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Abstract. Nowadays, the problem of community detection hasire more and
more challenging. With application in a wide rargddields such as sociology,
digital marketing, bio-informatics, chemical engéneg and computer science,
the need for scalable and efficient solutionsrsrgjly underlined. Especially, in
the rapidly developed and widespread area of sawglia where the size of the
corresponding networks exceeds the hundreds dbmsliof vertices in the aver-
age case. However, the standard sequential algwigpplications have practi-
cally proven not only infeasible but also terribiyscalable due to the excessive
computation demands and the overdone resourcesgpisites. Therefore, the
introduction of compatible distributed machine reag solutions seems the most
promising option to tackle this NP-hard class peahl The purpose of this work
is to propose a novel distributed community detecthethodology, based on the
supervised community prediction concept that iseemely scalable, remarkably
efficient and circumvent the intrinsic adversit@slassic community detection
approaches.

Keywords: Community Detection, Machine Learning, Distribu@omputing,
Supervised Learning, Louvain algorithm.

1 Introduction

In recent years, the amount of available informmtiontinuously grows, making the
need for efficient information representation aathdcompactness more and more cru-
cial. Therefore, the adoption of data structurehiaas graphs have frequently been the
case, in order to conveniently enhance and readuilgel the primary information with
its corresponding relationship structure. Charastieally, many sectors such as biol-
ogy, chemistry, sociology, marketing and computérsce have embraced information
networks since they seem extremely suitable forahidical data representation [1].
Especially, in targeted marketing and personalizdmmendations, where the con-
cept of retrieving the underlying hierarchical sture from complex networks have



been a major concern. Hence, community detectisrbkaome one of the most signif-
icant and concurrently challenging problems in grapalysis, having as principal goal
the identification of subgroups that contain highigilar entities by only using topo-
logical information. The entities similarity is calated using specific graph topology
criteria such as the edge/node connectivity dedheeclustering coefficient, the edge
betweenness centrality etc. [6]. The returned sulgg, also known as communities,
should be typically densely intra-connected andssg inter-connected with each
other.

Focusing on the social media, their information banexceptionally modeled using
graphs, where each node could represent a unigueand the connection between two
users could generally express any kind of soctarattion. Due to the natural human
tendency to get associated and mainly interact pagrs of similar interests, the for-
mation of virtual clusters and communities can bastdered as a doubtless conse-
quence [1] [20]. Therefore, the community detecfiorsocial networks can be inter-
preted as the identification of groups of socialdraeusers that are either directly or
indirectly connected and tend to interact moreroftéth each other comparing to users
of different communities [5]. The concept of findifike-minded user subgroups has
indeed proven beneficial in e-commerce, social meatrketing and recommendation
services.

Profuse measures have been proposed for the etrmmmunity structure evaluation
[1] [20]. Among all, the most broadly used is thedularity which is basically a func-
tion that quantifies the average connectivity degséa given community [1]. Intui-
tively, modularity seeks to reflect the concentmatdf remaining edges within commu-
nities, after community detection application, camga to a random distribution of
connections on the original graph [2]. The modtyavialues lie between -1 and 1,
where positive modularity values reveal a well-iifggd / well-assessed community
structure and vice versa the negative ones indecatech more complicated subjacent
community structure that have not been fully idiedi yet.

Apart from being an indispensable clustering evdmabenchmark, modularity also
serves as the elementary method for graph clugteptimization in the great majority
of existing methods and algorithms [3] [7] [10] [123] [18]. Nonetheless, despite its
broad use, modularity optimization is inherentlgsdified as a NP-complete problem
[1] with typical implementations of high polynomiedmputational complexity.

Apart from the undisputed modularity maximizatia@mputational difficulties, the ac-
tual size of real-world social networks acts astl@omajor inhibitory factor. It is a
common fact that today's social networks have aatred the billions of user profiles,
with Facebook reporting more than 2 billion user2018 while the corresponding
number for Instagram exceeded the 800 million usgossequently, for social graphs
of such extend, it has been obviously infeasibleven traverse through the entire net-
work using the classic methodologies.

