
HAL Id: hal-02364570
https://inria.hal.science/hal-02364570

Submitted on 15 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Structuring Theories with Implicit Morphisms
Florian Rabe, Dennis Müller

To cite this version:
Florian Rabe, Dennis Müller. Structuring Theories with Implicit Morphisms. 24th International
Workshop on Algebraic Development Techniques (WADT), Jul 2018, Egham, United Kingdom.
pp.154-173, �10.1007/978-3-030-23220-7_9�. �hal-02364570�

https://inria.hal.science/hal-02364570
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Structuring Theories with Implicit Morphisms

Florian Rabe1,2? and Dennis Müller2

1 LRI Paris, France
florian.rabe@gmail.com

2 FAU Erlangen-Nuremberg, Germany
d.mueller@kwarc.info

Abstract. We introduce implicit morphisms as a concept in formal sys-
tems based on theories and theory morphisms. The idea is that there may
be at most one implicit morphism from a theory S to a theory T , and
if S-expressions are used in T their semantics is obtained by automat-
ically inserting the implicit morphism. The practical appeal of implicit
morphisms is that they hit the sweet-spot of being extremely simple to
understand and implement while significantly helping with structuring
large collections of theories.

Concrete applications include elegantly identifying isomorphic theories
and extending theories with definitions and theorems as well as efficiently
building and maintaining large, fine-granular, and heterogeneous hierar-
chies of theories. Our results are formulated and implemented in the
Mmt language and system, and we expect they can be transfered to
other morphism-based formalisms relatively easily.

1 Introduction

Motivation Theory morphisms have proved an essential tool for managing col-
lections of theories in logics and related formal systems. They can be used to
structure theories and build large theories modularly from small components
or to relate different theories to each other [SW83,AHMS99,FGT92]. Areas in
which tools based on theories and theory morphisms have been developed in-
clude specification [GWM+93,MML07], rewriting [CELM96], theorem proving
[FGT93,KWP99], and knowledge representation [RK13]. Closely related con-
cepts are used in both object-oriented (classes) and functional (type classes)
programming languages.

These systems usually use a logic L for the low-level formalization of domain
knowledge, and a diagram D in the category of L-theories and L-morphisms for
the high-level structure of large bodies of knowledge.

For example, a document might reference an existing theory Monoid, define
a new theory Group that extends Monoid, define a theory DivGroup (providing
an alternative formulation of groups based on the division operation), and then

? The author was supported by DFG grant RA-18723-1 OAF and EU grant Horizon
2020 ERI 676541 OpenDreamKit.

define two theory morphisms G2DG : Group ↔ DivGroup : DG2G that witness an
isomorphism between these theories. This would result in the diagram below.3

Monoid

Group DivGroup

G2DG

DG2G

The key idea behind implicit morphisms is very simple: We maintain an
additional diagram I, which is a commutative subdiagram of D and whose mor-
phisms we call implicit. The condition of commutativity guarantees that I has at

most one morphism i from theory S to theory T , in which case we write S
i
↪→ T .

Commutativity makes the following language extension well-defined: if S
i
↪→ T ,

then any identifier c that is visible to S may also be used in T -expressions, with
the semantics being that c abbreviates i(c). For example, in the diagram above,
we may choose to label DG2G implicit. Immediately, every abbreviation or theo-
rem that we have formulated in the theory DivGroup becomes available for use
in Group without any syntactic overhead. We can even label G2DG implicit as
well if we prove the isomorphism property to ensure that I remains commuta-
tive, thus capturing the mathematical intuition that Group and DivGroup are
just different formalizations of the same concept. While these morphisms must
be labeled manually, any inclusion morphism like the one from Monoid to Group

can be made implicit automatically.

Contribution At the highest level, our contribution is the observation that im-
plicit morphisms form a sweet spot of a very simple language feature that has
substantial practical uses. We recommend using implicit morphisms in all the-
ory morphism–based formalisms. More concretely, we present a formal system
for developing structured theories with implicit morphisms based on the Mmt
language [RK13]. We choose Mmt because it provides a simple framework for
working with theories and morphisms while remaining logic-independent: Mmt
allows embedding a large variety of declarative languages L (logics, type-theories,
etc.) so that our results immediately yield an implementation of implicit mor-
phisms for any such L. We also expect but do not describe here that other
morphism-based systems can be easily extended to allow for implicit morphisms.

We describe several example applications of implicit morphisms in detail: the
identification of isomorphic theories, definitional extensions of theories, building
large hierarchies of theories with many rarely used intermediate theories, seam-

3 Note that we use the syntactic direction for the arrows, e.g., an arrow m : S → T
states that any S-expression E (e.g., a sort, term, formula, or proof) can be translated
to a T -expression m(E). Models are translated in the opposite direction.

2

lessly moving theories across logic morphisms, and transparently refactoring the-
ory hierarchies.

Previous Work Implicit morphism were first conceived by Rabe in 2010 and
implemented as part of the Twelf system [PS99] (which implements the depen-
dent type theory LF). The theory behind this implementation was never written
up and not published. But the implementation already scaled well, and implicit
morphisms were used in the LATIN logic atlas [CHK+11] built by Rabe and
others in 2009–2012. The LATIN atlas already has around a 1000 theories and
atomic morphisms, and about 50 of the latter are marked as implicit. It also has
a few hundred inclusions, each of which induces another implicit morphism.

