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Abstract. Term graphs are the concept at the core of important im-
plementation techniques for functional programming languages, and are
also used as internal data structures in many other symbolic computation
setting, including in code generation back-ends for example in compilers.
To our knowledge, there are no formally verified term graph manipulation
systems so far; we present an approach to formalising term graphs, as
a relatively complex example of graph structures, in the dependently-
typed programming language and proof system Agda in a way that both
the mathematical theory and useful executable implementations can be
obtained as instances of the same abstract definition.

1 Introduction

Terms (or expressions) are the conceptual data structure at the heart of almost
all symbol manipulation for mathematical reasoning and programming language
implementation. Terms as a data structure are a kind of trees, and in many
applications, intermediate or result terms arise that contain multiple copies of
equal subterms. To save space in software implementations of such applications,
all these copies are frequently represented by references to a single copy: Con-
ceptually, the tree is replaced by a (directed, and for the purposes of the current
paper always acyclic) graph, a term graph. Nowadays, term graphs are typically
considered as jungles, a kind of directed hypergraphs introduced for this purpose
by Hoffmann and Plump (1991) and Corradini and Rossi (1993).

For the purpose of creating a toolset for term graph manipulation supported
by machine-checked correctness proofs, we develop a flexible formalisation of
term graphs in a categorial setting, with the following goals:
– We want to use the formalisation to develop mathematical theories of term
graph transformation and how it can be used in particular for correct-by-
construction compiler optimisation passes.

– We want to use that same formalisation as basis for executable implementa-
tions of these compiler optimisation passes.

As our formalisation setting, we use the dependently-typed programming lan-
guage and proof assistant Agda (Norell, 2007). Agda permits us to write defi-
nitions essentially in the way they are written for mathematical purposes, and
prove properties about them, but all function definitions are also executable,
making this a good environment for correct-by-construction tool development.
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The body of this paper will start from a sequence of mathematical definitions
(expressed in Agda) of datatypes for somewhat simplified term graphs, then
consider also an implementation-oriented definition, and proceed to abstract
both to a common generalisation. The full complexity of term graphs is the
recovered in a few more refinements.

The result is a simple language for defining not only term graphs, but any
of a large class of different kind of graph datastructures, when recognising these
as coalgebras possibly including dependently-typed operations, as far as depen-
dencies are used with a certain discipline.

2 Jungle Representation of Term Graphs

We think of term graphs as a kind of data-flow graphs, and we draw the flow
from inputs (labelled by their positions in triangles) at the top to output posi-
tions at the bottom. We use the jungle approach of Hoffmann and Plump (1991);
Corradini and Rossi (1993): We define term graphs as hypergraphs, where each
(hyper-)edge is labelled with an operation name, and connected via “input ten-
tacles” (drawn as arrows to the box representing the hyperedge) to the edge’s
input nodes, and via a single “output tentacle” (pointing away from the edge)
to its output node. Term graph inputs correspond to variables in terms; so if we
map each input position i to the variable xi , then the term graph in the following
drawing to the left represents the term (x1 + x2) ∗ x2:
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The term graph drawn above to the right has two output positions, and therefore
should be interpreted as a pair of terms; in this case the two output positions are
“fed” from the same node, so this is just the pair ⟨(x1+x2)∗x2, (x1+x2)∗x2⟩. (We
could easily switch to considering multi-output edges, but for the purposes of the
current paper this would only result in some duplication, without introducing
any additional interesting aspects, so we stick with single-output edges.)

The pure “directed hypergraph” aspect of term graph structure, without con-
sidering inputs and outputs, and without restricting the edge output assignment
to be bijective onto non-input nodes, can be captured via the following signature:

sigDHG ∶= ⟨ sorts: N,E
ops: src ∶ E→ List N

trg ∶ E→ N
eLab ∶ E→ L ⟩
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This is a coalgebraic signature in the sense used in (Kahl, 2014, 2015): the
argument type of each operation symbol is a single sort, and the result type is
a term in a language of functor symbols (here including the constant symbol L
and the unary List functor symbol) over the sorts (as variables).

3 Directed Hypergraphs — Simplified

To proceed towards capturing the full term graph structure and reduce ad-
hoc notations, we now switch to using Agda Norell (2007) as our mathematical
notation. The following Agda record type definition defines the type DHG00 to
be the type of tuples containing the four sets1 Input, Output, Inner, and Edge,
together with the five functions gOut, eOut, eArity, eLabel, and eIn. The choice
to have separate functions for assigning each edge its arity (number of edge
input positions), its label, and its actual input node sequence has been made to
introduce the right kind of problems for discussion in the current paper.

