
HAL Id: hal-02365495
https://inria.hal.science/hal-02365495

Submitted on 15 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Representing Dependencies in Event Structures
G. Michele Pinna

To cite this version:
G. Michele Pinna. Representing Dependencies in Event Structures. 21th International Conference
on Coordination Languages and Models (COORDINATION), Jun 2019, Kongens Lyngby, Denmark.
pp.3-18, �10.1007/978-3-030-22397-7_1�. �hal-02365495�

https://inria.hal.science/hal-02365495
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Representing Dependencies in Event Structures?

G. Michele Pinna

Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy

Abstract. Event Structures where the causality may change dynami-
cally have been introduced recently. In this kind of Event Structures the
changes in the set of the causes of an event are triggered by modifiers
that may add or remove dependencies, thus making the happening of
an event contextual. Still the focus is always on the dependencies of the
event. In this paper we promote the idea that the context determined by
the modifiers plays a major rôle, and the context itself determines not
only the causes but also what causality should be. Modifiers are then
used to understand when an event (or a set of events) can be added
to a configuration, together with a set of events modeling dependencies,
which will play a less important rôle. We show that most of the notions
of Event Structure presented in literature can be translated into this new
kind of Event Structure, preserving the main notion, namely the one of
configuration.

1 Introduction

The notion of causality is an intriguing one. In the sequential case, the intuition
behind it is almost trivial: if the activity e depends on the activity e′, then to hap-
pen the activity e needs that e′ has already happened. This is easily represented
in Petri nets ([24]), the transition e′ produces a token that is consumed by the
transition e (the net N ′). The dependency is testified by the observation that the
activity e′ always precedes the activity e. However this intuition does not reflect
other possibilities. If we abandon the sequential case and move toward possibly
loosely cooperating system the notion of causality become involved. Consider

N N ′

e′

e

e′ e

the case of a Petri net with inhibitor arcs ([13]) where the precondition of the

? Work partially funded by RAS (Regione Autonoma della Sardegna) - L.R. 7/2007 -
Project SardCoin, CUP: F72F16003030002).

8 G. M. Pinna

transition e′ inhibits the transition e (the net N). The latter to happens needs
that the transition e′ happens first, and the observation testifies that the activ-
ity e needs that e′ has already happened, though resources are not exchanged
between e′ and e. In both cases the observation that the event e′ must happen
first leads to state that e′ precedes e and this can be well represented with a
partial order relation among events.

This quite simple discussion suggests that the notion of causality may have
many facets. In fact, if the dependencies are modeled just with a well founded
partial order, inhibitor arcs can be used to model these dependencies, but the no-
tion of partial order does not capture precisely the subtleties that are connected
to the notion of causality.

To represent the semantics of concurrent systems the notion of event struc-
ture plays a prominent role. Event structures have been introduced in [18] and
[27] and since then have been considered as a cornerstone. The idea is simple: the
activities of a system are the events and their relationships are specified some-
how, e.g. with a partial order modeling the enabling and a predicate expressing
when activities are coherent or not. Starting from this idea many authors have
faced the problem of adapting this notion to many different situations which
have as a target the attempt to represent faithfully various situations. This has
triggered many different approaches. In [11] and [12] causal automata are dis-
cussed, with the idea that the conditions under which an event may happen
are specified by a suitable logic formula, in [10] and [9] it is argued that a par-
tial order may be not enough or may be, in some situation, a too rigid notion,
and this idea is used also in [21] and [22] where the notion of event automata
is introduced, and it is used also in [20] where an enabling/disabling relation
for event automata is discussed. Looking at the enabling relation, both bun-
dle event structures ([15]) and dual event structures ([16]) provide a notion of
enabling capturing or -causality (the former exclusive or -causality and the lat-
ter non exclusive or -causality). Asymmetric event structures ([6]) introduces a
weaker notion of causality which models contextual arcs in Petri nets, or in the
case circular event structures ([7]) the enabling notion is tailored to model also
circular dependencies. In flow event structures ([8]) the partial order is required
to hold only in configurations. Finally we mention the approaches aiming at
modeling the possibility that the dependencies of an event may change either by
dropping some of them or by adding new ones ([1]). This short and incomplete
discussion (the event structures spectrum is rather broad) should point out the
variety of approaches present in literature. It should be also observed that the
majority of the approaches model causality with a relation that can be reduced
to a partial order, hence causality is represented stating what are the events that
should have happened before.

In this paper we introduce yet another notion of event structure. Triggered
by recent works on adding or subtracting dependencies among events based on
the fact that apparently unrelated events have happened ([1, 3]), we argue that
rather than focussing on how to model these enrichment or/and impoverishment,
it is much more natural to focus on the context on which an event takes place. In

Representing Dependencies in Event Structures 9

fact it is a context that can determine the proper dependencies that are applica-
ble at the state where the event should take place and the context holds, and the
context can also be used as well to forbid that the event is added to the state.
This new relation resembles the one used in inhibitor event structures ([5]), but
it differs in the way the contexts are determined. In the case of inhibitor event
structures the presence of a certain event (the inhibiting context) was used to
require that another one was present as well (representing the trigger able to
remove the inhibition). Here the flavour is different as it is more prescriptive: it
is required that exactly a set of events is present and if this happens then also
another one should be present as well. It should be stressed that triggers and
contexts may exchange their role. Consider again the two nets depicted before,
we may have that in both cases the trigger is determined by the happening of
the event e′ and the context is the empty set, but we can consider as context
the event e′ and the trigger as the empty set. This simple relation, which we will
call context-dependency relation, suffices to cover the various notions presented
in literature. It is worth observing that determining the context and the trig-
gers associated to it is quite similar to trying to understand the dependencies.
Consider the net N ′′ below.

