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Abstract. The combination of multiple classifiers can produce an op-
timal solution than relying on the single learner. However, it is difficult
to select the reliable learning algorithms when they have contrasted per-
formances. In this paper, the combination of the supervised learning
algorithms is proposed to provide the best decision. Our method trans-
forms a classifier score of training data into a reliable score. Then, a set
of reliable candidates is determined through static and dynamic selec-
tion. The experimental result of eight datasets shows that our algorithm
gives a better average accuracy score compared to the results of the other
ensemble methods and the base classifiers.
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1 Introduction

Nowadays, data is available from heterogeneous and dynamic web data sources
and their integration becomes a crucial problem [5]. Due to the increase of such
data sources and/or data Web Services, finding and ranking the suitable data
sources and/or data web services leads to deep investigations and significant
research efforts [12]. But from another viewpoint, processing the collected het-
erogeneous data remains a challenging problem especially for classification tasks.
The objective of multiple classifiers is to build a powerful solution to handle a
difficult pattern recognition problems [2]. There are two existing categories to
combine classifiers, i.e. weighting and meta-learning [11]. Both categories tend
to focus on the label prediction to build a decision than considering the class
probability. Predicted class probability can be used to represent the classifier’s
confidence score as it is applied in weighted voting [9]. However, the quality of
the weighted voting depends on the performance of its base classifiers. Moreover,
each supervised learning has its own method to provide a confidence score and
it does not always in probability form. For these reasons, we extend the previous
study on the transformation of confidence score [15]. In the context of ensem-
ble learning, each base learner has its own performance. The reliability score of
each classifier within the binary problem is considered to handle the contrasted
performances and to propose a better prediction. It is important to mention
that prediction score also represents algorithm’s level of certainty for each in-
stance of a dataset, so that the composition of base classifiers can be changed
dynamically based on their confidence level. We propose a new weighted vot-
ing approach that adapts to varied data characteristics. The reliability aspect
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is tested by adding spammers to base classifiers. Detailed explanation of this
paper is organized as follows: section 2 reviews the previous works on supervised
learning and ensemble methods; the proposed algorithm is described in section
3; section 4 is dedicated to the experiment setup, result, and discussion; and
concluding remarks are given in section 5.

2 Related Work

In this section, a brief description about several supervised learning approaches
is provided. These approaches are used as base classifiers. Then, different com-
binations of ensemble method are discussed as previous works.

2.1 Supervised Learning as Base Classifiers

There are five approaches to represent a knowledge in supervised learning, Bayesian
classifier, decision tree, rule, function, and lazy classifier [14]. Bayesian is classi-
fication method developed from Bayes’ rule of conditional probability. Decision
tree is a "divide-and-conquer" approach in learning problem from a set of inde-
pendent instances with attribute as its node. Rule has similar representation as
decision tree, although several preconditions are applied to determine its conclu-
sion. Function learner consists of various algorithms that can be written down
as mathematical equations in a reasonably natural way. Lazy works by delaying
the classification until all the training data is collected and a request is made. In
addition to the above algorithms, there is a predictor called spammers who label
a class randomly, which are often found in the case of crowds [10]. One algo-
rithm of each category and a group of spammers are selected as ensemble input
to ensure the diversity of base classifier, which is further discussed in section 4.

2.2 Confidence Score in Ensemble Learning

Voting, Stacked Generalization (Stacking), and Multi-Scheme are some examples
of combination method that are able to handle different base classifiers as the
inputs, while Random Forest, Bootstrap aggregating (Bagging), and Boosting
combine several models from the same algorithm [8]. Majority voting (MV)
is a popular combination method compared to the others [16]. The quality of
MV depends on the performance of base classifiers. In order to make a robust
voting, weighted voting (WMV) can be considered as a potential method [13].
Confidence score can be used as weight parameter of voting. This method is
conducted by collecting confidence scores from a set of classifiers and take the
average of each class. The highest value determines which label belongs to the
tested data. Our work enhances the utilization of confidence score to build a
reliability diagram. Our proposed method is compared to MV, WMV, Stacking,
and Multi-Scheme, since several approaches of classifiers are used as the basis.
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3 Dynamic Reliable Voting Algorithm

