
HAL Id: hal-02384602
https://inria.hal.science/hal-02384602

Submitted on 28 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Shoal: Query Optimization and Operator Placement for
Access Controlled Stream Processing Systems

Cory Thoma, Alexandros Labrinidis, Adam J. Lee

To cite this version:
Cory Thoma, Alexandros Labrinidis, Adam J. Lee. Shoal: Query Optimization and Operator Place-
ment for Access Controlled Stream Processing Systems. 33th IFIP Annual Conference on Data and
Applications Security and Privacy (DBSec), Jul 2019, Charleston, SC, United States. pp.261-280,
�10.1007/978-3-030-22479-0_14�. �hal-02384602�

https://inria.hal.science/hal-02384602
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Shoal: Query Optimization and Operator Placement for
Access Controlled Stream Processing Systems

Cory Thoma, Alexandros Labrinidis, and Adam J. Lee

Department of Computer Science, University of Pittsburgh
{corythoma, labrinid, adamlee}@cs.pitt.edu

Abstract. Distributed Data Stream Processing Systems (DDSPS) execute on
transient data flowing through long-running, continuous, streaming queries, grouped
together in query networks. Often, these continuous queries are outsourced by
the querier to third-party computing platforms to help control the cost and main-
tenance associated with owning and operating such systems. Such outsourcing,
however, may be contradictory to a data provider’s access controls as they may
not permit their data to be viewed or accessed by an unintended third party. A
data provider’s access controls may, therefore, prevent a querier from fully out-
sourcing their query. Current research in this space has provided alternative ac-
cess control techniques that involve computation-enabling encryption techniques,
specialized hardware, or specialized query operators that allow for a data provider
to enforce access controls while still allowing a querier to employ a third-party
system. However, no system considers access controls and their enforcement as
part of the query optimization step. In this paper, we present Shoal, an optimizer
that considers access controls as first class citizens when optimizing and distribut-
ing a network of query operators. We show that Shoal can generate more efficient
queries versus the state-of-the-art, as well as detail how changes in access con-
trols can generate new query plans at runtime.

1 Introduction

The ever-increasing and ever-changing size, speed, and availability of accessible data
has led to the rise of new outsourced data processing paradigms. One such paradigm
is Data Stream Processing handled by Distributed Data Stream Processing Systems
(DDSPSs). A DDSPS handles data on-the-fly by executing on transient data with long-
running continuous computations (queries), such as streaming operations, map-reduce
functions, or user-defined functions, etc. These computations are often outsourced to
third-party systems that handle data processing and execution.

Outsourcing computation is desirable for the querier as it provides them with cost
savings. For instance, the querier need not maintain expensive hardware and software
platforms. Further, the cloud provider offers guarantees on uptime and service avail-
ability that a querier can rely on. Finally, the querier can take advantage of a cloud
provider’s ability to scale to meet demand, by allocating new resources or freeing up
underused ones. When a querier contracts a third-party cloud service provider, they are
often able to optimize their query to take advantage of different third-party offerings and
pricing models. In doing so, they are able to improve the efficiency of their query for

2 Cory Thoma, Alexandros Labrinidis, and Adam J. Lee

some measurable metric (e.g., latency, throughput, monetary cost) by taking advantage
of location, current pricing, current load, and other factors at runtime by changing the
placement of certain components (i.e., operators) of their queries. This allows queriers
to freely move queries around to improve some aspect of the query’s performance.

When a data provider dictates access controls over their streaming data, however,
a querier may lose some of these freedoms. For instance, if a data provider authors an
access control policy that removes a third-party altogether, the querier would lose the
ability to execute any part of their streaming query on that provider. Similarly, if ac-
cess controls are enforced using some cryptographic method (e.g., Polystream [31] or
Streamforce [3]), the querier may experience degraded performance as different per-
missions require different encryption schemes, each incurring different overheads. In
both cases, a querier stands to lose some of the benefits of hosting their queries on a
third-party system, and may even be required to host the query themselves.

Queriers must consider access controls when trying to generate and optimize their
queries. For instance, when a query is broken down into different operators, some oper-
ators may be able to execute directly on plaintext, but may have to execute on a querier-
maintained machine, whereas others may be more costly (monetarily, in terms of la-
tency, or otherwise) but can be executed on a third-party system. A querier must now
be able to reason about and decide which implementation of an operation to choose
given the accesses they have been provided. This implies that a querier must be able to
enumerate potential operators and consider them at query optimization time to ensure
that the most efficient query plan is derived given each data providers’ access controls.
Further, when a data provider changes their access controls, query networks may need
to be updated.

Currently, DDSPS optimizers and related work have explored DDSPSs optimiza-
tion in a limited scope. Some have simply focused on better utilization of the under-
lying computation hardware alone [17], while others have focused on the underlying
network alone [7, 13, 27, 29]. Several optimizers and systems have focused on the im-
pact of data variability on the system in the presence of access controls [3, 31] and in
the impact of data stream rates and selectivities [2,6]. Currently, there is no system that
focuses on optimizing queries based on the underlying access controls from different
data-providers. Further, the closest related work focuses on the use of an optimize-then-
place approach in which a user’s query is first optimized for non-distributed execution
and then post-processed for placement on distributed resources. Finally, related work
with enforcing access controls in a DDSPS focuses on a single query, which may not
suit a querier as they may query many data providers.

We present an optimizer that considers a querier’s access privileges at optimization
time to produce a high-quality placement and ordering of individual streaming opera-
tors. Our proposal, Shoal,1 uses a dynamic programming algorithm to guarantee optimal
placement and orderings for moderate-sized sets of streaming queries on a DDSPS, and
includes a heuristic approach for larger query networks. Shoal combines the ordering
and placement steps to take advantage of the underlying system by considering multiple

1 A shoal is a heterogeneous group of fish that is organized to function towards a common
purpose, typically of a safety or social nature.