Since then, MMT has been developed, and
– implicit morphisms were generalized from LF to the logic-independent level

of MMT,
– their theory was worked out,
– they were reimplemented from scratch as a part of MMT.

MMT is backwards-compatible with Twelf, and the LATIN atlas including its
implicit morphisms can be used from within MMT. The present paper introduces
these results in their final, most elegant form.

Overview In Sect. 2, we present the syntax and semantics of Mmt. Even though
the Mmt language is not new, our presentation is an entirely novel contribution
in itself: it is much simpler and more elegant than the original one in [RK13].
Crucially, this increase in simplicity allows spelling out the syntax and semantics
of implicit morphisms, which we do in Sect. 3, within a few pages. In Sect. 4, we
present applications. Finally we discuss related and future work in Sect. 5.

2 Theories and Theory Morphisms

2.1 Overview

Flat Modules Flat theories are lists of constant declarations c : E[= e] where
E and e are expressions, and the latter is optional. We write dom(T) for the set
of constant identifiers c in T . Every theory induces the set Obj(T) for the set of
closed expressions using only the symbols c ∈ dom(T). Constant declarations
subsume virtually all basic declarations common in formal systems such as type-
/function/predicate symbols, axioms, theorems, inference rules, etc. In partic-
ular, theorems can be represented via the propositions-as-types correspondence
as declarations c : F = P , which establish theorem F via proof P . Similarly,
Mmt expressions subsume virtually all objects common in formal systems such
as terms, types, formulas, proofs.

Flat morphisms from a theory S to a theory T are lists of assignments c := e
where c ∈ dom(S) and e ∈ Obj(T). Every morphism M induces a homomorphic
extension M(−) : Obj(S) → Obj(T), which replaces every c ∈ dom(S) in an
S-expression with the T -expression e such that c := e in M .

3

A diagram consists of a set of theory and morphism declarations. For a given
diagram, we write Thy for the set of declared theories. For theories S, T ∈ Thy,
we write Mor(S, T) for the set of morphisms defined by

– for every declaration m : S → T = {·}, we have m ∈ Mor(S, T),
– for every T ∈ Thy, we have idT ∈ Mor(T, T),
– for every M ∈ Mor(R,S) and N ∈ Mor(S, T), we have M ;N ∈ Mor(R, T)

(where M ;N corresponds to the usual function composition).

Thy and Mor(S, T) form the category of theories and morphisms.

The theories and morphisms in a diagram may be structured (e.g., by using
include declarations), and Mmt defines their semantics via flattening, which
defines for each T ∈ Thy the flat theory T [, and for each M ∈ Mor(S, T) the flat
morphism M [from S[to T [.

Logics and Well-Formed Expressions The logic and the definition of well-formed
expressions are not a primary interest of this paper, and we only recap the
essential structure needed in the sequel. We refer to [Rab17] for details.

Mmt is independent of the base logic and provides a theory and theory
morphism layer on top of an arbitrary declarative language. Individual logics
L arise as fragments of Mmt: they single out the well-formed expressions by
defining the judgment `T e = e′ : E for typing and equality. (We treat the
plain typing judgment `T e : E as the special case `T e = e : E.) The logic L
is itself represented as an Mmt theory, which we call the meta-theory of T .
L provides, in particular, the primitive operators and typing rules that are used
to form the well-formed expressions of T . L may and often has a meta-theory
as well, usually a logical framework used to define the logic. Unless mentioned
otherwise, all results in this paper apply for a fixed arbitrary meta-theory, which
we will occasionally omit from the notation.

The declarations in theories and assignments in morphisms are subject to
typing conditions, and the main theorem about Mmt is that under reasonable
assumptions on L, the well-typed morphisms M : S → T preserve all judgments,
i.e., if `S e = e′ : E, then `T M(e) = M(e′) : M(E). This includes the preser-
vation of truth via the propositions-as-types principle if E is a proposition and
e its proof.

We do not give all rules for these judgments. The only rule that is relevant
to our purposes here is the one for constants:

c : E[= e] in T [

`T c[= e] : E

(Here, we merge the two cases where c has a/no definiens e into one rule for
convenience.) Correspondingly, the definition of the homomorphic extension of
a morphism with domain S includes the following case for constants:

M(c) =

{
e if (c : E) ∈ S[, (c := e) ∈M [

M(e) if (c : E = e) ∈ S[

4

Here if c has a definiens in S, we expand it before applying M .4

These base cases introduce a mutual recursion between well-formedness and
flattening: the well-formedness of a declaration in a theory depends on the
flattening of all preceding declarations; correspondingly, the well-formedness of
an assignment in a morphism depends on the homomorphic extension of the
morphism obtained by flattening of all preceding assignments. Vice versa, well-
formedness is a precondition for defining the flattening — the definition of flat-
tening may become nonsensical if applied to ill-formed modules. It might be
desirable to define well-formedness independently of flattening. But our defini-
tion captures the typical behavior of practical systems, which first parse, check,
and flatten one declaration entirely before moving on to the next one.

Therefore, we will make flattening a partial function, i.e., X[is undefined if
the module X is not well-formed.

