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Abstract. Nowadays, the problem of community detection has become more and 
more challenging. With application in a wide range of fields such as sociology, 
digital marketing, bio-informatics, chemical engineering and computer science, 
the need for scalable and efficient solutions is strongly underlined. Especially, in 
the rapidly developed and widespread area of social media where the size of the 
corresponding networks exceeds the hundreds of millions of vertices in the aver-
age case. However, the standard sequential algorithms applications have practi-
cally proven not only infeasible but also terribly unscalable due to the excessive 
computation demands and the overdone resources prerequisites. Therefore, the 
introduction of compatible distributed machine learning solutions seems the most 
promising option to tackle this NP-hard class problem. The purpose of this work 
is to propose a novel distributed community detection methodology, based on the 
supervised community prediction concept that is extremely scalable, remarkably 
efficient and circumvent the intrinsic adversities of classic community detection 
approaches. 

Keywords: Community Detection, Machine Learning, Distributed Computing, 
Supervised Learning, Louvain algorithm. 

1 Introduction 

In recent years, the amount of available information continuously grows, making the 
need for efficient information representation and data compactness more and more cru-
cial. Therefore, the adoption of data structures such as graphs have frequently been the 
case, in order to conveniently enhance and readily model the primary information with 
its corresponding relationship structure. Characteristically, many sectors such as biol-
ogy, chemistry, sociology, marketing and computer science have embraced information 
networks since they seem extremely suitable for hierarchical data representation [1]. 
Especially, in targeted marketing and personalized recommendations, where the con-
cept of retrieving the underlying hierarchical structure from complex networks have 
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been a major concern. Hence, community detection has become one of the most signif-
icant and concurrently challenging problems in graph analysis, having as principal goal 
the identification of subgroups that contain highly similar entities by only using topo-
logical information. The entities similarity is calculated using specific graph topology 
criteria such as the edge/node connectivity degree, the clustering coefficient, the edge 
betweenness centrality etc. [6]. The returned subgroups, also known as communities, 
should be typically densely intra-connected and sparsely inter-connected with each 
other. 
Focusing on the social media, their information can be exceptionally modeled using 
graphs, where each node could represent a unique user and the connection between two 
users could generally express any kind of social interaction. Due to the natural human 
tendency to get associated and mainly interact with peers of similar interests, the for-
mation of virtual clusters and communities can be considered as a doubtless conse-
quence [1] [20]. Therefore, the community detection in social networks can be inter-
preted as the identification of groups of social media users that are either directly or 
indirectly connected and tend to interact more often with each other comparing to users 
of different communities [5]. The concept of finding like-minded user subgroups has 
indeed proven beneficial in e-commerce, social media marketing and recommendation 
services. 
Profuse measures have been proposed for the retrieved community structure evaluation 
[1] [20]. Among all, the most broadly used is the modularity which is basically a func-
tion that quantifies the average connectivity degree of a given community [1]. Intui-
tively, modularity seeks to reflect the concentration of remaining edges within commu-
nities, after community detection application, compared to a random distribution of 
connections on the original graph [2]. The modularity values lie between -1 and 1, 
where positive modularity values reveal a well-identified / well-assessed community 
structure and vice versa the negative ones indicate a much more complicated subjacent 
community structure that have not been fully identified yet. 
Apart from being an indispensable clustering evaluation benchmark, modularity also 
serves as the elementary method for graph clustering optimization in the great majority 
of existing methods and algorithms [3] [7] [10] [12] [13] [18]. Nonetheless, despite its 
broad use, modularity optimization is inherently classified as a NP-complete problem 
[1] with typical implementations of high polynomial computational complexity. 
Apart from the undisputed modularity maximization computational difficulties, the ac-
tual size of real-world social networks acts as another major inhibitory factor. It is a 
common fact that today's social networks have outreached the billions of user profiles, 
with Facebook reporting more than 2 billion users in 2018 while the corresponding 
number for Instagram exceeded the 800 million users. Consequently, for social graphs 
of such extend, it has been obviously infeasible to even traverse through the entire net-
work using the classic methodologies. 
Hence, it seems utterly pointless to even try to apply the standard graph clustering ap-
proaches described in [1] [2] [4] [5] [18] since the required calculations outstrip the 
linear complexity. Thereupon, only scalable distributed solutions that make use of the 
topological properties retrieved from a small but representative part of the original 
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graph, could rise to the occasions. As a result, considering that link prediction tech-
niques could be very prolific for tremendously big information networks [8] [9], the 
community detection problem can alternatively be interpreted as the probability calcu-
lation problem of nodes belonging on the same community for each directly connected 
pair of nodes. 
Inspired by the aforementioned idea, a novel distributed methodology, which follows 
the idea of link prediction, is proposed. Given that Louvain algorithm's [6] performance 
is generally considered as the golden standard in graph clustering, a network feature 
analysis of a manageable but representative subgraph is initially performed. The main 
objective of this analysis is to classify each of the edges included as either "community" 
or "non-community". Obviously, this edge labelling procedure transforms this sub-
graph to a supervised machine learning-ready dataset that will be given as training input 
to a distributed logistic regression model. This trained community prediction model 
will be finally applied in terms of the original graph’s community structure identifica-
tion. The experimentation with various real-world social networks verifies that the pro-
posed method, is remarkably promising, highly scalable and noticeably efficient for 
community detection despite slightly sacrificing part of original Louvain’s accuracy. 
The remainder of this manuscript is organized as follows: 