N ′′

e′

e

e′′

Here e may be added either to the empty set or to a set containing both
e′ and e′′. The context containing e′ only leads to require that the event e′′ is
present (in the spirit of the relation for inhibitor event structures), making e
dependent on e′′. However we could also have chosen to focus on contexts only
and in this case the context containing just e′ is ruled out among the contexts
in which, together with some others dependencies, e may take place, and in this
case the two contexts are ∅ and {e′, e′′}. As hinted above, it will turn out that
the context plays a more relevant role with respect to the dependencies, as the
context can be seen positively (it specifies under which conditions an event can
be added, together with the dependency) or negatively (it specifies under which
conditions an event can be added, and in this case the event cannot be added
simply stipulating that it depends on itself).

In this paper we will focus on event structures where the change of state
is always triggered by the happening of a single event, hence we will not con-
sider steps (i.e. non empty and finite subsets of events), and where the states
(configurations) are finite, though not always explicitly assumed. However the
generalization to steps is straightforward.

10 G. M. Pinna

Organization of the paper: In the next section we will introduce and discuss
the new brand of event structure. In 3 we will review and briefly analyze some
notions of event structures presented in literature, namely prime event structure
([27]), relaxed prime event structure and dynamic causality event structure ([1]),
inhibitor event structure ([5]) and event structure for resolvable conflicts ([26]),
and, in section 4, we show that the each event structure presented in section 3
can be translated into this new kind of event structure. We will recall also the
notion event automata which will can used to compare the various notions of
event structure. We will end the paper with some conclusions and we will give
some hints for further developments.

Notation: Let A be a set, with let ρ we denote a sequence of elements belonging
to A, and with ε we denote the empty sequence. With ρ we denote the set of
elements of A appearing in ρ. Thus ρ = ∅ if ρ = ε and aρ′ = {a} ∪ ρ′ if ρ = aρ′.
Given a sequence ρ = a1 · · · an with len(ρ) we denote its length, with ρ0 we
sometime denote sequence ε and, if len(ρ) ≥ 1, for each 1 ≤ i ≤ len(ρ) with ρi
we denote the sequence a1 · · · ai. Let A be a set, with 2A we denote the subsets
of A and with 2Afin the finite subsets of A.

2 Context-Dependent Event Structure

We introduce yet another notion of event structure, which is the main contribu-
tion of the paper.

We start recalling what an event is and we introduce the notion of configu-
ration. An event is an atomic individual action which is able to change the state
of a system. Event structures in particular are intended to model concurrent
systems by defining relationships among events such as causality and conflict,
establishing the conditions on which a certain event can be added to a state.
The state of a system modeled by an event structure is a subset of events (those
happened so far), and this set of events is called configuration. States can be
enriched by adding other information beside the one represented by the events
that have determined the state, either adding information on the relationship
among the various events in the state, e.g. adding dependencies among them
(the state is then a partial order, [25]) or adding suitable information to the
whole state.

We pursue this idea that the happening of an event depends on a set of
modifiers (the context) and on a set of real dependencies, which are activated
by the set of modifiers.

We recall that in this paper we will consider only unlabelled event structures.
To simplify the presentation we retain the classic binary conflict relation. Given
a subset X ⊆ E of events and a conflict relation #, which is an irreflexive and
symmetric relation, we say that X is conflict free iff ∀e, e′ ∈ X it holds that
¬(e # e′).

Definition 1. A context-dependent event structure (cdes) is a triple E =
(E,#,�) where

Representing Dependencies in Event Structures 11

– E is a set of events,

– # ⊆ E× E is an irreflexive and symmetric relation, called conflict relation,
and

– � ⊆ 2A × E, where A ⊆ 2E
fin × 2E

fin , is a relation, called the context-
dependency relation (cd-relation), which is such that for each Z � e it
holds that

• Z 6= ∅, and

• for each (X,Y) ∈ Z it holds that X and Y are conflict-free.

Each element of the cd-relation � is called entry.

The cd-relation models, for each event, which are the possible contexts in which
the event may happen (the first component of each pair) and for each context
which are the events that have to be occurred (the second component). We
stipulate that dependencies and contexts are formed by non conflicting events,
though this is not strictly needed, as the relation can model also conflicts. How
this relation is used will become clear in the notion of enabling of an event. We
have to determine, for each Z� e, which of the contexts Xi should be considered.
To do so we define the context associated to each entry of the cd-relation. Given
Z � e, where Z = {(X1, Y1), . . . , (Xn, Yn)}, with Cxt(Z) we denote the set of

events
⋃|Z|
i=1Xi, and this is the one regarding Z� e.

Definition 2. Let E = (E,#,�) be a cdes and C ⊆ E be a subset of events.
Then the event e 6∈ C is enabled at C, denoted with C[e〉, if for each Z� e, with
Z = {(X1, Y1), . . . , (Xn, Yn)}, there is a pair (Xi, Yi) ∈ Z such that Cxt(Z)∩C =
Xi and Yi ⊆ C.

Observe that requiring the non emptiness of the set Z in Z� e guarantees that
an event e may be enabled at some subset of events. The cd-relation could be
used to express conflicts: e # e′ could be modeled by adding {({e}, {e′})} � e′

and {({e′}, {e})} � e to the � relation, and the presence of just one of them
would model the asymmetric conflict. The conflicts modeled in this way are
persistent.