Shoal: Query Optimization and Operator Placement for Access Controlled DDSMSs 3

orderings on various distributed computation infrastructures, and avoids the pitfalls of
the optimize-then-place approach. To this end, we make the following contributions:
• We show the optimize-then-place approach to be a sub-optimal approach for com-

puting operator placement in a DDSPS.
• We introduce the first cost model for distributed streaming queries that leverages

parallelism inherent to the DDSPS and accounts for key sources of heterogeneity
such as fluctuations and changes in the underlying data streams and the underlying
system and network.

• We detail an optimization algorithm that can execute both at query initialization as
well as when a change in the system is detected. This algorithm only optimizes the
parts of any queries that are potentially affected by a change in access controls. By
only considering parts that are affected by system changes, this online algorithm is
able to quickly re-optimize and recover while maintaining an optimal solution.

• We run an extensive evaluation of our algorithms and compare to several baseline,
state-of-the-art, and optimize-then-place algorithms. We show that our proposed
framework can produce higher quality optimization and placement plans (up to 2.2x
better) with reasonably low overheads, and further show these plans are of a higher
quality when compared to related work.
The remainder of this paper is organized as follows. We present the system model in

Section 2 and formalize our problem statement in Section 3. We describe our proposed
approach in Section 4 and present results form our experimental evaluation in Section 5.
Section 6 summarizes related work. We conclude in Section 7

2 Background and System Model

This section overview the features Shoal considers when optimizing. We further detail
our system model and overview access control frameworks and their affect on a DDSPS.

2.1 Background on DDSPSs

Shoal uses a common Distributed Data Stream Processing System (DDSPS) model.
DDSPSs separate the data provider from the data consumer, and often separate the data
processing machines as well. DDSPSs rely on long running, continuous computations
that execute on transient data. Once a DDSPS has processed the transient data, results
can be stored or forgotten depending on the computation being done.

DDSPSs can implement many different stream-processing paradigms such as rela-
tional data stream processing [2, 4, 5], MapReduce [19], and user-defined tasks. Rela-
tional data stream processing systems use continuous SQL-like queries that are com-
prised of streaming operations that execute a single task. Similar to traditional database
management systems, some operations require large amounts of information to pro-
duce their result (e.g., a join or aggregation). Since data is transient in a DDSPS, data
is grouped by windows and slides: a window represents how much data to keep (e.g.,
100 tuples, 10 minutes, etc.) and a slide represents how often to update the querier (e.g.,
every 10 seconds, every 500 tuples, etc.).

4 Cory Thoma, Alexandros Labrinidis, and Adam J. Lee

The system components of a typical DDSPS are listed below.
• Data Providers provide streaming data (subject to access controls) to the system.
• Sites are third-party computational and storage platforms (such as Amazon EC2 or

Microsoft Azure). They are tasked with the execution of streaming operations as
well as forwarding data.

• Data Consumers author and submit streaming queries to the system. These queries
can be of a variety of paradigms such as relational streaming continuous queries,
map-reduce computations, or user-defined functions.

2.2 Access Controls

In a DDSPS, access control enforcement becomes difficult since the data providers can
not control the propagation of their data after it is transmitted. The current literature
on enforcing access controls in a DSMS can be grouped into two categories: trusted
third-party enforcement and untrusted enforcement. Trusted third-party enforcement
techniques work by trusting that a computational site will enforce access to their data
on their behalf. Such systems either work with special operators [9–11] or by re-writing
queries [20, 23] so that access can be limited.

Systems that do not trust third-party enforcement will rely on cryptographically
enforced access controls. Rather than forcing a querier to process data only after it
has been decrypted, systems like PolyStream [31] and Streamforce [3] allow the data
provider to use specialized computation-enabling encryption techniques to enable third-
party computation for a querier directly on encrypted data. These systems, however,
limit the expressiveness and accessibility of a queriers’ potential query. In Streamforce,
a querier may only access integer data via a view-like format, (i.e., only allowing fil-
tering and aggregations on numeric data). PolyStream supports a richer set of query
operations than Streamforce, but cannot support join or complex user-defined functions
over streams from multiple providers. Furthermore, these systems also leak information
about the underlying plaintext values, such as equality, relative partial ordering, or re-
lationships between groups of tuples (e.g., the encrypted aggregate of some encrypted
data). In either the fully-trusted third-party or the untrusted third-party scenario, ac-
cess control enforcement comes with computational overheads that must be properly
accounted for when optimizing and placing a query.

3 Problem Description

In this section, we detail the exact optimization problem addressed by our framework
and define the different components of a Distributed Data Stream Processing System
(DDSPS). We offer a description of our optimization approach and show the optimize-
then-place approach to be suboptimal.

3.1 Problem Description

In order to properly define the problem being addressed here, we must first formalize
the required components. There are three main components to optimizing and placing
a data consumer’s computation: sites, operations, queries, and query networks.

Shoal: Query Optimization and Operator Placement for Access Controlled DDSMSs 5

Definition 1. Site: As introduced in Section 2, a site s executes operators. Interconnec-
tions between sites have bandwidth (in bits/s, where tuples can be of varying size) and
latency (in ms) characteristics that we represent as b(s1,s2) and l(s1,s2) respectively.
Sites are associated with the following properties:

• s.cap is the site’s processing capacity (in cycles, translated to tuples/s).

• s.name is the site’s name used for unique identification purposes.

• s.per is a set of permissions {< o, f >| site s can execute a physical operator o on
field f}.

