., Pelletier, J.F., Qi, Z.Q.,
Richter, R.A., Strychalski, E.A., Sun, L., Suzuki, Y., Tsvetanova, B., Wise, K.S.,
Smith, H.O., Glass, J.I., Merryman, C., Gibson, D.G., Venter, J.C.: Design and
Synthesis of a Minimal Bacterial Genome. Science 351(6280) (2016)

9. Jaccard, P.: Distribution de la Flore Alpine dans le Bassin des Dranses et dans
quelques régions voisines. Bulletin de la Societe Vaudoise des Sciences Naturelles
37(140), 241–72 (1901)

10. Jaccard, P.: Etude De La Distribution Florale Dans Une Portion Des Alpes Et
Du Jura. Bulletin de la Societe Vaudoise des Sciences Naturelles 37(142), 547–579
(1901)

11. Jaro, M.A.: Advances in Record-Linkage Methodology as Applied to Matching the
1985 Census of Tampa, Florida. Journal of the American Statistical Association
84(406), 414–420 (Jun 1989)

12. Jupiter, D.C., Ficht, T.A., Samuel, J., Qin, Q.M., de Figueiredo, P.: DNA Water-
marking of Infectious Agents: progress and Prospects. PLOS Pathogens 6(6), 1–3
(06 2010)

13. Kar, D.M., Ray, I., Gallegos, J., Peccoud, J.: Digital Signatures to Ensure the
Authenticity and Integrity of Synthetic DNA Molecules. In: Proceedings of the
New Security Paradigms Workshop. pp. 110–122. NSPW ’18, ACM, Windsor, UK
(2018)

14. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet physics doklady 10(8), 707–710 (1966)

15. Liss, M., Daubert, D., Brunner, K., Kliche, K., Hammes, U., Leiherer, A., Wagner,
R.: Embedding Permanent Watermarks in Synthetic Genes. PLOS ONE 7(8), 1–10
(08 2012)

16. Ney, P., Koscher, K., Organick, L., Ceze, L., Kohno, T.: Computer Security, Pri-
vacy, and DNA Sequencing: Compromising Computers with Synthesized DNA,
Privacy Leaks, and More. In: Proc. of the 26th USENIX Security Symposium.
Vancouver, Canada (Aug 2017)

18 D. M. Kar and I. Ray

17. Paterson, K.G.: ID-based Signatures from Pairings on Elliptic Curves. Electronics
Letters 38(18), 1025–1026 (Aug 2002)

18. Plank, J.S., et al.: A Tutorial on Reed-Solomon Coding for Fault-tolerance in
RAID-like Systems. Software Practice and Experience 27(9), 995–1012 (1997)

19. Reed, I.S., Solomon, G.: Polynomial Codes Over Certain Finite Fields. Journal of
the Society for Industrial and Applied Mathematics 8(2), 300–304 (1960)

20. Richardson, S.M., Mitchell, L.A., Stracquadanio, G., Yang, K., Dymond, J.S., Di-
Carlo, J.E., Lee, D., Huang, C.L.V., Chandrasegaran, S., Cai, Y., Boeke, J.D.,
Bader, J.S.: Design of a Synthetic Yeast Genome. Science 355(6329), 1040–1044
(2017)

21. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems Based on Pairing. In: Pro-
ceedings of the 2000 Symposium on Cryptography and Information Security. Oki-
nawa, Japan (January 2000)

22. Sakai, R., Kasahara, M.: ID based Cryptosystems with Pairing on Elliptic Curve.
IACR Cryptology ePrint Archive (2003)

23. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Advances
in Cryptology. pp. 47–53. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg (Aug 1984)

24. Yi, X.: An Identity-based Signature Scheme from the Weil Pairing. IEEE Commu-
nications Letters 7(2), 76–78 (Feb 2003)

Appendix 1 - Analysis of Distance Measures for String
Matching

Various techniques exist to handle matching of similar strings. These methods
measure the distance between strings using a distance equation. One of the
most important works in this field is the Levenshtein distance [14]. Other notable
algorithms are Damerau-Levenshtein[4, 14, 2], Optimal String Alignment variant
of Damerau-Levenshtein (sometimes called the restricted edit distance) [2], Jaro-
Winkler edit distance [11], and Jaccard index [10, 9].

We used all these five algorithms for the approximate start and end tag
matching. One of the reasons for using all of the above was we wanted to find
out which would be most suited to the DNA domain. For testing, the FASTA file
is taken as input and the start and end tag within the FASTA file are manually
changed. Then we search for the location of the defined start and end tags within
the mutated FASTA file. The results for each algorithm are summarized on a case
by case basis in Figure 1. As can be seen from the Figures the Jaro algorithm
was fairly inaccurate with an average accuracy of only 35.12 %. The Jaccard
algorithm fared much better but was still imperfect with an average accuracy
of only 95.18 %. All of the three Levenshtein variants were perfectly accurate in
their assessment. These results indicate that if accuracy was the chief concern,
either of the three Levenshtein variants would be ideal choices.

Another important consideration in algorithm selection was speed. While an
algorithm may be perfectly accurate in its selection of the closest match to a
string this means little in practice if the algorithm has an untenable long run
time. To this end, the speed of the algorithms was compared. To accomplish this
each method was used to compare a series of one million random strings of a set

That’s My DNA: Detecting Malicious Tampering of Synthesized DNA 19

Fig. 1. Accuracy of algorithms per case as a percentage.

length. A graph of the time in milliseconds (ms) for each algorithm is given in
Figure 2.

Fig. 2. Runtime analysis of various algorithms in milliseconds.

As can be seen from Figure 2, the Jaro-Winkler and Optimal String Align-
ment algorithms were the quickest, each growing at very slow rates with Jaro-
Winkler being slightly faster overall. Taking both of these factors into consider-
ation Optimal String Alignment was chosen as the preferred method.

20 D. M. Kar and I. Ray

Appendix 2 - pUC19 DNA before and after signing

Fig. 3. View of sequenced but unsigned pUC19 in SnapGene editor

Fig. 4. View of sequenced signed pUC19 in SnapGene showing embedded signature.
Note increased size of DNA