2.2 Syntax

We start with the syntax for theories (which arises as a special case of the one
given in [RK13]):

Definition 1 (Theory). The grammar for theories and expressions is

TDec ::= T [: T] = {Dec, . . . ,Dec} theory declaration
Dec ::= n : E[= E] constant declaration
c ::= T?n qualified constant identifiers
E ::= c | . . . expressions built from constants

In a theory declaration T : L = { ~D}, the meta-theory L (if present) must be
a previously declared theory, each symbol name n may be declared only once, and
its type and definiens (if present) must be closed expressions over the previously
introduced constants (including those of L). We omit the productions and typing
rules for the remaining expressions, which include application, binding, variables,
literals, etc.

Example 1. For the purposes of our running examples, we assume a fixed meta-
theory Log that provides a simple type system: type is the universe of types,
A→B is the type of functions, and lambda abstraction is written [x:A] t x.
We also use Mmt notations, which are attached to constant declarations as
<notation>; these are omitted from the formal grammar above because we
only use them in the examples.

Then the (flat) theories Group and DivGroup from the introduction are:

Group: Log =

U : type

4 The Mmt tool accepts (c := e) ∈ M [even if (c : E = e′) ∈ S[. In that case, Mmt
checks `T M(e′) = e : M(E) and puts M(c) = e. This is important for efficiency
but not essential for our purposes here.

5

op : U → U → U # 1 ◦ 2

unit : U

inverse : U → U # 1 −1

// axioms omitted

DivGroup: Log =

U : type

div : U → U → U # 1 / 2

unit: U

// axioms omitted

We proceed accordingly for flat morphisms:

Definition 2 (Morphism). The grammar for morphisms is

MDec ::= m : T → T =[M] {Ass, . . . , Ass} flat morphism declaration
Ass ::= c := E assignment to symbol
M ::= m | idT |M ;M morphism expressions

A morphism m : S → T =M { ~A} must contain exactly one assignment c := e
for each (c : E) ∈ S[, all of which must satisfy `T e : m(E). Moreover, if S has
a meta-theory L, then M must be present and must be a morphism from L to T .

Example 2 (Morphisms). We give the morphism DG2G between the theories from
Ex. 3:

DG2G : DivGroup -> Group =idLog

U := U

div := [a,b] a ◦ (b−1)

unit := unit

// assignments to axioms omitted

Here idLog maps the meta-theory to itself. Then universe and unit of a divi-
sion group are mapped to the corresponding notions of a group. And we have
DG2G(a/b) = a◦ b−1. Additionally, the morphism maps every axiom of DivGroup
to a proof in Group of the translated statement, but we omit those assignments.

Finally, we define diagrams as collections of modules:

Definition 3 (Diagram). A diagram is a list of theory and morphism decla-
rations:

Dia ::= (TDec |MDec)∗ diagrams

Each theory/morphism declaration must have a unique name and be well-formed
relative to the diagram preceding it.

At this point, the grammar only allows forming flat theories and morphisms.
Structuring features can be added to the language incrementally and individu-
ally.

6

Example 3 (Includes). We extend the grammar with

Dec ::= include T include a theory into a theory
Ass ::= include M include a morphism into a morphism

This allows writing the theory Group from Ex. 1 by extending a theory of
monoids. Again omitting all axioms, this looks as follows:

Monoid: Log =

U : type

op : U → U → U # 1 ◦ 2

unit : U

Group: Log =

include Monoid

inverse : U → U # 1−1

2.3 Semantics

Flattening The definition of flattening is compositional in the sense that new
modularity principles can be added independently of each other.

Definition 4 (Flattening). For the base case, of a theory t : L = {Σ}, we
define t[by induction on the declarations in Σ:

t[= Σ[where ·[= L[and (Σ,D)[= Σ[∪D[,

where · denotes the empty sequence. If L is not present, we can assume it to be
the empty theory.

Here D[is the flattening of declaration D relative to Σ[. At this point, we only
have one case for declarations D, namely constant declarations. Their flattening
is trivial:

(n : E[= e])[= {t?n : E[= e]}

where t is the name of the containing theory.

Correspondingly, for a declared morphism m : S → T =[M] {σ}, m[is defined
by induction on the assignments in σ:

m[= σ[where ·[= M [and (σ, A)[= σ[∪A[

with the trivial base case

(c := e)[= {c := e}

If M is not present, we can assume it to be empty morphism.

Moreover, for T ∈ Thy we define id [
T = {c := c | (c : E) ∈ T [} And for

M ;N ∈ Mor(R, T), we define (M ;N)[= {c := N [(M [(c)) | (c : E) ∈ R[}. Note
that in both cases, we only have to consider constants without definiens.

7

Example 4 (Includes (continued from Ex. 3)). The include operator adds new
declarations D to a theory, so we have to add cases to the definition of D[. We
do this as follows

(include S)[= S[

This has the effect of copying over all declarations from the included into the
including theory.

There is some flexibility as to when the including and the included theory
have different meta-theories L resp. L′. We define that such an include is only
allowed if L′ is also included into L. That way, an include declaration never
changes the meta-theory of the including theory.

Note that, because S[is a set of declarations, the include relation is transitive:
if t includes s via two different paths, t[only contains one copy of the declarations
of s[.

Because we use qualified identifiers t?n, includes can never lead to name
clashes. The situation is slightly more complicated for morphisms: if a mor-
phism σ out of t includes two different morphisms out of s, these have to agree.
Therefore, flattening is not always defined:

(include M)[= M [

if σ, include M is well-formed and M [agrees with σ[on any constant that is
in the domain of both.

Example 5 (Continuing Ex. 3). Group[is obtained by copying all included sym-
bols (from Monoid) over to Group, resulting in the theory as given in Ex. 1 except
that the identifiers are now, e.g., Monoid?U instead of Group?U .