Different input positions need to be associated with different nodes — for
simplicity, we identify input positions and input nodes, and introduce a separate
carrier set for “inner” nodes, that is, nodes that are not input nodes. Both input
nodes and inner nodes can be used as edge inputs, so we introduce the abbre-
viation2 “Node” for the set of all nodes, constructed as the disjoint sum of the
input node set and the inner node set:

record DHG00 ∶ Set1 where
field Input ∶ Set -- set of input nodes/positions

Output ∶ Set -- set of output interface positions
Inner ∶ Set -- set of inner (non-input) nodes

Node = Input ⊎ Inner -- derived set of all nodes
field gOut ∶ Output→ Node -- graph output assignment

Edge ∶ Set -- set of edges
eOut ∶ Edge→ Inner -- edge output node
eArity ∶ Edge→ N -- edge arity
eLabel ∶ Edge→ Label00 -- edge label
eIn ∶ Edge→ List Node -- edge input nodes

This models directed hypergraphs with input and output interfaces, but not yet
term graphs where eOut needs to be bijective — we will come back to that only
in Sect. 11. Dealing with directed hypergraphs is motivated by the fact that
we use them as setting for double-pushout (DPO) rewriting of term graphs —
directed hypergraphs include the “term graphs with holes” that occur as gluing
and host graphs in DPO rewriting steps.

1 We gloss over the fact that in any real Agda development of these mathematical
definitions, Setoid types will normally be used instead of Set. A variant using setoids
of the definitions of the current section can be found in (Kahl, 2011, Sect. 3).

2 Agda record declarations simultaneously define modules, and as such can contain
other definitions besides field declarations.
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The DHG00 record type declaration corresponds again to a coalgebraic sig-
nature in the sense explained above, after expanding the Node abbreviation, as
can be seen in the following reformulation:

record DHG01 ∶ Set1 where
field Input ∶ Set -- set of input nodes

Output ∶ Set -- set of output interface positions
Inner ∶ Set -- set of inner (non-input) nodes
Edge ∶ Set -- set of edges

field gOut ∶ Output→ Input ⊎ Inner -- graph output assignment
eOut ∶ Edge→ Inner -- edge output node
eArity ∶ Edge→ N -- edge arity
eLabel ∶ Edge→ Label00 -- edge label
eIn ∶ Edge→ List (Input ⊎ Inner) -- edge input nodes

Since the presence of the local definition for Node may perhaps be confusing for
readers unfamiliar with Agda, we will stick with continue our development from
this expanded version.

4 Interface-Parameterised Directed Hypergraphs

We will need to implement several operations on our directed hypergraphs, in
particular sequential composition: If the set of output positions of G1 coincides
with the set of input positions of G2, then their sequential composition G1 #G2

results from “gluing them together” along this common interface.
Since we want type-checking to guarantee well-definedness of any applications

of # we use in programs manipulating term graphs, the input and output
interfaces need to be part of the type of G1 and G2. In Agda, this is achieved by
making the record type parameterised:

record DHG02 (Input ∶ Set) (Output ∶ Set) ∶ Set1 where
field Inner ∶ Set -- set of inner (non-input) nodes

Edge ∶ Set -- set of edges
field gOut ∶ Output→ Input ⊎ Inner -- graph output assignment

eOut ∶ Edge→ Inner -- edge output node
eArity ∶ Edge→ N -- edge arity
eLabel ∶ Edge→ Label00 -- edge label
eIn ∶ Edge→ List (Input ⊎ Inner) -- edge input nodes

(Mathematically, this corresponds to defining a functor from trivial two-sort
coalgebras to coalgebras of shape DHG01.)

5 Implemented Directed Hypergraphs

So far, the record types we defined are mathematical datatypes, with sets as
components, exactly in the way used for mathematical studies of term graphs.
Since we used Agda as our mathematical language, and Agda can be used as a
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proof checker, we can build a mathematical theory of directed hypergraphs and
term graphs on top of these definitions.

However, since Agda is also a programming language, we would like to also
use our definitions for data structures used in programs that manipulate term
graphs. However, records containing Set fields are hard to use — how do you
save one of those to a file? The field Edge could be a set of functions. . .