Hence, it seems utterly pointless to even try joafhe standard graph clustering ap-
proaches described in [1] [2] [4] [5] [18] sinceethequired calculations outstrip the
linear complexity. Thereupon, only scalable disttédal solutions that make use of the
topological properties retrieved from a small bepresentative part of the original



graph, could rise to the occasions. As a resultsidering that link prediction tech-
niques could be very prolific for tremendously lmdormation networks [8] [9], the
community detection problem can alternatively eripreted as the probability calcu-
lation problem of nodes belonging on the same conityfor each directly connected
pair of nodes.
Inspired by the aforementioned idea, a novel distéd methodology, which follows
the idea of link prediction, is proposed. Giventthauvain algorithm's [6] performance
is generally considered as the golden standardaphgclustering, a network feature
analysis of a manageable but representative subgdgdpitially performed. The main
objective of this analysis is to classify eachhef édges included as either "community"
or "non-community”. Obviously, this edge labellipgocedure transforms this sub-
graph to a supervised machine learning-ready datzesewill be given as training input
to a distributed logistic regression model. Tharted community prediction model
will be finally applied in terms of the original @wh’s community structure identifica-
tion. The experimentation with various real-worltigl networks verifies that the pro-
posed method, is remarkably promising, highly ddaland noticeably efficient for
community detection despite slightly sacrificingtpaf original Louvain’s accuracy.
The remainder of this manuscript is organized devis:

* In Section 2 the related work on community detectitethodologies is given.

* In Section 3 the proposed methodology and its implgation is comprehen-

sively presented.
* In Section 4 the experimentation results are dseals
* In Section 5 the conclusions and the future woek@pvided.

2 Related Work

The community detection significance has attratitednterest from various scientific
fields. Copious methods from different backgrouand objectives have been proposed
to detect the underlying community structure of\aeg graph by leveraging its topo-
logical information. There is a plethora of algbnits and methodologies [1] [2] [20],
which can be roughly distinguished as divisive athms, agglomerative algorithms,
transformation methods and other approaches acgydi

2.1 Divisive Algorithms

The fundamental idea of divisive algorithms isderitify and remove all the edges that
interconnect nodes belonging to different commanibly applying an iterative process.
At the beginning, the original graph is considegedingle community. During each
iteration step, a set of edges that meet certéerierand appear to interconnect differ-
ent communities, will be removed. The processeaded until the retrieved network
structure converges to a stable state where ndi@uolli edge removal can be applied
[20]. Itis worth mentioning that in a few extreeses the removal of a whole subgraph
may be required in terms of community structurédityl and efficiency.

The most representative divisive algorithm is the proposed by Girvan and Newman
[18], in which the removal criterion depends on #uge betweenness measure [9].



Despite, its algorithmic and conceptual simplicitlyis approach is excessively de-

manding in both calculation and storage resouregsirements and hence considered
impossible for big data networks.

Ample alternatives of Girvan and Newman algorithavér been proposed aiming to

substitute the original edge betweenness modulaityh as geodesic or current-flow

edge betweenness etc. [1] [2], in terms of efficieimcrease or complexity reduction.

Among the proposed, the most prevalent is the nardalk edge betweenness crite-
rion [3] [6], which identifies low density edgesathare not part of cycle paths and can
be considered as community connection edges.

2.2  Agglomerative Algorithms

In contrast to divisive algorithms, the agglomermatare classified as bottom up ap-
proaches. By originally considering each node sep@mrate community, also known as
singleton, a number of iterations is applied, ioteaf which, the distinct communities
are merged according to the calculated resultvedladefined similarity function. The
ultimate goal is to end up with a graph that conepasinique cluster [1].

It is worth pointing out that agglomerative algbnits intrinsically unfold the complete
hierarchical community structure of the analysiapdy, as new communities are built
during the process from previous steps' communitigsn if the generated hierarchies
might seem generally artificial, social networkg &ypical examples of hierarchical
structured information since it is natural for pkoi create groups within their work-
ing environment, friends or even families.

Among the proposed agglomerative algorithms [2],[#8 one introduced by the uni-
versity of Louvain [4] is the most widespread aodsidered as the state-of-the-art in
terms of hierarchical community detection. The Higant difference of this greedy
approach is that the modularity measure used, akethe rests in terms of simplicity
and accuracy. In Louvain's algorithm [4], the madlity function ingeniously com-
bines the number of community's intra-connectinges¢the corresponding nodes' de-
grees and the total number of graph's edges, aitoitentify a final structure with no
edges between the densely inter-connected retriemenunities.

Extensive research has been done regarding Los\atatnatives, where the most no-
table are either trying to combine Louvain's modtydunction with other modularity
alternatives, as the one presented in [5] that iifemap, or to parallelize the structure
retrieval procedure [10] [23].

2.3 Transformation M ethods

Many researchers of different backgrounds have leeglaged to tackle this critical
graph clustering problem by trying to transform @nagject the initial network structure
identification problem to a different solution spadhe most characteristics are the
Spectral Clustering techniques and the adoptidaesfetic Algorithms.