Remark 1 (Qualified Identifiers). According to the grammar, any occurrence of
a constant c in an expression is of the form t?n, i.e., qualified by its theory name.
In the definition all declarations in t[are qualified accordingly. This precludes
any name clashes when constants of the same local name are declared in multiple
theories that become part of t[, e.g., via the meta-theory or includes.

The form t?n is abstract system-facing syntax. In concrete user-facing syntax
(as used in our examples), it is usually sufficient to write n and let the Mmt
parser infer which constant is meant.

3 Implicit Morphisms

3.1 Overview

Our key idea is to use a commutative subdiagram of the Mmt diagram, which we
call the implicit diagram. It contains all theories but only some of the morphisms
— the ones designated as implicit. Because the implicit-diagram commutes, there
can be at most one implicit morphism from S to T — if this morphism is

i, we write S
i
↪→ T . The implicit-diagram generalizes the inclusion relation:

All identity and inclusion morphisms are implicit, and we recover the inclusion

8

relation S ↪→ T as the special case S
idS
↪→ T . And just like inclusion, the relation

“exists i such that S
i
↪→ T” is a preorder.

Consequently, many of the advantages of inclusions carry over to implicit
morphisms:
– It is very easy to maintain the implicit-diagram, e.g., as a partial map that

assigns to a pair of theories the implicit morphism between them (if any).

– We can generalize the visibility of identifiers: If S
i
↪→ T , we can use all S-

identifiers in T as if S were included into T . Any c ∈ dom(S) is treated as a
valid T -identifiers with definiens M(c).

– We can use canonical identifiers S?n without worrying about ambiguity.

Because there can be at most one implicit morphism S
i
↪→ T , using S?n as

an identifier in T is unambiguous.

In practice, the Mmt system searches for an implicit morphism S
i
↪→ T

whenever needed to make an expression well-formed, e.g.,
– An S-constant c is used in T : treat c as an abbreviation for i(c).
– A model M of T is used even though a model of S is expected: reduce M

via i.
– A morphism M : R → S is composed with a morphism M ′ : T → U : treat
M ;M ′ like M ; i;M ′.

3.2 Syntax

We introduce the family of sets Mori(S, T) as a subset of Mor(S, T), holding the
implicit morphisms. The intuition is that Thy and Mori(S, T) (up to equality of
morphisms) form a thin broad subcategory of Thy and Mor(S, T).

It remains to define which morphisms are implicit. For that purpose, we allow
Mmt declarations to carry attributes:

Definition 5 (Attributes for Implicitness). We add the following produc-
tions

MDec ::= Att MDec attributed morphism
Dec ::= Att Dec attributed declaration
Att ::= implicit | . . . attributes

The set of attributes is itself extensible, and the above grammar only lists
the one that we use to get started. Additional attributes can be added when
adding modularity principles.

Example 6. We can now change the declaration of the morphism DG2G from Ex. 2
by adding the attribute implicit.

3.3 Semantics

We only have to make two minor changes to the semantics to accommodate
implicit morphisms. The first change governs how we obtain implicit morphisms,
the second one how we use them.

9

Definition 6 (Obtaining Implicit Morphisms). We define the set Mori(S, T) ⊆
Mor(S, T) of implicit morphisms to contain the following elements:

– all declared morphisms m : S → T = {σ} whose declaration carries the
attribute implicit,

– if t has meta-theory L, the identity map as an implicit morphism L→ t,
– all identity morphisms idT ,
– all compositions M ;N of implicit morphisms M and N ,
– all morphisms that additional language features designate as implicit based

on the use of additional attributes.

Adding an implicit attribute to a declaration is well-formed only if there is
(up to equality of morphisms) at most one implicit morphism for any pair of
theories.

Example 7 (Includes (continued from Ex. 4)). For include morphisms, we add
the following definition: if a theory T contains the declaration include S, then
the induced morphism from S to T is implicit.

Combined with composition morphisms, we see that all transitive includes
between theories are implicit. That corresponds to the intuition that anything
that is included is available by its original (i.e. qualified) name.

Example 8. For our morphism DG2G from Ex. 6, this means that all symbols
declared in the theory DivGroup (see Ex. 1) are now visible in the theory Group

with the definitions provided by DG2G. For example, we can write a/b in Group,
where / refers to the identifier DivGroup? div.

(Note that notations are carried over by implicit morphisms as well)

The intuition behind implicit morphisms is that all S-constants c : E that
can be mapped into the current theory via an implicit morphism M : S → T
are directly available in T . We can practically realize this by adding new defined
constants c : M(E) = M(c) to T . However, physically adding definitions can be
inefficient. It is more elegant to modify the typing rules such that `T c : M(c) =
M(E) holds without any changes to T .

To do that, we only have to make a small modification to the original rules
of Mmt as presented in Sect. 2. To illustrate how simple the modification is, the
following definition repeat the original rule first for comparison:

Definition 7 (Using Implicit Morphisms). We replace the rule

c : E[= e] in T [

`T c[= e] : E
with

c : E[= e] in S[S
M
↪→ T

`T c = M(c) : M(E)

Note that the modified rule gives every constant a definiens. This is a tech-
nical trick to subsume the original rule: if c is already declared in T , we use
M = idT and obtain `T c = c : E.