To come from the opposite perspective, consider now what a plausible im-
plementation datatype for directed hypergraphs might look like. We present a
“proof-of-concept” implementation based on arrays, using the Vec datatype con-
structor for dependently-typed vectors from the Agda standard library (Daniels-
son et al., 2018) — the type “Vec A n” is the type of n-element vectors with el-
ements of type A. (A “production” implementation might for example use some
kind of binary trees, or a type of arrays with constant-time access.)

A plausible design is then to use as carrier sets only sets constructed by Fin;
for a natural number n, the type “Fin n” is the type of natural numbers less than
n. The elements of “Fin n” are precisely the indices that can be used with vectors
of type “Vec A n”.

However, where the mathamatical data structure contains Sets of size n, the
implementation data structure will contain only the index n:

record VecDHG1 (input ∶ N) (output ∶ N) ∶ Set1 where
field inner ∶ N

edge ∶ N
field gOut ∶ Vec (Fin input ⊎ Fin inner) output

eOut ∶ Vec (Fin inner) edge
eArity ∶ Vec N edge
eLabel ∶ Vec Label00 edge
eIn ∶ Vec (List (Fin input ⊎ Fin inner)) edge

It is straight-forward to write a function that maps each element of “VecDHG1 m n”
to the mathematical representation of that graph in the type “DHG02 (Fin m) (Fin
n)”, and this would populate also the Inner and Edge fields with Fin types. How-
ever, it is quite combersome to attempt to define even a partial inverse to that,
which makes it essentially infeasible to use operations defined on the “mathe-
matical implementation” DHG02 to induce operations on the “executable imple-
mentation” VecDHG1.

Perhaps more importantly, there is no good way to “obtain” the definition of
VecDHG1 “from” that of DHG02, or even more generally, to adapt DHG02 to finite
node and edge sets — one could do this via an extension that adds finiteness
proofs. But using this approach to restrict DHG02s to those having node and
edge sets of shape “Fin n” would involve a type-level propositional equality that
would be extremely awkward to use.

The solution to this problem is to obtain both as instances of a generalised,
abstract definition, with essentially the goal of being able to
– instantiate with Set and → to obtain the mathematical theory, and
– instantiate with N and flip Vec to obtain the desired implementation.
After putting it this way, the natural option is to use a category as parameter.
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6 Abstract Directed Hypergraphs — First Attempt

We now assume that we are in a setting where C is an arbitrary but fixed category
with coproducts — the Agda way of expressing this is to locate the development
in a parameterised module (with additional parameters for ListF etc.):

module (C ∶ Category) (hasCoproduct ∶ HasCoproducts C) [. . . ] where
[. . . ] -- bring _⊞_ and other useful material into scope. . .

Then occurrences of Set in DHG02 are replaced with the type of objects of cat-
egory C, and operations become morphisms instead of functions:

record ADHG0 (Input ∶ C.Obj) (Output ∶ C.Obj) ∶ Set where
field Inner ∶ C.Obj -- inner (non-input) nodes

Edge ∶ C.Obj -- edges
field gOut ∶ C.Mor Output (Input ⊞ Inner) -- graph output assignment

eOut ∶ C.Mor Edge Inner -- edge output node
eArity ∶ C.Mor Edge objN -- edge arity
eLabel ∶ C.Mor Edge Label10 -- edge label
eIn ∶ C.Mor Edge (ListF (Input ⊞ Inner)) -- edge input nodes

We shall use the name vecCategory for the category with natural numbers as
objects, and where the type of morphisms from m to n is “Vec (Fin n) m”; the
coproduct there is just addition.

Trying to instantiate C with vecCategory presents the problem that that even
if objN and ListF are supplied as module parameters in [. . . ], we will not find any
n such that Fin n represents N respectively List (Input ⊞ Inner). (For the sake of
the argument, we will ignore the option to restrict to some maximal arity that
might be sufficient for some particular application.)

7 Abstract Directed Hypergraphs — Second Attempt

The solution to this problem is to make use of the type discipline of a coalgebra:
Only sorts occur as argument types; infinite types like N and List (Input ⊞ Inner)
only occur in the result types. We translate this into a setting where we do
not need morphisms starting from all types — we embed the parameter C (that
we plan to instantiate with vecCategory), used for the morphisms between all
relevant finite sets, including the carrier sets, in a semigroupoid3 S that provides
objects also for N and List (Input ⊞ Inner).