Definition 3. Let E = (E,#,�) be a cdes. Let C be a subset of E. We say
that C is a configuration of the cdes E iff there exists a sequence of distinct
events ρ = e1 · · · en · · · over E such that

– ρ = C,

– ρ is conflict-free, and

– ∀1 ≤ i ≤ len(ρ). ρi−1[ei〉.

Denoting with Confcdes(E) the set of configurations of a cdes, we introduce the
relation among configurations. Given two configurations C and C ′ of a cdes
such that C ∪ {en+1} = C ′, we stipulate that C 7→cdes C

′ iff C[en+1〉.
We illustrate this new kind of event structure with some examples.

12 G. M. Pinna

Example 1. Consider three events a, b and c. All the events are singularly enabled
but a and b are in conflict unless c has not happened (we will see later that this
are called resolvable conflicts). Hence for the event a we stipulate

{(∅, ∅), ({c}, ∅), ({b}, {c})} � a

that should be interpreted as follows: if the context is ∅ or {c} then a is enabled
without any further condition (the Y are the empty set), if the context is {b} then
also {c} should be present. The set Cxt({(∅, ∅), ({c}, ∅), ({b}, {c})}) is {b, c}.
Similarly, for the event b we stipulate

{(∅, ∅), ({c}, ∅), ({a}, {c})} � b

which is justified as above and finally for the event c we stipulate

{(∅, ∅), ({a}, ∅), ({b}, ∅)} � c

namely any context allows to add the event.
Below we depict the configurations and how they are related.

∅

{a}

{b}

{c}

{b, c}

{a, c}

{a, b, c}

Example 2. Consider three events a, b and c, and assume that c depends on a
unless the event b has occurred, and in this case this dependency is removed.
Thus there is a classic causality between a and c, but it can dropped if b occurs.
Clearly a and b are always enabled. The cd-relation is {(∅, ∅)} � a, {(∅, ∅)} � b
and {(∅, {a}), ({b}, ∅)} � c.

Example 3. Consider three events a, b and c, and assume that c depends on a
just when the event b has occurred, and in this case this dependency is added,
otherwise it may happen without Thus the classic causality relation between a
and c is added if b occurs. Again a and b are always enabled. The cd-relation is
{(∅, ∅)} � a, {(∅, ∅)} � b and {(∅, ∅), ({b}, {a})} � c.

These examples should clarify how the cd-relation is used and its expressivity.

3 Event structures

We have introduced a new notion of event structure that we should confront
with the others presented in literature (at least some of them). Therefore we
review some of the various definitions of event structures.

Representing Dependencies in Event Structures 13

Prime event structures: Prime event structures are one among the first proposed
and the most widely studied ([27]), especially for the connections with prime
algebraic domains and causal nets. The dependencies among events are modeled
using a partial order relation, the incompatibility among events is modeled using
a symmetric and irreflexive relation, the conflict relation, and it is required that
the conflict relation is inherited along the partial order.

Definition 4. A prime event structure (pes) is a triple P = (E,≤,#), where
(a) E is a set of events, (b) ≤⊆ E × E is a well founded partial order called
causality relation, (c) # ⊆ E×E is an irreflexive and symmetric relation, called
conflict relation, such that e # e′ ≤ e′′ ⇒ e # e′′, and (c) ≤ ∩# = ∅.

Given an event e ∈ E, with bec we denote the set {e′ | e′ ≤ e}, and the require-
ment that the partial order is well founded implies that for each e ∈ E, the set
bec is finite. We say that C is a configuration of the pes P iff C is conflict free
and for each e ∈ C it holds that bec ⊆ C. The set of configuration of a pes is
denoted with Confpes(P). Clearly (Confpes(P),⊆) is a partial order. With 7→pes

we denote the relation over Confpes(P) × Confpes(P) defined as C 7→pes C
′ iff

C ⊂ C ′ and C ′ = C ∪ {e} for some e ∈ E.

Relaxed prime event structures: Some of the requirements of a pes, the one on
the dependencies among events (here called enabling) and the ore regarding the
conflicts among events (which does not need to be saturated), can be relaxed
yielding a relaxed prime event structure ([1, 3]). In this definition the events that
must be present in a state to allow the execution of another one are the events
in a (finite) subset called immediate causes and often denoted with ic.

Definition 5. A relaxed prime event structure (rpes) is a triple (E,→,#),
where (a) E is a set of events, (b) → ⊆ E× E is the enabling relation such that
∀e ∈ E the set ic(e) = {e′ | e′ → e} is finite, and (c) # ⊆ E× E is an irreflexive
and symmetric conflict relation.

The intuition is that the → relation plays the role of the causality relation and
the conflict relation models conflicts among events, as before. The immediate
causes can be seen as a mapping ic : E→ 2E

fin . Let T = (E,→,#) be a rpes. Let
C be a subset of E. We say that C is a configuration of the rpes T iff there exists
a sequence of distinct events ρ = e1 · · · en · · · over E such that ρ = C, ρ is conflict
free, and for each 1 ≤ i ≤ len(ρ). ic(ei) ⊆ ρi−1. The set of configuration of a rpes
is denoted with Confrpes(T). In rpes the emphasis is put on the existence of an
ordering in which the events are added to a configuration, and this will be valid
for many of the kinds of event structures. (Confrpes(T),⊆) is a partial order.
With 7→rpes we denote the relation over Confrpes(T) × Confrpes(T) defined as
C 7→rpes C

′ iff C ⊂ C ′ and C ′ = C ∪ {e} for some e ∈ E.
A pes is also a rpes: the causality relation is the enabling relation and the

conflict relation is the same one. e is added to a configuration C when its causes
are in C and no conflict arises. Given a rpes T = (E,→,#), it is not difficult to

see that (E,→∗, #̂) is a pes, where →∗ is the reflexive and transitive closure of

14 G. M. Pinna

→ and #̂ is obtained by # stipulating that # ⊆ #̂ and it is closed with respect
to →∗, i.e. if e #̂ e′ →∗ e′′ then e #̂ e′′. Indeed, the fact that →∗ is a partial
order is guaranteed by the fact that each event is executable, that →∗ is well
founded is implied by the finiteness of causes for each event e ∈ E and #̂ is the
semantic closure of #: no new conflict is introduced.