• In Section 2 the related work on community detection methodologies is given. 
• In Section 3 the proposed methodology and its implementation is comprehen-

sively presented. 
• In Section 4 the experimentation results are discussed. 
• In Section 5 the conclusions and the future work are provided. 

2 Related Work 

The community detection significance has attracted the interest from various scientific 
fields. Copious methods from different backgrounds and objectives have been proposed 
to detect the underlying community structure of a given graph by leveraging its topo-
logical information. There is a plethora of algorithms and methodologies [1] [2] [20], 
which can be roughly distinguished as divisive algorithms, agglomerative algorithms, 
transformation methods and other approaches accordingly. 
 
2.1 Divisive Algorithms 

The fundamental idea of divisive algorithms is to identify and remove all the edges that 
interconnect nodes belonging to different communities by applying an iterative process. 
At the beginning, the original graph is considered a single community. During each 
iteration step, a set of edges that meet certain criteria and appear to interconnect differ-
ent communities, will be removed. The process is repeated until the retrieved network 
structure converges to a stable state where no additional edge removal can be applied 
[20]. It is worth mentioning that in a few extreme cases the removal of a whole subgraph 
may be required in terms of community structure validity and efficiency. 
The most representative divisive algorithm is the one proposed by Girvan and Newman 
[18], in which the removal criterion depends on the edge betweenness measure [9]. 
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Despite, its algorithmic and conceptual simplicity, this approach is excessively de-
manding in both calculation and storage resources requirements and hence considered 
impossible for big data networks. 
Ample alternatives of Girvan and Newman algorithm have been proposed aiming to 
substitute the original edge betweenness modularity, such as geodesic or current-flow 
edge betweenness etc. [1] [2], in terms of efficiency increase or complexity reduction. 
Among the proposed, the most prevalent is the random-walk edge betweenness crite-
rion [3] [6], which identifies low density edges that are not part of cycle paths and can 
be considered as community connection edges. 
 
2.2 Agglomerative Algorithms 

In contrast to divisive algorithms, the agglomerative are classified as bottom up ap-
proaches. By originally considering each node as a separate community, also known as 
singleton, a number of iterations is applied, in each of which, the distinct communities 
are merged according to the calculated result of a well-defined similarity function. The 
ultimate goal is to end up with a graph that compose a unique cluster [1].  
It is worth pointing out that agglomerative algorithms intrinsically unfold the complete 
hierarchical community structure of the analysis graph, as new communities are built 
during the process from previous steps' communities. Even if the generated hierarchies 
might seem generally artificial, social networks are typical examples of hierarchical 
structured information since it is natural for people to create groups within their work-
ing environment, friends or even families. 
Among the proposed agglomerative algorithms [2] [20], the one introduced by the uni-
versity of Louvain [4] is the most widespread and considered as the state-of-the-art in 
terms of hierarchical community detection. The significant difference of this greedy 
approach is that the modularity measure used, overtake the rests in terms of simplicity 
and accuracy. In Louvain's algorithm [4], the modularity function ingeniously com-
bines the number of community's intra-connecting edges, the corresponding nodes' de-
grees and the total number of graph's edges, aiming to identify a final structure with no 
edges between the densely inter-connected retrieved communities. 
Extensive research has been done regarding Louvain's alternatives, where the most no-
table are either trying to combine Louvain's modularity function with other modularity 
alternatives, as the one presented in [5] that uses Infomap, or to parallelize the structure 
retrieval procedure [10] [23]. 