The semigroupoid S will need to have morphisms from objects of C to the
object objN implementing N, and in the context of our implementation, these
can all be implemented as vectors of the types “Vec N k” for natural numbers k.
However, S does not need any morphisms starting at objN, so we can characterise
S in a way that precisely fits this vector-based implementation: Vectors can
contain elements of infinite types, but vectors cannot be infinite.
3 A semigroupoid is a “category without identity morphisms”, analogous to how a
semigroup is a “monoid without identity element”.
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The (full and faithful, coproduct-preserving, . . . ) semigroupoid functor F
embedding C in S becomes another important part of the setting we now adopt:

module (C ∶ Category) (hasCoproduct ∶ HasCoproducts C)
(S ∶ Semigroupoid) (F ∶ SGFunctor′ C S)
(objN ∶ S.Obj) (ListF ∶ SGFunctor S S) [. . . ] where

Functions “between sorts”, here gOut and eOut, are now morphisms in the pa-
rameter category C, while functions from a sort to an “arbitrary” (potentially
infinite) type are morphisms in the parameter semigroupoid S, starting from
the F-image of the sort.

record ADHG1 (Input ∶ C.Obj) (Output ∶ C.Obj) ∶ Set where
field Inner ∶ C.Obj -- inner nodes

Edge ∶ C.Obj -- edges
field gOut ∶ C.Mor Output (Input ⊞ Inner) -- graph output

eOut ∶ C.Mor Edge Inner -- edge output
eArity ∶ S.Mor (F Edge) objN -- edge arity
eLabel ∶ S.Mor (F Edge) Label11 -- edge label
eIn ∶ S.Mor (F Edge) (ListF (F (Input ⊞ Inner))) -- edge input

Instantiating C with the category Set and S with the underlying semigroupoid
makes the resulting ADHG1 directly equivalent with DHG02.

Instantiating C with vecCategory and S with a carefully constructed semi-
groupoid (SF in appendix B) with arbitrary vectors as morphisms resulting
ADHG1 directly equivalent with VecDHG1.

Other easy instantiations are useful, too: For example, instantiating C with
the category of all finite sets and S with the semigroupoid of all sets gives us
the variant of DHG02 restricted to finite carrier sets.

8 Directed Hypergraphs — Dependently Typed

A different issue with DHG02 is the fact that the types do not enforce that the
length of an edge’s input node list corresponds to its arity: In terms of DHG02,
we want to add the following restriction:

∀ (e ∶ Edge) → eArity e ≡ length (eIn e)

It would be possible to add this in the spirit of datatype invariants as the type of
an additional field to the record, which then induces a proof obligation at every
record construction site. Therefore it is far more attractive to move this invariant
into the type system, which is possible in Agda due to its support for dependent
types: A dependent function type “(e ∶ Edge) → R e” contains functions
mapping each e ∶ Edge to an element of type “R e”, where R ∶ Edge → Set is
assumed to be some “result” type constructor depending on an Edge argument.

We use the additional expressivity provided by dependent types to move from
List to Vec in the result type of eIn, and for each result vector we supply the
arity of the edge in question as length:



8 Wolfram Kahl and Yuhang Zhao

record DHG1 (Input ∶ Set) (Output ∶ Set) ∶ Set1 where
field Inner ∶ Set -- set of inner (non-input) nodes

Edge ∶ Set -- set of edges
Node = Input ⊎ Inner -- set of all nodes
field gOut ∶ Output→ Input ⊎ Inner -- graph output assignment

eOut ∶ Edge→ Inner -- edge output node
eArity ∶ Edge→ N -- edge arity
eLabel ∶ (e ∶ Edge) → Label1 (eArity e) -- edge label
eIn ∶ (e ∶ Edge) → Vec Node (eArity e) -- edge input nodes

At the same time, we also switched the type of edge labels to come from an
arity-indexed label set Label1 ∶ N→ Set.

Although this is not anymore of the shape of a coalgebra signature as de-
scribed in Sect. 2, this is still a type of coalgebras mathematically, due to the fact
that the dependent arguments are used only as arguments to other operations.

9 Implementation of Dependently-Typed Fields

The implementation type VecDHG1 is easily adapted to such dependent fields, ex-
ploiting the presence of dependent pair types (Σ-types): The type “Σ a ∶ A • B a”
is inhabited by pairs “a , b” where a ∶ A and b ∶ B a (where B ∶ A → Set is a
type constructor taking an argument of type A).