Dynamic Causality Event Structures: We now review a notion of event struc-
ture where causality may change ([1, 3]). The idea is to enrich a rpes with two
relations, one modeling the shrinking causality (some dependencies are dropped)
and the other the growing causality (some dependencies are added). The shrink-
ing and the growing causality relations are ternary relations stipulating that the
happening of a specific event (the modifier) allows to drop or add a specific cause
(the contribution) for another event (the target).

We illustrate these relations with the aid of a number of auxiliary subsets of
events associated to these relations. Let E be a set of events. A shrinking causality
relation is a ternary relation � ⊆ E × E × E, and the elements of this relation
are denoted with e′� [e→ e′′]. Given e′� [e→ e′′], e′ is called modifier, e′′ target
and e contribution. ShrMod(e′′) = {e′ | e′ � [e→ e′′]} is the set of modifiers for a
given target e′′ and Drop(e′, e′′) = {e | e′ � [e→ e′′]} is the set of contributions
for a given modifier e′ and a given target e′′. Let H be a finite subset of E and let
e be an event, we define the set dc(H, e) =

⋃
e′∈H∩ShrMod(e) Drop(e′, e) as the set

of dropped causes with respect to H for the event e. A growing causality relation
is a ternary relation I ⊆ E×E×E, and the elements of this relation are denoted
as e′ I [e → e′′] Given e′ I [e → e′′], e′ is called modifier, e′′ target and e
contribution. GroMod(e′′) = {e′ | e′ I [e→ e′′]} is the set of modifiers for a given
target e′′ and Add(e′, e′′) = {e | e′ I [e→ e′′]} is the set of contributions for a
given modifier e′ and a given target e′′. Let H be a finite subset of E and let e
be an event, we define the set ac(H, e) =

⋃
e′∈H∩GroMod(e) Add(e′, e) as the set of

added causes with respect to H for the event e. The two relation of shrinking and
growing causality give the functions dc: 2E

fin×E→ 2E
fin . and ac: 2E

fin×E→ 2E
fin .

Definition 6. A dynamic causality event structure (dces) is a quintuple D =
(E,→,#,�,I), where (E,→,#) is a rpes, � ⊆ E × E × E is the shrinking
causality relation, I ⊆ E×E×E is the growing causality relation, and are such
that for all e, e′, e′′ ∈ E

1. e′ � [e→ e′′] ∧ @e′′′ ∈ E. e′′′ I [e→ e′′] =⇒ e→ e′′,
2. e′ I [e→ e′′] ∧ @e′′′ ∈ E.e′′′ � [e→ e′′] =⇒ ¬(e→ e′′),
3. e′ I [e→ e′′] =⇒ ¬(e′ � [e→ e′′]), and
4. ∀e, e′ ∈ E. @e′′, e′′′ ∈ E. e′′ � [e→ e′] and e′′′ I [e→ e′].

For further comments on this definition we refer to [1] and [3]. It should be
observed, however, that the definition we consider here is slightly less general of
the one presented there, as we add a further condition, the last one, which is
defined in [2] and does not allow that the same contribution can be added and
removed by two different modifiers. These are called in [2] single state dynamic
causality event structures and rule out the fact that some causality (or absence

Representing Dependencies in Event Structures 15

of) depends on the order of modifiers. Conditions 1 and 2 simply state that
in the case of the shrinking relation the dependency should be present, and in
the case of the growing the dependency should be absent; condition 3 says that
if a dependency is added then it cannot be removed, or a removed dependency
cannot be added, and the final condition express the fact that two modifiers, one
growing and the other shrinking, cannot act on the same dependency. Clearly a
dces where � and I are empty is a rpes.

Let D = (E,→,#,�,I) be a dces. Let C be a subset of E. We say that
C is a configuration of the dces iff there exists a sequence of distinct events
ρ = e1 · · · en over E such that (a) ρ = C, (b) ρ is conflict-free, and (c) ∀1 ≤ i ≤
len(ρ). ((ic(ei)∪ ac(ρi−1, ei)) \ dc(ρi−1, ei)) ⊆ ρi−1. The set of configuration of a
dces is denoted with Confdces(D).

With 7→dces we denote the relation over Confdces(D) × Confdces(D) defined
as C 7→dces C

′ iff C ⊂ C ′, C ′ = C ∪ {e} for some e ∈ E and ((ic(e) ∪ ac(C, e)) \
dc(C, e)) ⊆ C.

Example 4. Consider the set of events {a, b, c, d, e}, with b → c, a � [b → c],
d I [e → c], a # e and d # b. a and d are the modifiers for the target c, the
happening of a has the effect that the cause b may be dropped, and the one of
d that the cause e should be added for c. If the prefix of the trace is bc (the
target c is executed before of one of its modifiers a and d) then the final part of
the trace is any either a or e, and as d # b we have that d cannot be added. If
the modifier a is executed before c then we have the traces ac (as the immediate
cause b of c is dropped by a) followed by b or d, and if the modifier d is executed,
then before adding c, we need e (the modifier d add the immediate cause e for
c), and in this case we cannot add b for sure as it is in conflict with d or a as
it is in conflict with e. If both modifiers a and d happen, then the event c is
permanently disabled, as it needs the contribution e (growing cause) which is in
conflict with a. Below are shown the configurations of this dces and the 7→dces

relation.