The Spectral clustering [1] techniques are follaythe transformation methodology
where each node is represented by a point in spdese coordinates are elements of
eigenvectors. Consequently, simple clustering tieglas, such as K-means clustering,



can be applied to come up with the clusters thiatadly are the original graph’s com-
munities [14] [15]. The main drawback of this apgeb is that the clustering results are
seriously poor for graphs originally comprised aimg fragmented communities.
Another widely used set of algorithms, in termsrafdularity optimization, is the Ge-
netic algorithms [7]. Those are particularly refreéi meta-heuristics inspired by the
theory of natural evolution. As in the natural ex@n process, the original graph is
randomly initialized, and each node is assigneal community [20].

2.4  Other Approaches

Any of the previously described algorithms try &veal the underlying community
structure for any given network. Although, by odlgpending on graph's topological
structure without taking into account the critioaaker content information, it is unques-
tionable that a fundamental piece of social netwoftirmation is being ignored. As
mentioned in [1] and [20], many approaches have Ipeeposed, such as [12], that try
to take leverage the user content information tceed to a more beneficial graph
clustering outcome for user-oriented applications.

Additionally, another engaging alternative is timk lprediction methodology. This ap-
proach’s initial intention was the prediction oftgatial connections between any pair
of users that are not currently connected, baseteexisting user relationships. How-
ever, recent studies [9] [11] showed that link jocdn can also be efficiently used for
extensive graph analysis due to its limited comiataand resources requirements.
Therefore, by slightly modifying the original scopiink prediction, it is obvious than
this methodology can equivalently be used to ptegliether any pair of directly con-
nected nodes, belong to the same community orwluth is the basic idea of this
paper.

Other equally important algorithms and methodolsgiach as Simulated Annealing
[1], Information Diffusion Graph Clustering [20] xEernal Optimization [1] and Gen-
erative Models [2] are not further discussed stheg are out of the scope of this paper.

3 Proposed M ethodol ogy

3.1 Graph Statistical Analysis& Feature Enrichment

This is the initial processing step where completagnto graph's statistical analysis,
a predefined set of features is assigned to eaghhir node and edge accordingly.
The statistical analysis regarding the originalpya topology structure is mandatory
in order to ensure that the consequently extrastibgraph would be representative to
the original. As a result, the average node degvbigh is the average number of con-
nections per node, and the graph's degree disbiyuhich is the probability distri-
bution of node degrees over the whole network, nedx calculated.

Regarding the feature enrichment process, a prestefiet of features, separately per
node and edge, is calculated and assigned acctyrdinig worth pointing out that the
amount of information implied only by the edge atsdadjacent nodes, might not be
sufficient for proper prediction. Undeniably, eainnection's properties are not only



affected by their direct adjacent nodes, but ailgzstantially influenced by their sur-
rounding network structure. Hence, the currentllpwedictors should be enriched with
the values of all of the corresponding featuresoup predefined depth k.

Empirically, the features that correspond to dejgttesater than 5, do not add any es-
sential information since they tend to converggrimph's average values. On the con-
trary, the experimentation process, which is commgnsively analyzed in the following
subsection, has practically proven that the comtyiyprediction is substantially bene-
fited with feature enrichment up to the 3rd coniwectevel.

The only node-oriented feature calculated is theber of k-depth neighbors. Since
this algorithm’s ultimate scope is the edge-oridmiesdiction, all calculated feature’s
values for each engaging node will be includednaizeding edge’s additional infor-
mation.

The edge-oriented prediction features are:

* The loose similarity: regarding an imminent painofies and each of their cor-
responding sets of distinct nodes up to depthik,ishthe fraction of common
over the union set’s total number of nodes. It §hdae underlined, that both
sets include nodes having depth less or equaldm&e a common node might
be at a different depth for each impeding node.

» The dissimilarity: regarding an imminent pair ofdes and each of their corre-
sponding sets of distinct nodes up to depth k,ithike fraction of uncommon
over the union set’s total number of nodes.

* The edge balance: regarding an imminent pair oéa@hd each of their corre-
sponding sets of distinct nodes up to depth k,ighike fraction of the absolute
difference between the peers adjacent over thengsitis total number of nodes.
This feature values ranges from 0 to 1, with valkleser to O indicating a bal-
anced edge that have merely equal k-depth ventiedsth sides.

* The edge information: considering that the corresiptg element on a graph's
kth power adjacency matrix indicates the numbatistinct k-length paths be-
tween the impeding vertices [21], this feature e¢s¢he pair's interconnection
strength.