Definition 2. Operation: An operation op is a set of operators that execute the same
task via different physical implementations.

• op.type represents the action to be performed on a data stream (e.g., filter, projec-
tion, summation, top-k, etc.).

• op.args includes metadata about the operations such as the join condition or selec-
tion criteria.

• op.input represents the set of fields required for this operation to execute.

• op.output represents the set of fields in the output of this operation.

• op.id is a unique identifier for the operation.

A typical operation can be a filter over someone’s age, a join to match two streams,
or an aggregation to find the maximum profit in a given window of time. Operations
can be implemented using different techniques, represented as operators.

Definition 3. Operator: The basic computational unit used in Shoal is an operator o,
which has the following properties:

• o.s represents the expected or actual selectivity of the operation. Selectivities can be
derived either by estimation, measurements during a warm-up period, or historical
selectivity data.

• o.c represents the cost of the operation in terms of the latency for computing on one
tuple. It can be calculated in a manner similar to the selectivities.

• o.site represents the site an operator has been assigned to.

• o.opId represents the ID of the operation (that is to say, the logical operator that
this physical operator represents) that this operator implements.

• o.window represents the window size for a stateful operator either in tuples or ms,
with a default of 0.

Operators allow flexibility when implementing an operation. Consider the potential
difference between a hash-join implementation of a join operation versus a merge-join
implementation. Given the input rate and selectivity of each stream, it is highly likely
that one join would outperform the other in terms of overall latency. An operation would
have the merge-join and hash-join as potential operators, and each operator would have
a cost that can be used to better optimize the query network.

Definition 4. Query: A query is represented as a set q of operations that describe the
query or task that a data consumer wishes to execute over a set of data streams.

6 Cory Thoma, Alexandros Labrinidis, and Adam J. Lee

• leaves(q) returns the set of operations that operate on a raw data stream (i.e., do
not require the output of another operation to execute).

Definition 5. Query Network: A query network is represented as a set qn of queries
that will execute within the DSMS.

• sinks(qn) returns the set of operations that return a result to a querier (i.e., the last
part of any one query).

Using a query, permissions, and a set of available sites as input, Shoal produces a
plan as output:

Definition 6. Plan: A plan p = (Vo,Eo) where Vo is a set of physical operators and
Eo ⊂Vo×Vo is the edge set linking the outputs of one operator to the inputs of adjacent
operators.

Definition 7. Satisfiability: A plan p satisfies a query network qn if:

• ∀op ∈ qn,∃! o ∈Vo s.t. o.opId = op.id

• ∀o ∈Vo,∃! op ∈ qn s.t. op.id = o.opId∧< o,o.metadata >∈ o.site.per

• ∀o ∈ p,o.input ⊆
⋃

o′|<o′,o>∈Eo

o′.out put

That is, each operation in each query that comprises the query network has a unique
operator in the plan and that each operator in the plan is the implementation of one
operation in the query, and that each operation in the query is represented in the resulting
network. Additionally, each operator’s input must be part of the output of its immediate
predecessor, and each operator must be permitted to execute on its assigned site.

To determine the relative quality of a given plan p, we use the following cost model.

Definition 8. Cost: For a plan p of a Query Network qn, the cost of p, starting at the
leaf node(s), is determined by:

max
path∈Paths(p)

pathCost(path) (1)

where Paths is the set of paths from leaf nodes to sink nodes. The expected input
rate for each operator (starting from the initial input rate of the leaf node from the source
stream) is:

ir(oi) = IRqn ∗ ∏
op j∈pathUpTo(opi)

op j.s (2)

The function pathUpdTo(o) for an operator o is the ordered subset of operators that
precede o in the plan (as part of the same query). IRqn is the maximum input rate of any
leaf operator on the current path. The cost of a path is:

pathCost(path) =

∑
opi∈path

max(opi.c,opi.window)+Latency(opi, path)∗Penalty(oi) (3)

Shoal: Query Optimization and Operator Placement for Access Controlled DDSMSs 7

f3

j1

f1

f2

s1

f1

f2

f3
j1 s1

Selectivity f1 = .25 f2 = .96 f3 = .96 j1 = .05

Cost: 43
f3

j1

f1

f2

s1

Cost: 56

Cost: 36

1
2
3

Fig. 1: Simple continuous query.

The penalty is defined as:

Penalty(o) =

{
1, if pr(o,o.site)> ir(oi)

ir(o)
pr(o,o.site) , otherwise

(4)

The function pr(operator,site) determines what the processing rate of a site would be
with the operator o assigned to it. If this processing rate is greater than the input rate,
then there is no penalty. If the processing rate is insufficient to handle the input rate, the
plan is penalized by the input rate over the processing rate. Latency is computed as:

Latency(o, path) =

{
0, for o ∈ leaves(qn)
l(op,opi−1), for opi>1

(5)

Constrained by s.cap and bandwidth(opi,opi−1).

Definition 9. Problem: Given a query network qn of queries, a set of Sites s, and a set
of access control permissions per, produce a plan p that satisfies qn such that Equa-
tion 1 is minimized.