The following theorem is our central theoretical result. It shows that the
modification made in Def. 7 has the intended properties:

10

Theorem 1 (Conservativity of Implicit Morphisms). For well-formed di-
agrams and S, T ∈ Thy and M ∈ Mori(S, T):
1. Whenever the original system proves `T e = e′ : E, so does the modified

one.
2. Whenever the modified system proves `T e = e′ : E, then the original system

proves `T e = e′ : E.
Here E is the expression that arises from E by recursively replacing every con-
stant with its definiens.

Proof. For the first claim, we proceed by induction on derivations. We only need
to consider the case where the original rule was applied. So assume it yields
`T c[= e] : E, i.e., (c : E[= e]) in T [. We apply the modified rule for the special

case T
idT
↪→ T . The conclusion reduces to

– if e is absent: `T c = c : E, which is equivalent to `T c : E,
– if e is present: `T c = e : E because M(c) = M(e) according to the definition

of M(−).
For the second claim, we proceed by induction on derivations. We only need

to consider the case where the modified rule was applied. So assume it yields

`T c = M(c) : M(E) for (c : E[= e]) in S[and S
M
↪→ T . We distinguish two

cases:
– M(c) = c, i.e., e is absent, and c = c. According to the definition of S[, this

is only possible if S ↪→ T (including the special case S = T). In that case,
S[⊆ T [and M is the include/identity morphism that maps all S-constants
to themselves. Now applying the induction hypothesis to the well-formedness
derivation of E yields `T c : E as needed.

– M(c) 6= c, i.e., e is present or M assigns a non-trivial value to c. Definition
expansion eliminates c in favor of M(c), and thus c = M(c). We only have
to show that `T M(c) : M(E). That follows from the judgment preservation
of morphisms.

With implicit morphisms, we can also relax the semantics of many structuring
features:

Example 9 (Includes and Meta-Theories (continued from Ex. 4)). Consider t :
L = {. . . , include S, . . .} where S has meta-theory L′. Instead of requiring

L′ ↪→ L as in Ex. 4, we require only L′
i
↪→ L.

In that case, we treat include S as an abbreviation for include i(S), where
i(S) is the pushout of S along i (see [Rab17] for details on Mmt pushouts). If
L′ ↪→ L, this reduces to the original semantics.

4 Applications

4.1 Identifying Theories via Implicit Isomorphisms

A common need in developing large libraries (both in formal and informal de-
velopments) is to identify two theories S and T via a canonical choice of iso-
morphisms. In these cases, it is often desirable to use S-syntax and T -syntax

11

interchangeably. But one of the major short-comings of formal theories over
traditional informal developments is that formal systems usually need to spell
out these isomorphisms everywhere. In this section, we show that implicit mor-
phisms elegantly allow exactly that kind of intuitive identification: we mark the
canonical isomorphisms as implicit.

In the sequel, we present several ways to obtain implicit isomorphisms con-
veniently. In general, note that because identity morphisms are implicit, our
uniqueness requirement for implicit morphisms implies that two theories S and
T must be isomorphic if there are implicit morphisms in both directions. More-
over, making a pair of isomorphisms implicit is only allowed if there are no other
implicit morphisms between S and T yet.

Renamings We say that a named morphism r : S → T = {. . .} is a renaming
if
– all assignments in its body are of the form c := c′ for T -constants c′ without

definiens
– every T -constant c′ without definiens occurs in exactly one assignment.

Clearly, every renaming is an isomorphism. The inverse morphisms contains the
flipped assignments c′ := c.

We make the following extension to syntax and semantics:
– A morphism declaration r : s→ t = {. . .}may carry the attribute renaming.
– This is allowed if there are no implicit morphisms between s and t yet.
– In that case, we define r ∈ Mori(s, t) and r−1 ∈ Mor(t, s).

Example 10 (Renaming). Consider a variation of the theory Monoid from Ex. 3
in a different library:

Monoid2: Log =

M : type

connective : M → M → M # 1 ◦ 2

neutral : M

This theory is isomorphic to the previously introduced theory Monoid under the
trivial renaming

renaming MonoidRen : Monoid2 -> Monoid =idLog

M := U

connective := op

neutral := unit

Definitional Extensions We say that the named theory T is a definitional
extension of S if T = S or the body of T contains only
– constant declarations with definiens, and
– include declarations of theories that are definitional extensions of S.

If T is a definitional extension of S, it is easy to prove that T and S are
isomorphic: both isomorphisms map all constants without definiens to them-
selves. In particular, the isomorphism T → S maps S-constants to themselves
and expands the definiens of all other constants.

12

We make the following extension to syntax and semantics:
– An include declaration include S of a named theory S inside a theory T

may carry the attribute definitional.
– In that case, we define idS ∈ Mori(T, S) (in addition to the implicit mor-

phism idT ∈ Mori(S, T) that is induced by the inclusion).

Example 11 (Extension with a Theorem). We extend the theory Group from
Ex. 3 with a theorem

InverseInvolution: Log =

definitional include Group

inverse_invol : ∀[x] (x−1)−1
.
= x = (proof omitted)

Remark 2 (Conservative Extensions). A definitional extension is a special case
of a conservative extension. More generally, all retractable extensions are conser-
vative, i.e., all extensions S ↪→ T such that there is a morphism r : T → S that
is the identity on S. But we cannot make the retractions implicit morphisms in
general because they are not necessarily isomorphisms.