3.2 Representative Subgraph Extraction

To properly train a community prediction model, km@wledge of Louvain algorithm’s
behavior regarding the original graph is considesatical. Nevertheless, considering
the size of real-world social graphs, it is obvithat even the execution of Louvain’s
distributed implementation [23] can be considenazhjbitive, since it should still need
to repetitively check an immense number of candslaer iteration in order to merge
the ones with the highest probability of forming@mmunity. Thus, the extraction of
a subgraph that retain the original graph's eleamgrtbpology properties is deemed
fundamental and that is indeed the main purposki®processing step.

After thorough investigation, the Tiny Sample Exta algorithm [17] has been se-
lected for its well efficiency and high scalabilifgven if the extraction of a representa-



tive subgraph yet remains controversial, since¢la¢networks exhibit the degree dis-
tribution that follow the power law, the extractedbgraph's degree distribution re-
mains remarkably similar to the original graph's.ckearly shown in Figure 1.
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Fig. 1. The exponent degree distribution on log-log sé@d&mail-Eu-Core [27] dataset.

Having already calculated the original graph's dedtistribution during the previous
graph analysis processing step, the Tiny Sampleagixir [17] algorithm initially tries

to estimate the original graph's exponent degrethéyslope of the log-log Comple-
mentary Cumulative Distribution Function (CCDF).aBén mind, that the CCDF func-
tion for a given degree value d, returns the foacthf nodes that have degree greater
than d. Therefore, starting from a random nodeia8dal random walks are applied in
turn. In the first couple of walks, the minimum amdximum exponent degree values
are respectively defined. In the last one, theltiegusubgraph is extracted. The bias
included is used in terms of compensation duedaskewed distribution of nodes vis-
ited in the random walks performed.

In the extreme case, where the original graphashtig, in such extent that is not even
traversable, then both the previously describetstital analysis and the representative
subgraph extraction step can be applied only toallsr part of the original graph that
would is considered as the graph’s “known” part.

3.3  Community Prediction Model Training & Application

The most suitable machine learning model for pitegticin terms of big data efficiency
and interpretability, is undoubtedly the logistegression model. Projecting its appli-
cation to community detection, the eventual scopthis model would be to predict
whether a given edge connects nodes of the sammgbity or not, depending on the
aforementioned edge-oriented graph topology featubespite the intrinsic accuracy



drawbacks of linear models, it is frequently proteat on real-worlds problems, they
seem to be surprisingly competitive to non-lindemiks to their low variance.

To appropriately train a logistic regression mode, classification response needs to
be predefined at the training dataset. Among theoes proposed methods, the Lou-
vain’s one [4] is broadly considered [6] [20] as #tate-of-the-art in disjoint commu-
nity detection, while its performance generallyvesras the golden baseline. So, using
the previously extracted subgraph, the distribwdion of Louvain algorithm [23] is
applied to classify all subgraph's edges as “conityiuor “non-community”.

As it is broadly known, since Louvain's returnednoounity structure is excessively
affected not only by the traversal fashion (BFSSpbut also from the starting candi-
date that the execution starts, it would be prudenbnly to re-execute it starting from
different nodes but also to use different travegsirethodologies. Even if this repetition
might sound extremely demanding, the size of theeted subgraph significantly re-
stricts the required calculations.

The large number of descriptive topology featurggpesed to improve the model pre-
diction accuracy. However, it is very usual for ®oor many input features to either
not be truly associated with the response or toidpaly correlated with each other. The
first case, also known as the "curse of dimensityiakefers to the situation where
irrelevant features are included during trainindpilevthe second, also known as the
"collinearity effect" occurs when two or more pretdrs are correlated to one another.
Both effects lead to unnecessary complexity intotidn and interpretability reduction.
Consequently, during the training process the metelld automatically proceed to
feature selection by applying the L1 regularizatemalty that excludes the redundant
features and practically performs feature selection

Consequently, using the Spark MLIib’s [22] disttibd libraries, a L1 regularized dis-
tributed logistic regression classifier is trainesing the previously extracted subgraph
as training dataset and the enrichment featuresitled on the first processing step as
predictors. This model prediction is used to idgntie original graph’s underlying
community structure.

4 Experiments

To evaluate the performance of the proposed metbgwpits predicted structure is
compared against the communities returned frondigteibuted Louvain implementa-

tion [23]. For this experimentation procedure, fhlowing widely used and thor-

oughly analyzed social graphs are evaluated nidvtieworthy that the first two [24] [25]

datasets considered reference datasets, sincédleyhistorically attracted the scien-
tific interest and have exhaustively been analyzed.