∅

{a}

{e}

{b}

{d}

{a, c}

{a, b}

{b, c}

{e, b}

{e, d}

{a, b, c}

{e, b, c}

{e, d, c}

A shrinking event structure (ses) is a dces where the I relation is empty and
a growing event structure (ges) is a dces where the � relation is empty.

16 G. M. Pinna

Inhibitor event structures: Inhibitor event structure ([5]) are equipped with a
relation (̀ ⊆ 2E

1 × E × 2E
fin allowing to model conflicts (even asymmetric) as

well as temporary inhibitions. With 2E
1 we denote the subsets of events with

cardinality at most one (the empty set or singletons). The intuition behind this
relation is the following: given (̀(a, e, A), the event e is enabled at a configura-
tion is whenever the configuration contains the set a, then its intersection with
A is non empty. Hence the event in a non empty a inhibits the happening of e
unless some event in A has happened as well. We stipulate that given (̀(a, e, A)
the events in A are pairwise conflicting (denoted with #(A)). Two events e and
e′ are in conflict if (̀({e′}, e, ∅) and (̀({e}, e′, ∅). An or -causality relation <
is definable stipulating that A < e if (̀(∅, e, A), and that if A < e and B < e′

for some e′ ∈ A then also B < e. This relation should be interpreted as follows:
A < e means that if e is present, then also an event in A should be present.

Definition 7. An inhibitor event structure (ies) is a pair I = (E, (̀), where
E is a set of events and (̀ ⊆ 2E

1 × E × 2E
fin is a relation such that for each

(̀(a, e, A) it holds that #(A) and a ∪A 6= ∅.

We briefly recall the intuition: consider an event e and a triple in the (̀ relation
(̀(a, e, A). Then e can be added provided that if the event in a is present also one
in A should be present. Let I = (E, (̀) be an ies. Let C be a subset of E. We say
that C is a configuration of the ies I iff there exists a sequence of distinct events
ρ = e1 · · · en · · · over E such that ρ = C and for each i ≤ n, for each (̀(a, ei, A), it
holds that a ⊆ ρi−1 ⇒ ρi−1∩A 6= ∅. The set of configuration of a ies is denoted
with Conf ies(I). With 7→ies we denote the relation over Conf ies(I) × Conf ies(D)
defined as C 7→ies C

′ iff C ⊂ C ′ and C ′ = C ∪ {e} for some e ∈ E.

Example 5. Consider three events a, b and c, (̀({a}, c, {b}) and (̀(∅, b, {a}).
The maximal event traces are cab and abc. The event c is inhibited when the
event a has occurred unless the event b has occurred as well. The configurations
are ∅, {a}, {c}, {a, b}, {a, c} and {a, b, c} and are reached as follows: ∅ 7→ies {a},
∅ 7→ies {c}, {a} 7→ies {a, b}, {c} 7→ies {a, c}, {a, b} 7→ies {a, b, c} and {a, c} 7→ies

{a, b, c}.

Event structures with resolvable conflicts: We finally recall the notion of event
structure with resolvable conflicts ([26]).

Definition 8. An event structure with resolvable conflicts (rces) is the pair
R = (E,`) where E is a set of events and `⊆ 2E × 2E is the enabling relation.

No restriction is posed on the enabling relation. The intuition is that stipulating
X ` Y one state that for all the events in Y to occur, also the events in the set
X should have occurred first.

The single event transition relation ;⊆ 2E × 2E of a rces R = (E,`) is
given by X ; Y ⇔ (X ⊆ Y ∧ |Y \ X| ≤ 1 ∧ ∀Z ⊆ Y. ∃W ⊆ X. W ` Z).
With this notion it is possible to define what a configuration is: it is a subset
X of events such that X ; X. The requirement that X ; X implies that

Representing Dependencies in Event Structures 17

each subset of events is enabled in the configuration. Let R = (E,`) be a rces.
Let C be a subset of E. We say that C is a configuration of the ies I iff there
exists a sequence of distinct events ρ = e1 · · · en · · · over E such that for each
1 ≤ i ≤ len(ρ) it holds that ρi−1 and ρi are configurations, and ρi−1 ; ρi. The
set of configuration of a rces is denoted with Confrces(R).

Given two configurations C and C ′ of a rces, such that C∪{en+1} = C ′ and
C ; C, we stipulate again that ρ 7→dces ρ′, defining a relation over Confrces(R)×
Confrces(R). Observe that the enabling relation ` is used not only to state under
which condition an event may happen but also to stipulate when an event is
deducible from a set of events, justifying also the deduction symbol used for this
relation. Observe also that 7→rces is essentially ;.

Example 6. Consider three events a, b and c, and ∅ ` X where X ⊆ {a, b, c} with
X 6= {a, b} and {c} ` {a, b}. The intuition is that all the events are singularly
enabled but a and b are in conflict unless c has not happened. In fact {a, b} is
not a configuration as taking {a, b} as the Z ⊆ {a, b} of the notion of single
event transition relation, there is no subset of {a, b} enabling these two events.

The configurations and how they are reached are those of the Example 1.