 
2.3 Transformation Methods 

Many researchers of different backgrounds have been engaged to tackle this critical 
graph clustering problem by trying to transform and project the initial network structure 
identification problem to a different solution space. The most characteristics are the 
Spectral Clustering techniques and the adoption of Genetic Algorithms. 
The Spectral clustering [1] techniques are following the transformation methodology 
where each node is represented by a point in space, whose coordinates are elements of 
eigenvectors. Consequently, simple clustering techniques, such as K-means clustering, 
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can be applied to come up with the clusters that actually are the original graph’s com-
munities [14] [15]. The main drawback of this approach is that the clustering results are 
seriously poor for graphs originally comprised of many fragmented communities. 
Another widely used set of algorithms, in terms of modularity optimization, is the Ge-
netic algorithms [7]. Those are particularly repetitive meta-heuristics inspired by the 
theory of natural evolution. As in the natural evolution process, the original graph is 
randomly initialized, and each node is assigned to a community [20].  
 
2.4 Other Approaches 

Any of the previously described algorithms try to reveal the underlying community 
structure for any given network. Although, by only depending on graph's topological 
structure without taking into account the critical user content information, it is unques-
tionable that a fundamental piece of social network information is being ignored. As 
mentioned in [1] and [20], many approaches have been proposed, such as [12], that try 
to take leverage the user content information to proceed to a more beneficial graph 
clustering outcome for user-oriented applications. 
Additionally, another engaging alternative is the link prediction methodology. This ap-
proach’s initial intention was the prediction of potential connections between any pair 
of users that are not currently connected, based on the existing user relationships. How-
ever, recent studies [9] [11] showed that link prediction can also be efficiently used for 
extensive graph analysis due to its limited computation and resources requirements. 
Therefore, by slightly modifying the original scope of link prediction, it is obvious than 
this methodology can equivalently be used to predict whether any pair of directly con-
nected nodes, belong to the same community or not, which is the basic idea of this 
paper. 
Other equally important algorithms and methodologies such as Simulated Annealing 
[1], Information Diffusion Graph Clustering [20], External Optimization [1] and Gen-
erative Models [2] are not further discussed since they are out of the scope of this paper. 

3 Proposed Methodology 

3.1 Graph Statistical Analysis & Feature Enrichment 

This is the initial processing step where complementary to graph's statistical analysis, 
a predefined set of features is assigned to each graph’s node and edge accordingly. 
The statistical analysis regarding the original graph's topology structure is mandatory 
in order to ensure that the consequently extracted subgraph would be representative to 
the original. As a result, the average node degree, which is the average number of con-
nections per node, and the graph's degree distribution, which is the probability distri-
bution of node degrees over the whole network, need to be calculated. 
Regarding the feature enrichment process, a predefined set of features, separately per 
node and edge, is calculated and assigned accordingly. It is worth pointing out that the 
amount of information implied only by the edge and its adjacent nodes, might not be 
sufficient for proper prediction. Undeniably, each connection's properties are not only 
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affected by their direct adjacent nodes, but also substantially influenced by their sur-
rounding network structure. Hence, the current level predictors should be enriched with 
the values of all of the corresponding features up to a predefined depth k. 
Empirically, the features that correspond to depths greater than 5, do not add any es-
sential information since they tend to converge to graph's average values. On the con-
trary, the experimentation process, which is comprehensively analyzed in the following 
subsection, has practically proven that the community prediction is substantially bene-
fited with feature enrichment up to the 3rd connection level.  
The only node-oriented feature calculated is the number of k-depth neighbors. Since 
this algorithm’s ultimate scope is the edge-oriented prediction, all calculated feature’s 
values for each engaging node will be included as impeding edge’s additional infor-
mation. 
The edge-oriented prediction features are: 

• The loose similarity: regarding an imminent pair of nodes and each of their cor-
responding sets of distinct nodes up to depth k, this is the fraction of common 
over the union set’s total number of nodes. It should be underlined, that both 
sets include nodes having depth less or equal to k, since a common node might 
be at a different depth for each impeding node. 

• The dissimilarity: regarding an imminent pair of nodes and each of their corre-
sponding sets of distinct nodes up to depth k, this is the fraction of uncommon 
over the union set’s total number of nodes. 

• The edge balance: regarding an imminent pair of nodes and each of their corre-
sponding sets of distinct nodes up to depth k, this is the fraction of the absolute 
difference between the peers adjacent over the union set’s total number of nodes. 
This feature values ranges from 0 to 1, with values closer to 0 indicating a bal-
anced edge that have merely equal k-depth vertices on both sides. 