Straight-forwardly embedding the type constructors for labels and input vec-
tors in Σ-types yields the following refined implementation type:

record VecDHG2 (input ∶ N) (output ∶ N) ∶ Set1 where
field inner ∶ N

edge ∶ N
field gOut ∶ Vec (Fin input ⊎ Fin inner) output

eOut ∶ Vec (Fin inner) edge
eArity ∶ Vec N edge
eLabel ∶ Vec (Σ n ∶ N • Label01 n) edge
eIn ∶ Vec (Σ n ∶ N • Vec (Fin input ⊎ Fin inner) n) edge

Such structures will then be subject to the following datatype invariants:

∀ (e ∶ Edge) → fst (lookup e eLabel) ≡ eArity e
∀ (e ∶ Edge) → fst (lookup e eIn) ≡ eArity e

A more rational implementation (which can easily be obtained by a system-
atic transformation from VecDHG2) would store these three equal values only
once, and at the same time also be closer to directly representing the functor
underlying the coalgebra type here:

record VecDHG3 (input ∶ N) (output ∶ N) ∶ Set1 where
field inner ∶ N

edge ∶ N
field gOut ∶ Vec (Fin input ⊎ Fin inner) output

eOut ∶ Vec (Fin inner) edge
eInfo ∶ Vec (Σ n ∶ N • Label01 n × Vec (Fin input ⊎ Fin inner) n) edge
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10 Dependently-Typed Abstract Directed Hypergraphs

For abstracting dependently-typed operations into the category-semigroupoid
setting of Sect. 7, we introduce an minimal interface to dependent objects that
can be seen as individual building blocks of a type-category as described by Pitts
(2001), adapted so that it “does not demand existence of too many morphisms”
for our semigroupoid:
Definition 10.1 For an object I of S, an object D of S is a dependent object
indexed over I iff for every object Y ∶ C.Obj and every morphism f from F Y to
D in S there is a morphism indD f from F Y to I in S such that the operation
indD commutes with C-pre-composition, that is, for every object X of C and every
morphism g from X to Y in C, the following holds:

indD (F g # f) = F g # indD f

The Σ-types of Sect. 9 are an instance of dependent objects by virtue of imple-
menting indD f as (Vec.map proj1 f), extracting the index from dependent pairs.
The “trick” of dependent objects is that the dependent-pair-projection proj1 used
here does not need to be a morphism of the semigroupoid S, making it possible
to define S in a way that all its morphisms can be implemented based on vectors.

For the abstract variant, we assume a dependent objects Label and a “depen-
dent functor” VecF; the latter needs to map any object A of S to a dependent
object with the common index objN. (The dependent functor image of a mor-
phism f can be implemented as f itself tagged with a name of the functor, see
appendix B.)

We introduce two new abbreviations, so that operation types now can be of
the following three kinds (due to the coalgebra nature, all have to “conceptually
start” at sorts, which are objects of C):
C.Mor X Y (straight morphisms in C)
X 8 A abbreviates S.Mor (F X) A, where X ∶ C.Obj and A ∶ S.Obj
f $ D abbreviates Σ g ∶ X8 D • (indD g = f), where f ∶ X8 I

That is, f $ D contains pairs of shape (g , p) where g ∶ X 8 D and p is a proof
for the morphism equality of indD g with f.

For the instance VecDHG2, these proofs are exactly proofs for the datatype
invariants mentioned there. The final abstract version of our directed hypergraph
type therefore also starts closer to VecDHG2 than to VecDHG3:

module [. . . ] (objN ∶ S.Obj) (Label ∶ DepObj objN)
(VecF ∶ DepFunctor objN) [. . . ] where

[. . . ]
record ADHG2 (Input ∶ C.Obj) (Output ∶ C.Obj) ∶ Set where
field Inner Edge ∶ C.Obj
field gOut ∶ C.Mor Output (Input ⊞ Inner)

eOut ∶ C.Mor Edge Inner
eArity ∶ Edge8 objN
ELabel ∶ eArity$ Label
EIn ∶ eArity$ VecF (F (Input ⊞ Inner))
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While 8 is essentially just a kind of “casting” that emphasises the “starting at
a sort” intention, the type constructor $ is the real innovation here; thanks to
$, the presentation of ADHG2 does not require local variable binders; $ there-
fore introduces the possibility of result type dependencies on the result of other
operations into coalgebraic signatures while preserving the overall character of
traditional signatures. (Technically, 8 and $ can be considered as parts of a
shallowly-embedded DSL for a novel kind of coalgebra signatures.)