4 Embedding and comparing Event Structures

We now show that each of the event structure we have seen so far can be seen
as a cdes, and also how to compare them. For the sake of simplicity, we will
consider event structures where each event e is executable, namely that there is
at least a configuration containing it.

Comparing Event Structures: We start by devising how we can compare two
event structures of any kind. The intuition is obvious: two event structures are
equivalent iff they have the same configurations and the 7→ relations defined on
configurations coincide. We recall the notion of event automaton ([22]).

Definition 9. Let E be a set of events. An event automaton over E (ea) is the
tuple E = 〈E,S, 7→, s0〉 such that

– S ⊆ 2E, and
– 7→⊆ S× S is such that s 7→ s′ implies that s ⊂ s′.

s0 ∈ S is the initial state.

Event automata can easily express configurations of any kind of event structure,
provided that for each kind a way to reach a configuration from another is given.
The kind of event structure is ranged over by µ, µ′ ∈ {pes, rpes,dces, ies, rces,
cdes}.

Theorem 1. Let X be an event structure of kind µ over the set of events E.
Then Gµ(X) = 〈E,Confµ(X), 7→µ, ∅〉 is an event automaton.

Using event automata we can decide when two event structures are equivalent.

18 G. M. Pinna

Definition 10. Let X and Y be event structures over the same set of events
E of kind µ and µ′ respectively. We say that X and Y are equivalent, denoted
with X ≡ Y , iff Gµ(X) = Gµ′(Y).

The expressivity is explicitly studied in [1] and [3]. Informally a kind of event
structure is more expressive with respect to another, when there is a configura-
tion of the former that cannot be a configuration of the latter, whatever is done
with the various relations among events. Incomparable means that neither one is
more expressive than the other or the vice versa. We shortly summarize part of
these findings, when considering finite configurations. pes and rpes are equally
expressive, whereas ses and ges are strictly more expressive than rpes, and are
incomparable one with respect to the other. These two are both less expressive
than dces and rces, which are incomparable. The relative expressivity of other
kinds of event structure has not been investigated.

Embedding event structures into cdes: We prove now a more general result,
namely that given any event automaton E , which is obtained by the configu-
rations of any kind of event structure, it is possible to obtain a cdes whose
configurations are precisely the ones of the event automaton E . We start iden-
tifying, in an ea, the events that are in conflict. The conflict relation we obtain
is a semantic conflict relation: two events are in conflict iff they never appear
together in a state.

Definition 11. Let E = 〈E,S, 7→, s0〉 be an ea. We define a symmetric and
irreflexive conflict relation #ea as follows: e #ea e′ iff for each s ∈ S. {e, e′} 6⊆ s.

In order to obtain the cd-relation we need some further definitions. Fixed
an event e, the first one identifies the states where this event can be added, and
the second one identifies the states where the event cannot be added.

Definition 12. Let E = 〈E,S, 7→, s0〉 be an ea. To each event e ∈ E we associate
the subset of events {s ∈ S | s ∪ {e} ∈ S ∧ s 7→ s ∪ {e}}, which we denote with
C(E , e).

Definition 13. Let E = 〈E,S, 7→, s0〉 be an ea. To each event e ∈ E we associate
the set of configuration {s ∈ S | s ∪ {e} 6∈ S}, which we denote with I(E , e).

Definition 12 characterizes when an event is enabled giving the allowing context,
whereas the Definition 13 gives the context where the event cannot be added, and
it is called negative context. These two sets are used to obtain the cd-relation.

Theorem 2. Let E = 〈E,S, 7→, s0〉 be an ea. Then Fea(E) = (E,#, �) is a
cdes, where # is the relation #ea of Definition 11, and for each e ∈ E we
have {(X, ∅) | X ∈ C(E , e)} ∪ {(X, {e}) | X ∈ I(E , e)} � e. Furthermore E ≡
Gcdes(Fea(E)).

The theorem has a main consequence, namely that event automata and cdes
are equally expressive.

Representing Dependencies in Event Structures 19

Example 7. Consider the rces of the Example 6. The associated event automa-
ton is the one depicted in the Example 1. It has no conflict as all the three
events are present in a configuration together. The associated cd-relation, ob-
tained using Definition 12 and Definition 13, is the following one, which is a
little different from the one devised in the Example 1 as here it is obtained
from an event automaton. {(∅, ∅), ({c}, ∅), ({c, b}, ∅), ({b}, {a})} � a because
the set C(Confrces(R), a) contains the sets ∅, {c} and {c, b}, whereas the set of
the negative context I(Confrces(R), a) contains just {b}, the one {(∅, ∅), ({c}, ∅),
({a, b}, ∅), ({a}, {b})} � b as C(Confrces(R), b) contains the sets ∅, {c} and
{a, c}, I(Confrces(R), b) contains {a}, and finally {(∅, ∅), ({a}, ∅), ({b}, ∅)} � c
as C(Confrces(R), c) contains the sets ∅, {a} and {b}, and I(Confrces(R), c) is
the empty set.

As a consequence of the Theorem 2 we have the following result.

Corollary 1. Let X be an event structure of type µ and let Gµ(X) be the asso-
ciated ea. Then Fea(Gµ(X)) is cdes, and X ≡ Fea(Gµ(X)).

The construction identifies properly the context in which an event is allowed
to happen, and this context becomes the main ingredient of the cd-relation, as
the construction does not give the causes but just the context. If on the one
hand this suggests that the context, rather than the causal dependencies, is the
relevant ingredient, on the other hand it is less informative with respect to the
usual causality definitions.