3.2 Optimize-then-place Approach

A reasonable first step solution to this optimization problem would be to separate opti-
mization from operator placement. This would allow a placement algorithm to simply
use an existing off-the-shelf optimizer and post-process the result for placement. This
approach, however, can lead to a sub-optimal plan even if the query itself is fully op-
timized. Consider the following scenario for a continuous query optimizer, which we
will use throughout the remainder of the paper to illustrate Shoal:

A simple query contains three filters (f1, f2, f3), a join (j1), and a projection (s1) as
depicted in the top of Figure 1 as the result of an optimization step. Next consider the
three sites available for placement, and assume the network cost is uniform. Each site
has a capacity of 10 (unit-less for simplicity). The cost of each filter is 4, of the join
6, and of the project 2; each have selectivities shown in Figure 1. Given these costs,
either the join must be co-located with f1 (the top of Figure 1) or separated from all

8 Cory Thoma, Alexandros Labrinidis, and Adam J. Lee

Algorithm 1 DynamicProgramming
1: DynamicProgramming(sc, perms, sites)
2: optPlace= new Array(ArrayList(plan))
3: for lea f ∈ leaves(sc) do
4: optPlace[0] = /0 . Initialize Empty list at level 0
5: for s ∈ sites do
6: for l ∈ operators(lea f) do
7: if s.cap≥ l.c && (< l, l.metadata. f ield >∈ s.perms) then
8: l.site = s
9: optPlace[0].add(new plan(l)) . Capacity kept per plan

10: prunePlans(optPlace[0])
11: for lv = 1...|sc| do
12: optPlace[lv] = /0 . Initialize Empty list at level lv
13: for operation ∈ sc | operation.type = join do
14: for plan1, plan2 ∈ optPlace[lv− 1] | (operation.input ⊆ (plan1.out put ∩ plan2.out put)) ∧ operation.opId 6∈

plan1.opIds∧operation.opId 6∈ plan2.opIds do
15: for s ∈ sites do
16: for join ∈ allowableOps(operation) do
17: if (updateCapacity(plan1, plan2,s)≥ join.c)∧ (< join, join.metadata. f ield >∈ s.perms) then
18: join.site = s
19: optPlace[lv].add(joinPlans(plan1, plan2, join))
20: for plan ∈ optPlace[lv−1] do
21: for operation ∈ sc | (operation.type 6= join)∧(operation.opId 6∈ plan.opIds)∧ (operation.input ⊆ plan.out put)

do
22: for s ∈ sites do
23: for o ∈ allowableOps(operation) do
24: if plan.s.cap≥ o.c∧< o,o.metadata. f ield >∈ s.perms then
25: o.site = s
26: optPlace[lv].add(combine(plan, o))
27: prunePlans(optPlace[lv])

of f1, f2 and f3, (the middle of Figure 1). However, notice that the selectivity of f1
combined with f2 is .92, meaning that a tremendous amount of data is being sent over
the network to the join. The selectivity of the join, however, is far lower at .05, meaning
that a smaller amount of data is being produced. If the query was instead optimized so
that f3 were to follow the join, the overall network cost would be substantially reduced,
resulting in a higher quality plan (78.8ms vs. 67.8ms with Equation 1). This illustrates
the need for the optimization and placement steps to be considered simultaneously.

4 The Shoal Optimizer

In this section, we introduce our optimization and placement algorithms.

4.1 Online Optimization Approach

Given the long-running nature of continuous queries, there is a high chance (essentially
a certainty) that a data provider’s access controls will change over time, requiring re-
optimization of the network of streaming queries currently deployed. When access con-
trols change for any one data streaming operator, it could possibly have a ripple effect
for other downstream operators as they may need to be moved to reallocate resources.
To accommodate these changes, there are two possible approaches: stop-the-world and
on-the-fly. The stop-the-world approach simply halts query execution and uses Algo-
rithm 1 to re-optimize the query from the root nodes. This approach, however, can lead

Shoal: Query Optimization and Operator Placement for Access Controlled DDSMSs 9

Algorithm 2 Access Control first-impacted identifier.
1: ACUpdate(Update u, Plan p)
2: cld = sc.lea f . Operations not processed
3: for o ∈ cld do
4: if o.input | u.protectedFields then
5: return p.levelO f (o)
6: else
7: cld.add(p.childrenO f (o)
8: cld.remove(o)

to large re-optimization times for larger query networks, and can end up doing repetitive
work when a relatively small set of operations are affected by the change.

We introduce an on-the-fly approach to mitigate these overheads. The principle be-
hind our on-the-fly approach is to execute Algorithm 1 from the operator that is first
affected by the access control update relative to the data providers of the overall query
network, which we will call the first-impacted. This requires the ability to determine
the first-impacted, which depends upon the type of access control update that occurred.

Access Control Algorithm 2 determines which operators are first-impacted by a change
in access controls. It starts by adding operations that directly access raw data streams
on Line 2 to the current query network, cld. These operators are then looped through on
Line 3, and Line 4 determines if that operator accesses the data being protected by the
new access control update. If so, this operation is the first-impacted and the algorithm
determines its level by asking the plan for the level. If the operation does not access the
protected data, its children are added to the cld set, and it removes itself from this set.
This continues until the first-impacted is found. At this point, Algorithm 1 will execute
on the descendant children of the first-impacted, as well as all operations at the same
level and their descendants. Note that on Lines 16 and 23, we check for all allowable
operations. Recall that one physical operation can be implemented by many physical
operations (e.g., the querier may have sufficient access to query in plaintext local to their
machine and further have access to use a computation-enabling encryption scheme such
as an order preserving scheme on encrypted data in the cloud. This function enumer-
ates the possible operators based on the current permissions of the querier. This leaves
the already optimized operations and their ancestor operations intact from the previous
plan, and re-optimizes the operations at and after the first-impacted’s level, leading to
less optimization time. The only alteration required for Algorithm 1 is the inclusion of
the current plan from which to start, which is simply placed in the optimalPlans set and
the Algorithm starts from Line 11 where the level is determined by traversing back to
the leaf nodes.