Expanding definitions, we see that ELabel ∶ eArity $ Label from above is
a dependent pair of type Σ g ∶ Edge 8 Label • (indLabel g = eArity); for conve-
nience, we give individual names to the two constitutents of this pair, which then
have the following types, the second of which corresponds to the first datatype
invariant in Sect. 9 (where fst implements indLabel).

eLabel ∶ Edge8 Label
eLabel-ind ∶ indLabel eLabel = eArity

11 GS-Monoidal Categories of Abstract Term Graphs

The definition of abstract directed hypergraphs we actually use also has the
Node definition again, and therefore is even more readable:

module [. . . ] (objN ∶ S.Obj) (Label ∶ DepObj objN)
(VecF ∶ DepFunctor objN) [. . . ] where

[. . . ]
record ADHG3 (Input ∶ C.Obj) (Output ∶ C.Obj) ∶ Set where
field Inner Edge ∶ C.Obj
Node = Input ⊞ Inner
field gOut ∶ C.Mor Output Node

eOut ∶ C.Mor Edge Inner
eArity ∶ Edge8 objN
ELabel ∶ eArity$ Label
EIn ∶ eArity$ VecF (F Node)

As mentioned in Sect. 2, we are really interested in jungles, which are directed
hypergraphs with a one-to-one correspondence between edges and inner nodes
established by eOut. Since we need directed hypergraphs as common substrate
for an adapted kind of double-pushout term graph rewriting, we define jungles
separately as “ADHG3s where eOut is an isomorphism in C”, in Agda:

record AJungle (m n ∶ C.Obj) ∶ Set where
field dhg ∶ ADHG3 m n
open ADHG3 dhg -- bringing Inner, Edge, eOut, etc. into scope
field eOutIsIso ∶ C.IsIso eOut
eOut-1 ∶ C.Mor Inner Edge -- providing a nice name for the inverse
eOut-1 = eOutIsIso C.IsIso.-1

The full setting used as context for this includes a few properties not yet
mentioned in Sect. 7; it consists of the following items:
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– A category C intended to have (representations of) all possible carrier sets as
objects, and (representations of) functions between these as morphisms.
C needs to have coproducts, a terminal object, and a strict initial object.

– A semigroupoid S intended to have (representations of) all possible value sets
(including label sets, N, vector sets) as objects.
S is only required to contain the morphisms associated with the additional
structure below; it can be quite “sparse”.

– A full and faithful semigroupoid functor F from the semigroupoid underlying
C to S that preserves identity morphisms, coproducts, and initial objects.
This functor is understood as embedding C into S.

– Specifically as setting for the ADHG definitions, a natural number object objN,
an objN-indexed dependent object Label, and an objN-indexed dependent func-
tor VecF for vectors satisfying an appropriate vector specification.

In this setting, we have implemented large parts of the theory of gs-monoidal cat-
egories introduced by Corradini and Gadducci (1999): For term graphs, monoidal
composition ⊗ is “parallel composition” that “concatenates” (via coproduct) the
input and output interfaces; gs-monoidal categories are monoidal categories with
additional transformations ! and ∇:
– !A ∶ A→ 1l is the terminator and introduces garbage, and
– ∇A ∶ A→ (A⊗A) is the duplicator and introduces sharing.
These are present also in cartesian categories such as Lawvere theories, and there
they are natural transformations. In gs-monoidal categories they do not need
to be natural, which is important for term graphs, where garbage and sharing
make a difference.

We have implemented (Zhao, 2018a,b) Agda-verified gs-monoidal categories
with ADHGs respectively Jungles as morphisms fully at the abstract level in
the category-semigroupoid setting described above. We also implemented Jungle
decomposition and proved it correct, which is the core of the result of Corradini
and Gadducci (1999) that that term graphs (i.e., jungles) form a free gs-monoidal
category. For this part, we followed Corradini and Gadducci’s set-up, which
specialises C.obj to N, interpreting n ∶ N as the type Fin n — this is justified by
the fact that there will be a forgetful functor from every practically useful gs-
monoidal category mapping the object monoid to N, and this functor will reflect
decomposition. We used this specialisation for decomposition of wiring graphs
(which have no edges); apart from that, we elaborated the proofs at the abstract
category-semigroupoid level as far as we found feasible. An improved library of
dependent functors will make fully abstract proofs possible in the future. We
also started to develop a rewriting mechanism for these Jungles via constrained
DPO rewriting steps in the category of ADHG matchings, see (Kahl and Zhao,
2019).