Canonical Isomorphisms If we have isomorphisms m : S → T and n : T → S, we
simply spell them out in morphism declarations and add the keyword implicit
to both. This requires no language extensions.

Example 12. Having declared the morphism DG2G (as in Ex. 2) implicit, we do
the same with the reverse morphism G2DG:

implicit G2DG : Group -> DivGroup =idLog

U := U

op := [a,b] a/(unit/b)

unit := unit

inverse := [a] unit/a

While making one of these isomorphisms implicit is straightforward, doing it
for both requires checking that m and n are actually isomorphisms. Otherwise,
the uniqueness condition would be violated. Thus, we have to check m;n = ids

and n;m = id t. In general, the equality of two morphisms f, g : A → B is
equivalent to `B f(c) = g(c) for all (c : E) ∈ A[. Thus, if equality of expressions
is decidable in the logic that Mmt is instantiated with, then Mmt can check
this directly.

However, this does not work in practice. Already elementary examples require
stronger, undecidable equality relations:

Example 13. Consider the isomorphism from Ex. 12. The result of mapping x◦y
from Group to DivGroup and back is x◦(unit ◦y−1)−1. Clearly, the group axioms
imply that this is equal to x ◦ y. But formally, that requires working with the
undecidable equality of first-order logic.

13

Therefore, in our running example, we can only make one of the two isomor-
phisms implicit at this point.

In the sequel, we design a general solution to this problem. It allows sys-
tematically proving the equality of two morphisms and using that to make both
isomorphisms implicit. This is novel work that requires significant prerequisites
and is only peripherally related to implicit morphisms. Therefore, we only sketch
the idea and leave the details to future work.

We add a language feature to Mmt to prove equalities between morphisms:
We add the productions

Dia ::= (TDec |MDec |MEq)∗

MEq ::= equalM = M : T → T by{Ass∗}

We define the declaration equalM = N : S → T by{σ} to be well-formed
iff
– M : S → T and N : S → T are well-formed morphisms
– σ contains exactly one assignment c := p for every (c : E) ∈ S[

– for each of these assignments c := p, the term p is a proof of `T M(c) = N(c).

Example 14 (Isomorphisms). With the above extension in place, we can make
both isomorphisms m and n from above implicit:

implicit : DG2G : DivGroup→ Group = (as above)

implicit : G2DG : Group→ DivGroup = (as above)

equal G2DG; DG2G = idGroup : Group→ Group = (omitted)

equal DG2D; G2DG = idDivGroup : DivGroup→ DivGroup = (omitted)

where the isomorphisms are as above and we omit all the equality proofs.
There is a subtle difficulty in marking G2DG as implicit: the implicit-diagram

only commutes after proving the equalities, which are only declared later. One
option is to delay the commutativity check until the equalities have been checked.
In that case, care must be taken to avoid using the implicitness of G2DG while
proving the equalities. But we obtain a more elegant solution from the obser-
vation that it is always sound and harmless to automatically make the inverse
of an implicit isomorphism implicit as well. Thus, we can omit the attribute
implicit on G2DG altogether and use an implementation that infers that G2DG is
the inverse of an implicit isomorphism.

4.2 Fine-Granular and Flexible Theory Hierarchies

A common problem when defining modular theory hierarchies is that the most
natural include-hierarchy for the most important theories is not necessarily the
same as the most comprehensive hierarchy. For example, Ex. 3 defines Group with
an include from Monoid. Instead, we could have used an intermediate theory and
includes Monoid ↪→ CancellationMonoid ↪→ Group.

It is very common to have increasingly strong theories R,S, T , where a design
with two includes R ↪→ S ↪→ T is not desirable:

14

– Often R ↪→ T has been defined first and S only later. This is very common
because people usually formalize the most important theories (e.g., Monoid
and Group) first. But inserting S is not easy in retrospect — changing the
theory hierarchy (which is one of the most fundamental structures of a li-
brary) usually presents a very expensive refactoring problem. And even if we
systematically use includes for every known intermediate theory like S (as
done in [CFO11]), we might later discover a new intermediate theory that
should have been added.

– Often the most natural axioms to use in T are the same independent of
whether T includes R or S (e.g., users might prefer the usual inverse-element
axioms in Group even if they have included CancellationMonoid). In that
case, the axioms of S become provable in T if we use R ↪→ S ↪→ T . This
either causes T to have redundant axioms or requires a more complex include
mechanism that allows T to include S in a way that turns some of S-axioms
into theorems.
Therefore, it is common to use a commuting triangle consisting of two in-

cludes R ↪→ T and R ↪→ S and one morphism m : S → T . But this is awkward
because the relation “every T is an S” is now mediated by m rather than be-
ing canonical. Implicit morphisms provide a simple solution to this problem: we
keep the triangle but make the morphism m implicit. This captures exactly the
canonical conversion from S to T .

Already the elementary algebraic hierarchy provides countless examples of
such situations. For a small fragment of the hierarchy of magmas, Figure 1
shows one possible design using numerous implicit morphisms. In particular,
it uses some of the examples and features from this paper, e.g., an implicit
isomorphism to identify the order-theoretic and the algebraic development of
semilattices.

It also uses multiple implicit morphisms to introduce the various interme-
diate theories between Band ↪→ SemiLattice. All of these are of the form
t = {include Band, a : F}, e.g., LeftRegularBand uses F = ∀x, z.z◦x◦z .