Table 1. Evaluated Datasets

Dataset # of Nodes # of Edges Edges / Nodes
Zachary karate club [24] 34 78 2.29
Dolphins [25] 62 159 2.56




Hamster friendships [26] 1858 12534 6.75
email-Eu-core [27] 1005 25571 25.44
Bitcoin Alpha [28] 3738 24186 6.39
Enron email [29] 36692 183831 5.01

All the experiments were executed in an eight nBdark 2.2.0 cluster, with 4 GBs
RAM and 1 virtual core per each virtual machineek v the processing performance
is out of the scope of this comparison, it is wartbntioning that the proposed algo-
rithm’s processing time and memory requirementsveemstantly less, at least 25%
and 55% respectively, comparing to the distributedvain implementation [23]. The
performance improvement will certainly be substlhtihigher in bigger social graphs,
since the proposed methodology’s complexity isdimend not of a higher polynomial
degree as in Louvain’s case.
In terms of completeness, all the elementary diaasion performance metrics have
been calculated. Specifically:
e The accuracy, which is the number of edges coyretdksified as either "com-
munity" or "non-community" over all the predictionsade.
e The precision, which is the number of edges cdyeatassified as "non-com-
munity" over the total number of "non-community'egictions.
» The recall/sensitivity, which is the fraction ofged correctly classified as "non-
community" over the total number of truly "non-commmity” edges.
» The specificity, which is the fraction of edgesreatly classified as "commu-
nity" over the total number of truly "community" geb.
The community detection results regarding the ai@mgtioned social graphs are pre-
sented in the following table, Table 2.

Table 2. Classification Performance Metrics

Dataset Accuracy Precision Recall Specificity
Zachary karate club [24] 76.5% 100% 50% 100%
Dolphins [25] 88.2% 91.7% 78.6% 95%
Hamster friendships [26] 69.7% 72.3% 54.5% 82.5%
email-Eu-core [27] 78.1% 81.8% 80.2% 75.2%
Bitcoin Alpha [28] 89% 92.6% 14% 99.8%
Enron email [29] 82% 73.2% 27.7% 97.2%

As it is shown in Table 2 the proposed predictiosdel shows excellent overall pre-
diction performance with splendid statistics ongisi®n and specificity.

Specifically, the trained prediction model showsgmificently rational general accu-

racy that reach the 80.6% in the average casehbr avords, the proposed algorithm
remarkably identifies each edge’s class in general.

Focusing on the outstanding specificity and precisitatistics, it is more than obvious
that the proposed implementation impressively ifiestthe “community” edges. This
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way, the graph’s consistency is preserved by rigtgisocial graph’s true connections
and avoiding graph’s fragmentation.

However, the mediocre recall statistics shows tifratrained model misclassifies sev-
eral "non-community" edges as "community" onessMill doubtlessly lead to a less
fragmented community structure comparing to the @tarned from original Lou-
vain’s algorithm. Actually, this can be graphicatignfirmed by the following figure,
Figure 2 where the Email-Eu-Core [17] graph’s ne&at community structure is pre-
sented in both cases, having the red colored exdged for the "non-community” edges
and the blue ones for the "community".

E.majl—EuTC ore [17] _Datas et Email Fu-Core [17] Dataset
Community Detection based on Community Detection based on the
the onginal Louvain Algorithm Proposed Community Prediction Algorithm

Fig. 2. Email-Eu-Core [17] Dataset Community Detection panison

As presented, the returned community structurenimently similar in both cases. The
"non-community” edges are apparently less in tlep@sed community prediction al-
gorithm situation. However, the use of more compteachine learning models, such
as non-linear prediction ones, is supposed to ahtépe recall statistics, since linear
prediction models inherently focus on interpretiodnd not on prediction’s accuracy.

5 Conclusions

In this manuscript, a novel distributed communitgdiction methodology has been
introduced based on Louvain’s [4] community detattalgorithm. Unquestionably,
the experimentation process confirmed the remaekpbtformance in identifying the
subjacent community structure of social graphs amng to Louvain’s original algo-
rithm.
Despite the encouraging results, it is obvious thatmethodology’s community pre-
diction can be substantially improved by:

* Applying a graph cleansing processing step, wheeutliers’ removal will be

applied.
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» Combing the collinear variables into a single peceafi to tackle the multi-col-
linearity effect.
» Applying less interpretable but more accurate mgdeb. non-linear prediction
models.
But all the above are left for future work.
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