12 Conclusion

An important observation arising from the development of our ADHG formalisa-
tions is that categorial abstraction is frequently enhanced by embedding a “nice”
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category in a “big” semigroupoid. Careful choices then allow us to develop theory
and implementations at the abstract level, and obtain the conventional Set-based
mathematical theory as one instantiation, while correct-by-construction executa-
bles can be generated via instantiations with concrete datatypes. In this way,
we achieve re-usability of theoretical developments as implementations that are
tunable for efficiency.

A Representation Contexts

We now provide a more fine-grained abstraction for the category-semigroupoid
setting of Sections 7 and 11. Recall that the key idea is to provide a separate in-
terface, the category C, for objects that can be used as carriers of coalgebra sorts,
and “extend” this category to an encompassing semigroupoid S that can contain
also other objects that may be used to interpret the result type expressions of
coalgebra function symbols. For example, the (conceptually) infinite datatype
String will never be used as node set of a graph, but it may well be used for
node labels. In addition, a type of “representations” for S-morphisms that “start
at C-objects” is assumed — these are the morphisms that may serve as interpre-
tations of coalgebra function symbols. The “upwards arrows” are motivated by
visualising the the semigroupoid S above the category C, which is “embedded”
into S via R.

Definition A.1 A representation context X = (C,S,R,⇗,S,R,↗) consists of
– a category C
– a semigroupoid S
– a full and faithful semigroupoid functor R ∶ C → S that preserves identities
– for each object k of C and each object A of S, a collection k ⇗ A of repre-
sentations, together with a bijection Sk ,A between k ⇗ A and the S-homset
R k → A,

– for any two objects k and m of C, a bijection Rk ,m between the C-homset k → m
and k ⇗R m, and

– for each representation U ∶ k ⇗ A and each S-morphism g ∶ A → B a compo-
sition U ↗ g in k ⇗ B

such that the following are satisfied:

Sk ,B (U ↗ g) = (Sk ,A U ) ., g for U ∶ k ⇗ A, and g ∶ A→ B in S
S−1k ,B (f ., g) = (S−1k ,A f ) ↗ g for f ∶ R k → A and g ∶ A→ B in S
R f = Sk ,R m (Rk ,m f ) for f ∶ k → m in C

The implementation setting described in Sect. 7 for obtaining VecDHG1 from
ADHG1 can be explained as a representation context where
– C has N as object collection, and Fin m → Fin n as homset from m to n;
– S is the semigroupoid underlying Set ;
– R ∶ C → S maps n ∶ N to the set Fin n, and is the identity on morphisms;
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– for each k ∶ N and each set A, the type of representations is k ⇗ A = Vec A k ,
and Sk ,A is the canonical isomorphism between Vec A k and Fin k → A;

– for each k ,m ∶ N, the canonical isomorphism between Fin k → Fin m and
Vec (Fin m) k is used as Rk ,m ;

– for each vector U ∶ Vec A k and each Set-morphism g ∶ A→ B , the composition
is U ↗ g = mapVec g U .

Note that there are “more” vectors than there are morphisms in C, and yet more
set functions in S than there are vectors.

Theoretically, one could choose to identify k ⇗ A with the S-homset R k →
A, but we consider it useful to keep the two separate: The point of having ⇗ as
a separate component of representation contexts is that it can be instantiated
with morphism implementations for which S provides the semantics in terms of
the semigroupoid S, which in turn is intended to provide the connection to Set .