We review some kind of event structures, showing that a more informative
cd-relation can be indeed obtained. We will focus only on few of them.

pes: In this case the idea is that causes of an event are just the set of events
that should be present in the configuration.

Proposition 1. Let P = (E,≤,#) be a pes. Then Fpes(P) = (E,#,�) is a
cdes, where {(∅, bec \ {e})} � e for each e ∈ E. Furthermore P ≡ Fpes(P).

This is not the unique way to associate to the causality relation ≤ of a pes the�
relation: one alternative would have been to add {(∅, {e′})} � e for each e′ < e
and another one would be {(bec \ {e}, ∅)} � e showing that the events causally
before e are indeed the context allowing the event e to happen.

Example 8. Consider the pes ({a, b, c},≤,#) where a ≤ b (we omit the reflexive
part of the ≤ relation), a # c and b # c. The event traces are ε, a, ab and c,
and the associated configurations are ∅, {a}, {a, b} and {c} (the 7→pes relation is
obvious). The conflict relation is the same and the cd-relation is {(∅, ∅)} � a,
{(∅, ∅)} � c and {(∅, {a})} � b. As noticed before we could have stipulated also
{({a}, ∅)} � b instead of {(∅, {a})} � b obtaining the same set of configurations
and the same transition graph.

20 G. M. Pinna

dces: The intuition in this case consists in mixing the two approaches above.

Proposition 2. Let D = (E,#,→,�,I) be a dces. Fdces(D) = (E,#, �) is
a cdes where the relation � is defined as {(X, (ic(e) \ (

⋃
e′∈X Drop(e′, e))) ∪⋃

e′∈X Add(e′, e)) | X ⊆ GroMod(e) ∪ ShrMod(e) � e for each e ∈ E. Further-
more D ≡ Fdces(G).

Example 9. Concerning the dces of the example 4, the conflict relation is the one
of the dces whereas the cd-relation is {(∅, ∅)} � a, {(∅, ∅)} � b, {(∅, ∅)} � e,
{(∅, ∅)} � d and for c we have {(∅, {b}), ({a}, ∅), ({d}, {b, e}), ({a, d}, {e})} � c.

ies: In the case of ies there are two main observations: one, there is no conflict
relation, and second, though there is some similarity between the (̀ relation
and the� relation, there is also a quite subtle difference. When adding an event
e to a configuration of an ies, and we have (̀(a, e, A), one would simply add the
pairs (a, {e′}) for each e′ ∈ A (as the events in A are pairwise conflicting) but
this does not work in the case A is the empty set, as it has a different meaning
in the (̀ relation with respect to the � relation. In the former, it means that
the event in a inhibits the event e, whereas in the latter the pair (a, ∅) simply
says that if the context a is present then there is no further event needed. Taking
into account these differences, the translation is fairly simple. We first define the
conflict relation and then the relation �, which is almost the same as the (̀
relation.

Proposition 3. Let I = (E, (̀) be an ies. Fies(I) = (E,#,�) is a cdes, where
e # e′ iff (̀({e}, e′, ∅) and (̀({e′}, e, ∅) , and for each e ∈ E, if (̀(a, e, A) and
A 6= ∅ then {(∅, ∅)} ∪ {(a, {e′}) | e′ ∈ A} � e, if (̀(a, e, A) and A = ∅ then
{(a, {e})} � e. Furthermore I ≡ Fies(I).

Example 10. The ies of the example 5 induces the empty conflict relation, and
the cd-relation is {(∅, ∅)} � a, {(∅, {a})} � b and {(∅, ∅), ({a}, {b})} � c.

Higher order causality: The comparison with event structures with higher-order
dynamics of [14] is done indirectly, as these are equivalent to event structures
with resolvable conflicts. In this approach the relations � and I are generalized
to take into account set of modifiers, targets and contributions. The drawback is
that the happening of an event implies a recalculation of these relation, similarly
to what it is done in causal automata. In fact it is fairly obvious that given one
simple step transition graph (meaning that a configuration is reached by another
one adding just one event), it is always possible to obtain a cdes.

5 Conclusion

In this paper we have introduced a new brand of event structure where the main
relation, the cd-relation, models the various conditions under which an event
can be added to a subset of events. The relation is now defined as � ⊆ 2A × E,

Representing Dependencies in Event Structures 21

where A ⊆ 2E × 2E, thus it stipulates for each event which are the context-
dependency pairs, but it can be easily generalized to subsets of events modeling
precisely, when events happen together (as it is done in [23] or [26]). The focus
is on the contexts in which an event can be added, which may change, rather
that modeling the dependencies and how these may change. Here the choice is
whether it is better to focus on dependencies (and how they may change) or
on the context. The advantage of the latter is its generality, whereas the former
may be useful in pointing out relations among events.

It should be clear that this kind of event structures is capable of modeling
the same enabling situation for an event in various way, and it could be inter-
esting to understand if there could be an informative way canonically. In fact,
the canonical relation just focus on all the contexts in which an event can be
added, and the dependency set is less informative. Thus finding a way to identify
minimal contexts together with a set of dependencies may be useful, similarly
to what it has been discussed when associating pes to cdes.

It remains to stress that cdes can be generalized not only allowing steps
but also representing contexts in a richer way. Here we have considered contexts
as subset of events, but they can have a richer structure. This would allow
to characterize more precisely contexts, allowing, for instance, to drop the last
requirement we have placed on dces, as in this case the order in which the
modifiers appear may influence the dependencies. Finally we observe that the
idea of context is not new, for instance they have been considered in [17] or in
[4], and a comparison with these should be considered.