= z◦x.
The implicit morphisms map the constants from Band to themselves and the ax-
iom a to a proof. It is straightforward to prove that this part of the diagram
commutes: any two morphisms are identical except for the assignment to the
axiom a, and these are equal due to proof irrelevance.5

4.3 Logic Morphisms

So far, we have assumed all theories use the same fixed meta-theory, e.g., Log
in the running examples. But in practice, we usually develop theories heteroge-
neously by using the weakest possible meta-theory for each module. A strength
of Mmt is that meta-theories are normal theories so that the same structur-
ing formalism can be used for them, e.g., morphisms, includes, pushouts, and
implicit morphisms are directly available for meta-theories.

5 Our formalization of bands can be found at https://gl.mathhub.info/MMT/

examples/blob/devel/source/bands.mmt.

15

https://gl.mathhub.info/MMT/examples/blob/devel/source/bands.mmt
https://gl.mathhub.info/MMT/examples/blob/devel/source/bands.mmt

Fig. 1. Magma hierarchy with includes (gray) and implicit morphisms (black)

For example, consider the example from Figure 1. We could use first-order
logic FOL as the common meta-theory of all theories. But actually the much
weaker logic Horn (which uses restricted logical connectives that only allow cre-
ating Horn formulas) is sufficient for most of them.

We do not want to declare a direct include Horn→ FOL for the same reasons
as discussed in Section 4.2. Instead, we want to give a morphism EmbedHorn :
Horn → FOL, which maps all Horn formula constructors to their FOL counter-
parts. We can now make EmbedHorn implicit, thus capturing the fact that Horn
logic is a fragment of FOL.

Moreover, assume we have built the diagram in Figure 1 using the meta-
theory Horn where possible and FOL where necessary. An example for the latter
is TotalOrder, which also uses ∨. Without implicit morphisms, we would have
to write

TotalOrder : FOL = {include EmbedHorn(PartialOrder), . . .}

16

Here the Horn-theory PartialOrder must be explicitly translated to FOL be-
fore including it, which is awkward for users both when writing and reading.
But using implicit morphisms and the semantics of Ex. 9, we can simply write
include PartialOrder — the logic translation remains transparent to the user.

In practice, many logic morphisms are naturally implicit, either because they
are includes to begin with or because they represent a canonical logic embedding.

4.4 Transparent Refactoring

A major drawback of using modular theories is that it can preclude transparent
refactoring (to insert intermediate theories as mentioned in Section 4.2). As an
example, we consider a theory t = {include r, include s}, and assume we want
to move a constant declaration D for the name n from s to r. This change should
be straightforward as it does not change the semantics of t.

However, this is not a local change. It also requires updating every qualified
reference from s?n to r?n. Even if the source files always use the unqualified
reference n (because the checker is smart enough to dynamically disambiguate
them), this still requires a global rebuild to reach a consistent state again. But
such references can occur anywhere where t is used, and that may include files
that the person who does the refactoring does not know about or does not have
access to. One option in this case is to use an extra-logical refactoring tool
that propagates such changes. But when managing releases of big libraries, it
is often desirable to deprecate the original theories but still ensure backwards
compatibility. Then after a transition period the original theories are removed
from the library and users are expected to propagate the refactoring.

With implicit morphisms, we can solve this problem by making only the
following local changes:
1. We keep r and s as they are.
2. We create a new theory r′ = {include r, D}.
3. We create a new theory s′ that is like s except for deleting the declaration
D.

4. We change t to t = {include r′, include s′}.
5. We add implicit morphisms s′ → s (mapping s′?x to s?x for all x) and s→ t

(mapping s?n to r′?n and s?x to s′?x for all x 6= n).
The situation before (left) and after (right) refactoring is given below. Note that
the right diagram commutes.

t

r

s

t

r′ s

r s′

Afterwards, t has the desired new structure. But all old references to r and s
stay well-formed so that no global changes are needed. Now r and s can be
deprecated and eventually removed in favor of r′ and s′.

17

5 Conclusion and Related Work

Implicit Conversions The need for implicit conversions has been recognized in
many formal systems. In all cases, similar uniqueness constraints are employed
as in ours.

Type-level conversions are functions between types such as the conversion
from natural numbers to integers. Theory-level conversions are morphisms
between theories, like in this paper, or similar constructs. The latter can be seen
as a special case of the former: if every theory is seen as the type of its models
(as in [MRK18]), then reduction along an implicit morphism S → T induces
a conversion from T -models to S-models. Type-level conversions are present in
many systems, e.g., the Coq proof assistant [Coq15] or the Scala programming
language. The novelty in our approach is to restrict conversions two-fold: firstly
to the theory level, secondly to those conversion functions that can be expressed
as theory morphisms. This significantly reduces the complexity and permits an
elegant logic-independent semantics, while still being practically useful.

Some formal systems support theory-level conversions without explicitly us-
ing theory morphisms. This is common in systems that use type classes as an
analogue to theories. For example, the sublocale declarations of the proof as-
sistant Isabelle [KWP99] or the deriving declarations of the programming lan-
guage Haskell can be seen as implicit morphisms even though no primitive con-
cept of morphism objects is employed. Our implicit morphisms yield a simpler
and more expressive theory-level conversion system at the price of having an
additional primitive concept.

Structuring Theories In systems that maintain large diagrams of theories, the
problems solved by our approach have been recognized for some time. For exam-
ple, the IMPS system [FGT93] allowed using theory morphisms to retroactively
add defined constants to a previously declared theory. This corresponds to a
definitional extension with an implicit retraction morphism as in Sect. 4.1.