4.2 Greedy & Hybrid Approaches

As with traditional dynamic programming optimizers, our algorithm could suffer from
prohibitively large execution times for large or complicated query networks (explored
further in Section 5). When query networks become too large or complex, we defer to a
greedy approach. This approach simply considers one operator at a time and optimally

10 Cory Thoma, Alexandros Labrinidis, and Adam J. Lee

places it. In the base case where each operator needs to be placed, the user defines a time
threshold to f f line for their optimization step. If the dynamic programming approach is
expected to exceed to f f line, then the greedy approach is used. The online approach poses
a different problem because there may be uncertainty in how costly an update may be
to the system (i.e., the number of operators that need to be re-optimized).

The larger the number of operators that need to be considered, the greater the num-
ber of operators requiring re-optimization, and therefore the greater the cost of the up-
date. In a system operating at or near capacity, online updates may end up hindering the
quality of the result as some information may be lost during optimization, especially
for costly updates on large overall query networks. To combat this problem, we use the
greedy approach when updates are too costly relative to the system load. The greedy
approach simply re-optimizes, placing each operator in the most optimal location, in a
quick but likely non-optimal fashion.

The greedy approach lends itself nicely to distributed systems with heavy load
where re-optimization needs to be quick to avoid losing data, but it will not produce
plans of the same quality as the dynamic programming approach. To help a data con-
sumer determine which to use, we propose a hybrid solution which automatically deter-
mines which approach to use given the current system state. The determination is based
on three factors relative to the overall streaming query network submitted by the data
provider: (a) buffer capacity, (b) processing time of a single streaming tuple (end-to-
end), and (c) the input rate. When an update is deemed necessary, its cost c in seconds
is determined by multiplying the number of operations needing to be re-optimized by
the average amount of time to optimize one operator (based on the execution time of
optimizing the entire query, or a running average). Then, the following equation is used
to determine which algorithm to use:

uc = (
o∈p

∑
i
(bi ∗ ti))+ iro ∗ c (6)

where o is the operator in the plan p, bi is the utilized buffer size of o, ti is the processing
time of o, ir is the input rate. If c < uc then the dynamic programming approach is used,
otherwise the greedy approach is used to minimize data loss.

4.3 Example

To help illustrate how Shoal optimizes a set of streaming queries, consider the follow-
ing continuous query on a data stream that contains tuples with a timestamp, company-
Name, companyId, and the company profit, as illustrated in Figure 2:

SELECT max(avg_profit), companyName

FROM (SELECT companyName, AVG(profit) as avg_profit

FROM profitStream GROUP BY companyName EVERY 1m UPDATE 15s;)

GROUP BY companyName EVERY 1m UPDATE 15s;

This query requires five operations; a max (m), a projection (p), an average (a), and
two group-by operations (g1 and g2) represented by circles in Figure 2. Assume that

Shoal: Query Optimization and Operator Placement for Access Controlled DDSMSs 11

m
2

p
1

a
6

g1
2

A
10

B
10

g2
2 A B

ag1 p mg2

Fig. 2: Given a the set of operations and the sites A and B, Shoal optimizes and places
the operations so that the first aggregation is placed on A with the projection reducing
network load to the second aggregation operation placed on B.

the profit field is protected by a homomorphic encryption and the others are plaintext.
Further assume (for simplicity) that there are two sites A and B with capacities 10 and
10 respectfully, and a latency of 10ms between them (squares in Figure 2).

Shoal starts with the operation a as it is the operation that accesses raw data. Since a
homomorphic option exists for the aggregation, an operator executing a homomorphic
scheme is put onto each site and the next round of dynamic programming is initiated.
Further, plans are also added for random encryption and trusted machine processing.
This aggregation requires a group-by operation, which can execute on the plaintext
column for “company name”. This operation is placed with the aggregation on each
site, making each site’s best plan having a cost of 8 which, along with other plans
with varying physical operators, are kept for each site. Shoal then tests the remaining
operations and determines that the projection p can be added to each site’s best plan
for a cost of 9. Plans are now kept for each site and for each physical operator, but
the minimum plan score is 9. Note that this choice reduces the overall network load by
eliminating all columns except the company name and the average. Shoal continues and
determines that the maximum operation along with its group-by can not fit on either site
and chooses them to operate on site B with site A keeping its previous plan. With all
operators placed, the new plan resembles the one in the right half of Figure 2.

5 Evaluation

To evaluate our optimizers, we decided to use relational continuous queries for the bulk
of our experimentation.

Setup: For our evaluation, we limit Shoal to be used in a simple streaming system
with data providers, data consumers, and data processing components. For our simu-
lation, data is streamed from a laptop into Amazon AWS EC2 instances. Once data is
processed, it is passed back to the laptop to act as the data consumer. We implement the
streaming layer on the Apache Storm [30] framework. To keep the streaming layer sim-
ple, we use the most basic functionality of Storm where our data provider implements a
spout and our data processing nodes implement bolts with no multi-threating or repli-
cation (i.e., a bolt just mimics a machine for our purposes). We use Storm only for the
transport layer as it guarantees delivery and provides acking and nacking functional-
ity. To simulate real-world streams, each stream is imposed with an artificial latency of
0-30ms to emulate them being geographically separated.

12 Cory Thoma, Alexandros Labrinidis, and Adam J. Lee

Datasets: We use queries from the TPC-H [25] workload and modify them for use
in a streaming system (e.g., aggregations use windows). We will explicitly call out any
changes to the query we made, or if we use more than one query as part of the query
network. We further segment data based upon a timestamp so that it is streamed into
the system (in a pre-processing step) so that days are equivalent to minutes. All queries
are referenced using the query number (e.g., q1 for TPC-H query 1) and the number of
operators it translates to (e.g., q1(4) is TPC-H query 1, which has four operations).