For interpretation of coalgebra signatures (as shown in Sect. 2), we assume
a fixed interpretation function F that maps n-ary functor symbols to semi-
groupoid functors from Sn to S that preserve identities (and correspond to
meet-preserving relators). If a structure A provides an interpretation of sort
symbols as objects in C, then let JtKA be the resulting interpretation of the type
expression t , where each sort s is interpreted as JsKA = R sA, and functor symbol
applications are interpreted as the corresponding functor applications:

JF(t1, . . . , tn)KA = (F F)(Jt1KA, . . . , JtnKA)

For each type expression T , this gives rise to an identity-preserving semigroupoid
functor, written JtK, from the sort-indexed product category CSortΣ to S.
Definition A.2 Let a coalgebraic signature Σ and a representation context X =
(C,S,R,⇗,S,R,↗) be given. A Σ-X -coalgebra A consists of
– for each sort s an object sA of C
– for each function symbol f ∶ s → t a representation fA ∶ sA ⇗ JtKA
Given two such coalgebras A and B , a Σ-X -coalgebra homomorphism φ from A
to B consists of
– for each sort s a representation φS ∶ sA ⇗ (R sB) of the C morphism (R−1sA,sBφS) ∶
sA → sB ,

– such that for each function symbol f ∶ s → t , the following homomorphism
property holds:

fA ↗ JtK (R−1 φ) = φs ↗ (SsB ,JtKB fB)

This homomorphism property is an equality of representations; in concrete ap-
plications this will be a decidable equivalence.

It is easy to see that the Σ-X -coalgebra homomorphisms of Def. A.2 form a
category; this is a “good implementation” of Σ-coalgebras in the following sense:
Theorem A.3 Let a coalgebraic signature Σ, and a representation context X =
(C,Set,R,⇗,S,R,↗) using the full category Set for S be given. For each Σ-
X -coalgebra A, applying R to each carrier object sA, and applying S to each
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function symbol interpretation fA maps the Σ-X -coalgebra A to a conventional
Set-based coalgebra in a way that gives rise to a full and faithful functor.

In the setting of Sect. 7, the category of Σ-X -coalgebras is therefore equiva-
lent to the subcategory of Σ-coalgebras over Set which results from restriction
to finite carrier sets.

B Concretised Representation Context

For an implementation based on, for example, the vectors of Sect. 5, the question
arises how to represent not only the components of coalgebras and of morphisms,
both of which are representations, but also the results of functor application to
morphisms, which are used in the context of the dependent functors mentioned
in Sect. 10.

We now assume a language F of functor symbols (with arity). Our goal is to
move from an abstract semigroupoid S, such as Set , to one that has a concrete
representation amenable to implementation using finite datastructures. (Objects
of Set , as far as relevant in this context, are considered to be implemented as
datatype identifiers or type expressions.)

Given a representation context X = (C,S,R,⇗,S,R,↗) and a functor sym-
bol semantics that maps each functor symbol F ∶ F to a semigroupoid endofunc-
tor JF K (of corresponding arity) on S, we construct a new concretised represen-
tation context XF = (C,SF ,RF ,⇗F ,SF ,RF ,↗F) over the same base category
C, where:
– A SF object is

● either LIFT k for a C object k ,
● or EMBED A for an S object A,
● or WRAP F (Q1, . . . ,Qn) for an n-ary functor symbol F and SF objects
Q1, . . . ,Qn .

SF objects are assigned a straightforward “semantics” as S objects:

JLIFT kK = R k

JEMBED AK = A

JWRAP F (Q1, . . . ,Qn)K = JF K(JQ1K, . . . , JQnK)

– SF morphisms are
● either SFk ,Q U ∶ LIFT k → Q for a representation U ∶ k ⇗F Q , which is a
representation in k ⇗ JQK,

● or MAP F (g1, . . . , gn) ∶ WRAP F (Q1, . . . ,Qn) → WRAP F (P1, . . . ,Pn)
for an n-ary functor symbol F and morphisms gi ∶ Qi → Pi .

(There are no morphisms starting from EMBED objects.)
Morphisms are also given a straightforward semantics in S.

– RF , the composition .,F in SF , and the composition ↗F are determined by
the semantics; RF is induced by LIFT.



A Flexible Categorial Formalisation of Term Graphs 15

XF is a well-defined representation context, and if R preserves finite colimits,
so does RF . Note that SF is only a semigroupoid, and cannot be a category,
since there are no morphisms starting at EMBED objects, not even identity
morphisms. This fact is the motivation for asking only for a semigroupoid in
this place in a representation context.

For signatures Σ over the functors in F , the concretised representation con-
text XF generates the same Σ-coalgebras as the (possibly abstract) context X ,
but extends the concretely implementable morphisms to “exactly all morphisms
ever required while reasoning about Σ-coalgebra transformation”.

Theorem B.1 The category of Σ-XF -coalgebras is equivalent to the subcategory
of the corresponding category of Σ-coalgebras in S restricted to carriers in C.
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