In [CFK14], the idea of realms was introduced as a way to bundle a set
of isomorphic theories and their definitional extensions into a single interface.
The paper called for an implementation of realms as a new primitive concept
in addition to theories and morphisms. In contrast, the much simpler feature
of implicit morphisms achieves very similar goals: realms can be recovered by
marking all isomorphisms as implicit and all extensions as definitional.

It remains future to investigate the relationship between implicit morphisms
and other generalizations of the set-theoretic notion of inclusion such as factor-
ization or inclusion systems.

Scalability and Scoping Future work will focus on utilizing and evaluating im-
plicit morphisms in large libraries, i.e., diagrams with thousands of theories and
as many implicit morphisms as possible.

In doing so, we will pay particular attention to some problems that implicit
conversions can cause at large scale. Users can be confused when implicit con-
versions are applied that they are not aware of, and different users may also

18

have different preferences for which conversions should be implicit. Moreover,
critically, different developments may be incompatible if they introduce differ-
ent implicit morphisms between the same theories. For those reasons, Scala, for
example, only applies implicit conversions that are imported into the current
namespace.

We anticipate that these problems will lead to an evolution of our solution
that allows more localized control over which morphisms are implicit. Thus,
instead of a single global diagram of implicit morphisms, every context may
carry its own local one. But we defer this until the current implementation has
been used to conduct very large case studies.

References

AHMS99. S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an Evolution-
ary Formal Software-Development Using CASL. In D. Bert, C. Choppy,
and P. Mosses, editors, WADT, volume 1827 of Lecture Notes in Computer
Science, pages 73–88. Springer, 1999.

CELM96. M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings of the First International Workshop on
Rewriting Logic, volume 4, pages 65–89, 1996.

CFK14. J. Carette, W. Farmer, and M. Kohlhase. Realms: A Structure for Consoli-
dating Knowledge about Mathematical Theories. In S. Watt, J. Davenport,
A. Sexton, P. Sojka, and J. Urban, editors, Intelligent Computer Mathe-
matics, pages 252–266. Springer, 2014.

CFO11. J. Carette, W. Farmer, and R. O’Connor. Mathscheme: Project description.
In J. Davenport, W. Farmer, J. Urban, and F. Rabe, editors, Intelligent
Computer Mathematics, volume 6824, pages 287–288. Springer, 2011.

CHK+11. M. Codescu, F. Horozal, M. Kohlhase, T. Mossakowski, and F. Rabe.
Project Abstract: Logic Atlas and Integrator (LATIN). In J. Davenport,
W. Farmer, F. Rabe, and J. Urban, editors, Intelligent Computer Mathe-
matics, pages 289–291. Springer, 2011.

Coq15. Coq Development Team. The Coq Proof Assistant: Reference Manual.
Technical report, INRIA, 2015.

FGT92. W. Farmer, J. Guttman, and F. Thayer. Little Theories. In D. Kapur,
editor, Conference on Automated Deduction, pages 467–581, 1992.

FGT93. W. Farmer, J. Guttman, and F. Thayer. IMPS: An Interactive Mathe-
matical Proof System. Journal of Automated Reasoning, 11(2):213–248,
1993.

GWM+93. J. Goguen, Timothy Winkler, J. Meseguer, K. Futatsugi, and J. Jouannaud.
Introducing OBJ. In J. Goguen, D. Coleman, and R. Gallimore, editors,
Applications of Algebraic Specification using OBJ. Cambridge, 1993.

KWP99. F. Kammüller, M. Wenzel, and L. Paulson. Locales – a Sectioning Con-
cept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Theorem Proving in Higher Order Logics, pages 149–166.
Springer, 1999.

MML07. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool
Set. In O. Grumberg and M. Huth, editor, Tools and Algorithms for the
Construction and Analysis of Systems 2007, volume 4424 of Lecture Notes
in Computer Science, pages 519–522, 2007.

19

MRK18. D. Müller, F. Rabe, and M. Kohlhase. Theories as Types. In D. Galmiche,
S. Schulz, and R. Sebastiani, editors, Automated Reasoning, pages 575–590.
Springer, 2018.

PS99. F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical
framework for deductive systems. In H. Ganzinger, editor, Automated De-
duction, pages 202–206, 1999.

Rab17. F. Rabe. How to Identify, Translate, and Combine Logics? Journal of Logic
and Computation, 27(6):1753–1798, 2017.

RK13. F. Rabe and M. Kohlhase. A Scalable Module System. Information and
Computation, 230(1):1–54, 2013.

SW83. D. Sannella and M. Wirsing. A Kernel Language for Algebraic Speci-
fication and Implementation. In M. Karpinski, editor, Fundamentals of
Computation Theory, pages 413–427. Springer, 1983.

20

	Structuring Theories with Implicit Morphisms
	1 Introduction
	2 Theories and Theory Morphisms
	2.1 Overview
	2.2 Syntax
	2.3 Semantics

	3 Implicit Morphisms
	3.1 Overview
	3.2 Syntax
	3.3 Semantics

	4 Applications
	4.1 Identifying Theories via Implicit Isomorphisms
	4.2 Fine-Granular and Flexible Theory Hierarchies
	4.3 Logic Morphisms
	4.4 Transparent Refactoring

	5 Conclusion and Related Work