Baseline Algorithms: In addition to our original and hybrid dynamic programing
algorithms, we chose three additional baselines for comparison: (1) all-on-client, where
all of the operations run on one machine, (2) first site, where each operation is placed
on the first site available, and switched to the next when either the site is at capacity
or there is a conflict with access controls, and (3) greedy, where a plan is generated by
greedily assigning each operation based on the best score.

5.1 Online Optimizer

This section evaluates our dynamic programing optimizer as compared to other baseline
approaches. The cost of an update is based on how many operations in the query net-
work are affected by the update, so we omit cases where the entire network was updated
since it would degenerate to the basic case where each operator must be optimized.

Optimization Time Given the cost of an update, this experiment determines the av-
erage optimizer execution time for the our dynamic programming approach as well as
the baseline approaches.
Configuration: We combine queries in increasing size order (i.e., 1 query, 2 queries, 3
queries, up to 4 queries, or 8, 14, 28, and 45 operators). This provides four data points
with an increasing size and number of sinks. All aggregation and join operations are
given windows of 5 minutes (to directly use the date field in each relevant tuple). We
trigger updates so that only a certain number of operators in each query are affected by
the update. Each optimizer is then used to order and place the subsequent operations.
Results (Figure 3): Here we can see the dynamic programming approach is the slow-
est. This optimizer execution time included the time to determine the first-impacted for
each approach, for each query.
Takeaway: Although Shoal has the highest optimization time, it is still relatively low,
especially when executing on a long-running continuous query in a network where the
resulting plan quality is much more important.

Plan Quality This experiment evaluates the overall plan quality of each approach
in terms of latency (ms) for each updated plans. Again, we present both the expected
latency, as well as the actual latency. Here, we include the hybrid approach to show
when it may switch optimizers to reduce the overall impact of an update.
Configuration: Queries are executed for 10 minutes in total. There is a two-minute
window for the initial query, after which an access control update is presented. The
query is then updated and the remainder of the time is spent monitoring the updated
query. The results presented below are the quality (latency in ms) of the updated query
network, as presented by the number of operators updated in the largest network.
Results (Figures 5a and 5b): Our dynamic programming optimizer produces the best
overall latencies for both expected and actual evaluations for the query network. The

Shoal: Query Optimization and Operator Placement for Access Controlled DDSMSs 13

 0

 10

 20

 30

 40

 50

 60

 70

q4(1) q6(3) q4(4) q3(8) q7(12)

O
p
tim

iz
a
tio
n

 T
im
e

 (
m
s
)

Operators after frst-impacted

DP
Greedy
Hybrid

First Site

Fig. 3: Optimizer execution time for the
online algorithm approaches.

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80 90 100 110

L
a
te
n
c
y
 (
m
s
)

Time (ms)

16
32
64

Fig. 4: Recovery time caused by an access
control update for different costs.

difference between the expected and the actual is roughly 10.2%, which indicates that
Shoal can produce results that are close to the actual values. Notice that the hybrid ap-
proach chose to switch to the Greedy optimizer in the last update to the query network.
This is due to the system being near capacity when the update occurred (roughly 2,500
tuples/s with a processing rate of roughly 2,615 tuples/s), and in the time to process a
new query, the system could have lost data, so the hybrid algorithm chose to use the
greedy optimizer.
Takeaway: Shoal produces higher quality plans when compared to the baseline.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

q6(1) q4(2) q3(4) q7(8)

L
a
te
n
c
y
 (
m
s
)

Operators after frst-impacted

DP
Greedy
All-on-1
First Site
Hybrid

(a) Expected latency.

 0

 10

 20

 30

 40

 50

 60

 70

 80

q6(1) q4(2) q3(4) q7(8)

L
a
te
n
c
y
 (
m
s
)

Operators after frst-impacted

DP
Greedy
All-on-1
First Site
Hybrid

(b) Actual latency.

Fig. 5: Expected and Actual latency for Shoal on random data.

Recovery Time When an update occurs, the system must determine how to re-
optimize from first-impacted operation. This process takes time, and while it is pro-
cessing, the query will still need to be executing. The time between the start of an
update optimization and the normal execution of the resulting plan is the time it takes
the system to recover from an update. In this experiment, we evaluate this recovery time
for access control updates.

Configuration: For this experiment, we generated a 128-operator query network.
Operations were selected from a random distribution of operations which included two-
way joins, filters, summations, averages, projections, and decrypt-process-encrypt oper-
ations. Access control updates occur by specifying a specific change in access controls

14 Cory Thoma, Alexandros Labrinidis, and Adam J. Lee

that target a specific operator such that the update cost remains consistent across the
evaluation, and each update causes an increase in latency and a decrease in through-
put (i.e., switch from plaintext to encrypted). A query is considered recovered once the
latency has normalized back to a steady value.

Results (Figure 4): When an update occurs to an access control policy (Figure 4),
the data consumer may lose access as indicated by the unreported latency values. Once
the query has been resumed, the larger updates cause a large spike in latency that takes
more time to recover from, as expected. Note the processing time of each update also
increases, but the recovery time is more-or-less the same (20-30ms). This shows that
the new queries can handle the increased workload to make-up for the lost work and
then maintain a new latency rather quickly.

5.2 Comparison to the State-of-the-Art

We now evaluate the quality of the plans produced by Shoal versus other operator place-
ment approaches, namely Pietzuch et al. [24] and Srivastava et al. [29].