In this paper we have considered various event structures, still some inter-
esting notions remained out of the scope of this paper, like reversible event
structures [19], but we are confident that our approach can be used also in the
reversibility setting.

References

1. Arbach, Y., Karcher, D., Peters, K., Nestmann, U.: Dynamic causality in event
structures. In: Graf, S., Viswanathan, M. (eds.) FORTE ’15 Conference Proceed-
ings. Lecture Notes in Computer Science, vol. 9039, pp. 83–97. Springer Verlag
(2015)

2. Arbach, Y., Karcher, D., Peters, K., Nestmann, U.: Dynamic causality in event
structures (technical report). CoRR abs/1504.00512 (2015)

3. Arbach, Y., Karcher, D.S., Peters, K., Nestmann, U.: Dynamic Causality in Event
Structures. Logical Methods in Computer Science Volume 14, Issue 1 (Feb 2018)

4. Baldan, P., Bracciali, A., Bruni, R.: A semantic framework for open processes.
Theoretical Computer Science 389(3), 446–483 (2007)

5. Baldan, P., Busi, N., Corradini, A., Pinna, G.M.: Domain and event structure
semantics for Petri nets with read and inhibitor arcs. Theoretical Computer Science
323(1-3), 129–189 (2004)

6. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event
structures and processes. Information and Computation 171(1), 1–49 (2001)

7. Bartoletti, M., Cimoli, T., Pinna, G.M., Zunino, R.: Circular causality in event
structures. Fundamenta Informaticae 134(3-4), 219–259 (2014)

22 G. M. Pinna

8. Boudol, G.: Flow Event Structures and Flow Nets. In: Semantics of System of
Concurrent Processes. Lecture Notes in Computer Science, vol. 469, pp. 62–95.
Springer Verlag (1990)

9. Gaifman, H.: Modeling concurrency by partial orders and nonlinear transition sys-
tems. In: de Bakker, J.W., de Roever, W.P., Rozenberg, G. (eds.) Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency, REX
Workshop. Lecture Notes in Computer Science, vol. 354, pp. 467–488. Springer
Verlag (1989)

10. Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation
of functions. In: Gries, D. (ed.) LICS’87 Conference Proceedings. pp. 72–85. IEEE
Computer Society (1987)

11. Gunawardena, J.: Geometric logic, causality and event structures. In: Baeten,
J.C.M., Groote, J.F. (eds.) CONCUR’91 Conference Proceedings. Lecture Notes
in Computer Science, vol. 527, pp. 266–280. Springer Verlag (1991)

12. Gunawardena, J.: Causal automata. Theoretical Computer Science 101(2), 265–
288 (1992)

13. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Information and Computation
123, 1–16 (1995)

14. Karcher, D.S., Nestmann, U.: Higher-order dynamics in event structures. In:
Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015 Conference Proceed-
ings. Lecture Notes in Computer Science, vol. 9399, pp. 258–271. Springer Verlag
(2015)

15. Langerak, R.: Bundle Event Structures: A Non-Interleaving Semantics for Lotos.
In: Diaz, M., Groz, R. (eds.) FORTE ’92 Conference Proceedings. IFIP Transac-
tions, vol. C-10, pp. 331–346. North-Holland (1992)

16. Langerak, R., Brinksma, E., Katoen, J.: Causal ambiguity and partial orders in
event structures. In: Mazurkiewicz, A.W., Winkowski, J. (eds.) CONCUR’97 Con-
ference Proceedings. Lecture Notes in Computer Science, vol. 1243, pp. 317–331.
Springer Verlag (1997)

17. Leifer, J.J., Milner, R.: Transition systems, link graphs and petri nets. Mathemat-
ical Structures in Computer Science 16(6), 989–1047 (2006)

18. Nielsen, M., Plotkin, G., Winskel, G.: Petri Nets, Event Structures and Domains,
Part 1. Theoretical Computer Science 13, 85–108 (1981)

19. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
Journal of Logic and Algebraic Methods in Programming 84(6), 781–805 (2015)

20. Pinna, G.M.: Event structures with disabling/enabling relation and event au-
tomata. Fundamenta Informaticae 73(3), 409–430 (2006)

21. Pinna, G.M., Poigné, A.: On the nature of events. In: Havel, I.M., Koubek, V. (eds.)
MFCS’92 Conference Proceedings. Lecture Notes in Computer Science, vol. 629,
pp. 430–441. Springer Verlag (1992)

22. Pinna, G.M., Poigné, A.: On the nature of events: another perspective in concur-
rency. Theoretical Computer Science 138(2), 425–454 (1995)

23. Pinna, G.M., Saba, A.: Modeling dependencies and simultaneity in membrane sys-
tem computations. Theoretical Computer Science 431, 13–39 (2012)

24. Reisig, W.: Petri Nets: An Introduction. EACTS Monographs on Theoretical Com-
puter Science, Springer Verlag (1985)

25. Rensink, A.: Posets for configurations! In: Cleaveland, R. (ed.) CONCUR’92 Con-
ference Proceedings. Lecture Notes in Computer Science, vol. 630, pp. 269–285.
Springer Verlag (1992). https://doi.org/10.1007/BFb0084777

Representing Dependencies in Event Structures 23

26. van Glabbeek, R.J., Plotkin, G.D.: Event structures for resolvable conflict. In:
MFCS’04 Conference Proceedings. Lecture Notes in Computer Science, vol. 3153,
pp. 550–561. Springer (2004)

27. Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Petri Nets: Central Models and Their Properties. Lecture Notes in Computer Sci-
ence, vol. 255, pp. 325–392. Springer (1987)