• The edge information: considering that the corresponding element on a graph's 
kth power adjacency matrix indicates the number of distinct k-length paths be-
tween the impeding vertices [21], this feature reveals the pair's interconnection 
strength. 

 
3.2 Representative Subgraph Extraction 

To properly train a community prediction model, the knowledge of Louvain algorithm’s 
behavior regarding the original graph is considered radical. Nevertheless, considering 
the size of real-world social graphs, it is obvious that even the execution of Louvain’s 
distributed implementation [23] can be considered prohibitive, since it should still need 
to repetitively check an immense number of candidates per iteration in order to merge 
the ones with the highest probability of forming a community. Thus, the extraction of 
a subgraph that retain the original graph's elementary topology properties is deemed 
fundamental and that is indeed the main purpose of this processing step.  
After thorough investigation, the Tiny Sample Extractor algorithm [17] has been se-
lected for its well efficiency and high scalability. Even if the extraction of a representa-
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tive subgraph yet remains controversial, since the real networks exhibit the degree dis-
tribution that follow the power law, the extracted subgraph's degree distribution re-
mains remarkably similar to the original graph’s, as clearly shown in Figure 1. 

 

Fig. 1. The exponent degree distribution on log-log scale for Email-Eu-Core [27] dataset. 

Having already calculated the original graph's degree distribution during the previous 
graph analysis processing step, the Tiny Sample Extractor [17] algorithm initially tries 
to estimate the original graph's exponent degree by the slope of the log-log Comple-
mentary Cumulative Distribution Function (CCDF). Bear in mind, that the CCDF func-
tion for a given degree value d, returns the fraction of nodes that have degree greater 
than d. Therefore, starting from a random node, 3 biased random walks are applied in 
turn. In the first couple of walks, the minimum and maximum exponent degree values 
are respectively defined. In the last one, the resulting subgraph is extracted. The bias 
included is used in terms of compensation due to the skewed distribution of nodes vis-
ited in the random walks performed.  
In the extreme case, where the original graph is that big, in such extent that is not even 
traversable, then both the previously described statistical analysis and the representative 
subgraph extraction step can be applied only to a smaller part of the original graph that 
would is considered as the graph’s “known” part. 
 
3.3 Community Prediction Model Training & Application 

The most suitable machine learning model for prediction, in terms of big data efficiency 
and interpretability, is undoubtedly the logistic regression model. Projecting its appli-
cation to community detection, the eventual scope of this model would be to predict 
whether a given edge connects nodes of the same community or not, depending on the 
aforementioned edge-oriented graph topology features. Despite the intrinsic accuracy 
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drawbacks of linear models, it is frequently proven that on real-worlds problems, they 
seem to be surprisingly competitive to non-linear thanks to their low variance. 
To appropriately train a logistic regression model, the classification response needs to 
be predefined at the training dataset. Among the copious proposed methods, the Lou-
vain’s one [4] is broadly considered [6] [20] as the state-of-the-art in disjoint commu-
nity detection, while its performance generally serves as the golden baseline. So, using 
the previously extracted subgraph, the distributed version of Louvain algorithm [23] is 
applied to classify all subgraph's edges as “community” or “non-community”. 
As it is broadly known, since Louvain's returned community structure is excessively 
affected not only by the traversal fashion (BFS, DFS) but also from the starting candi-
date that the execution starts, it would be prudent not only to re-execute it starting from 
different nodes but also to use different traversing methodologies. Even if this repetition 
might sound extremely demanding, the size of the extracted subgraph significantly re-
stricts the required calculations. 
The large number of descriptive topology features supposed to improve the model pre-
diction accuracy. However, it is very usual for some or many input features to either 
not be truly associated with the response or to be highly correlated with each other. The 
first case, also known as the "curse of dimensionality", refers to the situation where 
irrelevant features are included during training, while the second, also known as the 
"collinearity effect" occurs when two or more predictors are correlated to one another. 
Both effects lead to unnecessary complexity introduction and interpretability reduction. 
Consequently, during the training process the model should automatically proceed to 
feature selection by applying the L1 regularization penalty that excludes the redundant 
features and practically performs feature selection. 
Consequently, using the Spark MLlib’s [22] distributed libraries, a L1 regularized dis-
tributed logistic regression classifier is trained, using the previously extracted subgraph 
as training dataset and the enrichment features described on the first processing step as 
predictors. This model prediction is used to identify the original graph’s underlying 
community structure. 