Algorithms: Pietzuch et al. [24] propose a solution that focuses on placing opera-
tors in a large-scale distributed network using a latency metric. Their optimizer takes
a query plan and places it using a two-step algorithm: first a Virtual Operator Place-
ment step and then a Physical Operator Placement step. The virtual operator placement
step considers all operators in a query and places them based on a cost space. This cost
space consists of a decentralized view of the network from a single node’s perspective
and focuses on the latencies between potential sites. There is also a load dimension that
can ensure that a single site does not become overwhelmed. Their approach allows for
access control updates by allowing operators to migrate between sites. To compare to
our work, we fix the cost space by artificially creating latencies and data rates between
potential sites (i.e., the assumed information gathered by the DDSMS in their work)
and then allow it to adjust over time. The main optimization function used in their work
is to minimize the following formula:

∑
l∈L

DR(l)∗LAT (l) (7)

Where l is the link between two nodes, DR(l) is the data rate of that link, and LAT (l)
is the latency of that link.

Srivastava et al. [29] also reduce data transmission, but do so for localized networks.
Their work focuses on using parts of the query itself, as well as the machines available
for placement, to make a placement decision. Specifically, they focus on the selectivity
of filtering operations, the cost associated with each operation, and the cost associated
with sending a tuple through the network. In addition to the above costs, a join’s cost is
calculated using its selectivity and the cost per unit time for processing one tuple. The
cost of a placement plan is therefore the sum of all of the nodes where the selectivities of
upstream filters are multiplied by the cost of the current filter. Some filters are correlated
and some are not, so the ordering decision comes from the commutative aspect and
the overall cost comes from minimizing the cost of the filter and join orderings. To
compare with our work, we again assume an artificially created latency and use the
same operators’ costs and latencies across all approaches.

Shoal: Query Optimization and Operator Placement for Access Controlled DDSMSs 15

Configuration: For our comparison, we use multiple queries over a fixed number
of sites. We use 5 sites, each connected to each other with an initial latency randomly
selected from a range of 5-500 ms. Each query is comprised of between 4 and 128 oper-
ations selected as either filters (selection operations) or joins, with plaintext data. Since
[24] requires an initial query plan, we use Shoal with a single site and sufficient ca-
pacity to generate a non-distributed query plan. Finally, each filter is given a selectivity
randomly selected from the set {.1,.2,...,.9}. To gather information on actual latencies,
each query was executed for a total of five minutes for each approach.
Results (Figures 6a & 6b): As depicted in Figures 6a and 6b, Shoal produces plans
with better expected and actual latency. As before, the expected and actual are within
an average of 8%, however the Pietzuch et al. approach is more predictable since its
expected is on average only 4% different from the actual value. Shoal is able to outper-
form the other approaches because it attempts to find an optimal solution that takes into
account the parallelism inherent to a distributed system by preferring plans that allow
work to be done on multiple devices simultaneously. The Pietzuch et al. approach relies
on an optimize-then-place approach and missed better filter orderings, which becomes
more apparent as queries grow larger. The Srivastava et al. approach does consider or-
dering, but does not consider the parallelism inherent to a distributed system and would
often serialize sets of operations that could have otherwise been done in parallel.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

q4(3) q6(6) q4(8) q3(14) q7(17)

La
te

n
cy

 (
m

s)

Query

Our Approach
Srivastava et al.

Pietzuch et al.

(a) Expected latency.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

q4(3) q6(6) q4(8) q3(14) q7(17)

La
te

n
cy

 (
m

s)

Query

Our Approach
Srivastava et al.

Pietzuch et al.

(b) Actual latency.

Fig. 6: Expected and Actual latency for Shoal on random data.

Takeaway: By considering ordering and placement at optimization time, as well as
taking advantage of parallelization inherent to the distributed system, Shoal can out-
preform other state-of-the-art optimizers in terms of end-to-end latency.

6 Related Work

Stream processing has been rigorously studied in the literature to include novel sys-
tems such as Aurora [1], Borealis [2], and Twitter Herron [18]. For traditional database
applications, the focus for operator placement in distributed database systems usually
focuses on replication, sharding, or scalability [12,14,15,28]. The PAQO [16] optimizer
focuses on placing operators in a distributed database system so that one entity does not

16 Cory Thoma, Alexandros Labrinidis, and Adam J. Lee

learn the underlying intension of the query. For data steaming systems, operator place-
ment is of a larger concern since queries are long-running and operators are expected to
consume resources for long periods of time while possibly fluctuating in their required
resource utilization. The contributions in [8] explore the general problem of operator
placement on heterogeneous computational platforms for DDSMs, and propose a lin-
ear programming model to place operators. Their approach processes placement in a
separate step from optimization, which can lead to suboptimal results (cf. Section 3).

Huang et al. [17] fit operators onto sites by calculating the execution time of an
operation and place it based on the capacity of each site, using end-to-end delay and
throughput as the metrics. Thoma et al. [32] place operators in a DDSMS where queriers
have the ability to control where operators are placed via a set of constraints. These
constraints generally cover all aspects of the placement, but do not consider the access
control policies of a data consumer. Operators placement using heuristics to optimize
for end-to-end latency and network traffic have also been explored [7, 13, 27].

Finally, some related work has focused on the impact of enforcing access controls
in a DDSPS. Enforcement systems such as FENCE [21, 22] include the enforcement
overheads in the optimization step by adding streaming operations that can be handled
like any other operation, but do so without considering operator placement. Other sys-
tems will rewrite queries or alter streaming operators [9–11, 23], while others focus
on protecting a single system, such as Borealis [20]. These systems simply explore the
overheads associated with access control enforcement and do not consider them at opti-
mization time or during operator placement. Furthermore, these systems do not explore
the tradeoff between different types of access control enforcement during optimization
time, which is provided in Shoal. Systems like PolyStream [31], and Streamforce [3],
CryptDB [26] consider such tradeoffs, but do either do not operate in a distributed fash-
ion (CryptDB), or do not consider them at optimization time.

Thus far current optimizers and systems have focused on a limited scope of charac-
teristics within a DDSPS, mostly excluding access controls. Either they do not consider
optimization and placement simultaneously, or they limit their approach to optimize
solely for something like network, hardware, or other traditional metrics. Shoal pro-
vides a general cost model and dynamic programming algorithm that accounts for data
provider’s access control enforcement at query optimization time.

7 Conclusion

We present Shoal, which considers access controls as first-class-citizens during query
optimization. By simultaneously ordering and placing streaming query networks on a
per-operator level, Shoal can guarantee optimal results through a dynamic programming
algorithm. Further, Shoal reduces optimization time for updates based on changes in
access controls by identifying the precise operators that need to be re-optimized and
only optimizing from those points forward in an online fashion. Finally, we show that
Shoal produces higher quality plans (up to 2.2x) versus the state-of-the-art optimizers,
and does so while considering data provider’s access controls.

Acknowledgements This work was supported in part by the National Science Foun-
dation under awards CNS–1253204 and CNS–1704139.

Shoal: Query Optimization and Operator Placement for Access Controlled DDSMSs 17

References

1. D. Abadi et al. Aurora: a new model and architecture for data stream management. VLDB,
12(2):120–139, 2003.

2. D. Abadi et al. The design of the borealis stream processing engine. In CIDR, 2005.
3. D. T. T. Anh and A. Datta. Streamforce: outsourcing access control enforcement for stream

data to the clouds. In ACM CODASPY, pages 13–24, 2014.
4. A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava,

and J. Widom. Stream: The stanford data stream management system. Book chapter, 2004.
5. A. Arasu et al. The cql continuous query language: semantic foundations and query execu-

tion. The VLDB Journal, 15(2):121–142, 2006.
6. A. Arasu et al. Stream: The stanford data stream management system. In Data Stream

Management, pages 317–336. Springer, 2016.
7. N. Backman, R. Fonseca, and U. Çetintemel. Managing parallelism for stream processing in

the cloud. In HOTCDP Workshop, pages 1–5. ACM, 2012.
8. V. Cardellini et al. Optimal operator placement for distributed stream processing applica-

tions. In DEBS, pages 69–80. ACM, 2016.
9. B. Carminati et al. Enforcing access control over data streams. In ACM SACMAT, pages

21–30, 2007.
10. B. Carminati et al. Specifying access control policies on data streams. In Advances in

Databases: Concepts, Systems and Applications, pages 410–421. Springer, 2007.
11. B. Carminati et al. A framework to enforce access control over data streams. ACM TISSEC,

13(3):28, 2010.
12. R. Cattell. Scalable sql and nosql data stores. Acm Sigmod Record, 39(4):12–27, 2011.
13. A. Chatzistergiou and S. D. Viglas. Fast heuristics for near-optimal task allocation in data

stream processing over clusters. In CIKM, pages 1579–1588. ACM, 2014.
14. J. C. Corbett et al. Spanner: Google’s globally distributed database. ACM Transactions on

Computer Systems (TOCS), 31(3):8, 2013.
15. C. Curino et al. Relational cloud: A database-as-a-service for the cloud. CIDR, 2011.
16. N. Farnan et al. Paqo: Preference-aware query optimization for decentralized database sys-

tems. In ICDE, 2014.
17. Y. Huang et al. Operator placement with qos constraints for distributed stream processing.

In CNSM, pages 1–7. IEEE, 2011.
18. S. Kulkarni et al. Twitter heron: Stream processing at scale. In SIGMOD, pages 239–250.

ACM, 2015.
19. K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon. Parallel data processing with

mapreduce: a survey. AcM sIGMoD Record, 40(4):11–20, 2012.
20. W. Lindner and J. Meier. Securing the borealis data stream engine. In IEEE IDEAS, pages

137–147, 2006.
21. R. Nehme et al. A security punctuation framework for enforcing access control on streaming

data. In ICDE, pages 406–415, 2008.
22. R. V. Nehme et al. Fence: Continuous access control enforcement in dynamic data stream

environments. In ACM CODASPY, pages 243–254, 2013.
23. W. S. Ng et al. Privacy preservation in streaming data collection. In ICPADS, pages 810–815,

2012.
24. P. Pietzuch et al. Network-aware operator placement for stream-processing systems. In

ICDE, pages 49–49. IEEE, 2006.
25. M. Poess and C. Floyd. New tpc benchmarks for decision support and web commerce. ACM

Sigmod Record, 29(4):64–71, 2000.

18 Cory Thoma, Alexandros Labrinidis, and Adam J. Lee

26. R. Popa et al. Cryptdb: protecting confidentiality with encrypted query processing. In ACM
SOSP, pages 85–100, 2011.

27. S. Rizou et al. Solving the multi-operator placement problem in large-scale operator net-
works. In ICCCN, pages 1–6. IEEE, 2010.

28. J. Shute et al. F1: A distributed sql database that scales. VLDB, 6(11):1068–1079, 2013.
29. U. Srivastava, K. Munagala, and J. Widom. Operator placement for in-network stream query

processing. In SIGMOD, pages 250–258. ACM, 2005.
30. StormProject. Storm: Distributed and fault-tolerant realtime computation. http://storm.

incubator.apache.org/documentation/Home.html, 2014.
31. C. Thoma et al. Polystream: Cryptographically enforced access controls for outsourced data

stream processing. In SACMAT, volume 21, page 12, 2016.
32. C. Thoma, A. Labrinidis, and A. J. Lee. Automated operator placement in distributed data

stream management systems subject to user constraints. In ICDEW, pages 310–316. IEEE,
2014.