4 Experiments 

To evaluate the performance of the proposed methodology, its predicted structure is 
compared against the communities returned from the distributed Louvain implementa-
tion [23]. For this experimentation procedure, the following widely used and thor-
oughly analyzed social graphs are evaluated. It is noteworthy that the first two [24] [25] 
datasets considered reference datasets, since they have historically attracted the scien-
tific interest and have exhaustively been analyzed. 

Table 1. Evaluated Datasets 

Dataset # of Nodes # of Edges Edges / Nodes 

Zachary karate club [24] 34 78 2.29 

Dolphins [25] 62 159 2.56 
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Hamster friendships [26] 1858 12534 6.75 

email-Eu-core [27] 1005 25571 25.44 

Bitcoin Alpha [28] 3738 24186 6.39 

Enron email [29] 36692 183831 5.01 

 
All the experiments were executed in an eight node Spark 2.2.0 cluster, with 4 GBs 
RAM and 1 virtual core per each virtual machine. Even if the processing performance 
is out of the scope of this comparison, it is worth mentioning that the proposed algo-
rithm’s processing time and memory requirements were constantly less, at least 25% 
and 55% respectively, comparing to the distributed Louvain implementation [23]. The 
performance improvement will certainly be substantially higher in bigger social graphs, 
since the proposed methodology’s complexity is linear and not of a higher polynomial 
degree as in Louvain’s case. 

In terms of completeness, all the elementary classification performance metrics have 
been calculated. Specifically: 

• The accuracy, which is the number of edges correctly classified as either "com-
munity" or "non-community" over all the predictions made. 

• The precision, which is the number of edges correctly classified as "non-com-
munity" over the total number of "non-community" predictions. 

• The recall/sensitivity, which is the fraction of edges correctly classified as "non-
community" over the total number of truly "non-community" edges. 

• The specificity, which is the fraction of edges correctly classified as "commu-
nity" over the total number of truly "community" edges. 

The community detection results regarding the aforementioned social graphs are pre-
sented in the following table, Table 2. 

Table 2. Classification Performance Metrics 

Dataset Accuracy Precision Recall Specificity 

Zachary karate club [24] 76.5% 100% 50% 100% 

Dolphins [25] 88.2% 91.7% 78.6% 95% 

Hamster friendships [26] 69.7% 72.3% 54.5% 82.5% 

email-Eu-core [27] 78.1% 81.8% 80.2% 75.2% 

Bitcoin Alpha [28] 89% 92.6% 14% 99.8% 

Enron email [29] 82% 73.2% 27.7% 97.2% 

 
As it is shown in Table 2 the proposed prediction model shows excellent overall pre-
diction performance with splendid statistics on precision and specificity. 
Specifically, the trained prediction model shows magnificently rational general accu-
racy that reach the 80.6% in the average case. In other words, the proposed algorithm 
remarkably identifies each edge’s class in general. 
Focusing on the outstanding specificity and precision statistics, it is more than obvious 
that the proposed implementation impressively identifies the “community” edges. This 
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way, the graph’s consistency is preserved by retaining social graph’s true connections 
and avoiding graph’s fragmentation. 
However, the mediocre recall statistics shows that the trained model misclassifies sev-
eral "non-community" edges as "community" ones. This will doubtlessly lead to a less 
fragmented community structure comparing to the one returned from original Lou-
vain’s algorithm. Actually, this can be graphically confirmed by the following figure, 
Figure 2 where the Email-Eu-Core [17] graph’s returned community structure is pre-
sented in both cases, having the red colored edges stand for the "non-community" edges 
and the blue ones for the "community". 
 

 
 
Fig. 2. Email-Eu-Core [17] Dataset Community Detection comparison 
 
As presented, the returned community structure is eminently similar in both cases. The 
"non-community" edges are apparently less in the proposed community prediction al-
gorithm situation. However, the use of more complex machine learning models, such 
as non-linear prediction ones, is supposed to catapult the recall statistics, since linear 
prediction models inherently focus on interpretability and not on prediction’s accuracy. 

5 Conclusions 

In this manuscript, a novel distributed community prediction methodology has been 
introduced based on Louvain’s [4] community detection algorithm. Unquestionably, 
the experimentation process confirmed the remarkable performance in identifying the 
subjacent community structure of social graphs comparing to Louvain’s original algo-
rithm. 
Despite the encouraging results, it is obvious that the methodology’s community pre-
diction can be substantially improved by: 

• Applying a graph cleansing processing step, where the outliers’ removal will be 
applied. 
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• Combing the collinear variables into a single predictor to tackle the multi-col-
linearity effect. 

• Applying less interpretable but more accurate models, e.g. non-linear prediction 
models. 

But all the above are left for future work. 
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