In this section, we specify our problem and basic notation used in binary clas-
sification. We also provide an overview of reliability diagram according to the
previous literatures. Then, the workflow of Dynamic Reliable Voting (DRV) al-
gorithm is proposed. As shown in Figure 1, our approach can be summarized
into three steps: (a) transforming confidence score into reliability diagram, (b)
removing spammer or weak classifier by static threshold, (c) selecting the best
combination decision for each bin. X-axis represents the confidence score, while
Y-axis is the value of empirical class membership probability. Four different
points in Figure 1a describe the diversity of learning algorithms. Static thresh-
olds are illustrated as blue and purple dash lines (see Fig. 1b), and dynamic
threshold is drawn in a solid blue-orange line (see Fig. 1c).
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(a) Transforming confidence score 
into reliability diagram

(b) Static classifier selection (c) Dynamic classifier selection

Fig. 1. The framework of the proposed algorithm

3.1 Problem Formulation and Modeling

The training process of ensemble learning is started by a prediction of a set
of instances X = {x1, x2, ..., xi, ..., xN} by T base classifiers. Then, the deci-
sions from multiple models are combined to improve the overall performance.
Each decision of classifier t consists of an independent label prediction y and
its confidence score s. This ensemble decisions can be noted as follow: D ={
(y1i , s
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such that yti ∈ {0, 1}, sti ∈ [0, 1],
and sti ∈ IR. A confidence score needs to be normalized if s ∈ [a, b], where a < b,
a 6= 0 or b 6= 1, a ∈ IR, and b ∈ IR. The normalization can be expressed as follow:
s′ = s−a

b−a . In a case where a and b are unknown, Platt scaling [6] can be applied
to adjust the confidence score range.

Reliability diagram is firstly introduced to display forecast probability at
Chicago [4]. This probability and observed relative frequency are drawn into
X-axis and Y-axis diagram, respectively. Later, this representation is applied in
classification by converting a confidence score into empirical class membership
probability. This probability can be denoted as P (c|s), where c ∈ {0, 1} and c
is a class label. This diagram is built in training step because it requires the
true label of each instance, which is denoted as zi and zi = {0, 1}. In order
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to reflect the distribution of s, confidence score is converted according to the
class c, which is s(c = 1)ti = 1 − s(c = 0)ti for binary case. Then, a set of
s(c = 1) is split into several bins in an interval v. Let V be a set of interval, then
V = {vj |vj+1 − vj = vj − vj−1, vj ∈ IR, vj ∈ [0, 1 +∆v[}. sti will be categorized
in interval j when vj ≤ sti < vj+1. P (c|s) is defined as the number of true label
corresponded to c divided by the number of all prediction in interval j. The
result of the distribution is represented in Figure 1a.

3.2 Classifier Selection

Once we get the information of reliability representation for each classifier, a
threshold is defined to filter reliable classifiers, which is denoted as RC. The
selection process contains two step, static and dynamic selection. In static phase,
the average probability estimate P (c|sti) and the training accuracy At of each
classifier are calculated, which is formulated by equation 1. A set of reliable
candidate RC is determined by choosing algorithms that satisfy the threshold
ε1 and ε2, or have an accuracy At better than the average accuracy A. The
purpose of this step is to eliminate a probable spammer in the training step,
since the P (c|sti) of spammer lies in the area of uncertainty (from 0.4 to 0.6).

RC =
{
t ∈ T |

(
P (c|st1i) ≤ ε1 ∧ P (c|st2i) ≥ ε2

)
∨
(
At > A

)}
(1)

where st1i = sti ≤ 0.5, st2i = sti > 0.5, ε1 ∈ IR, ε1 ∈ [0, 0.5], ε2 ∈ IR, and ε2 ∈
[0.5, 1].

Fig. 2. An example of the reliabil-
ity diagram of six classifiers with
the possible thresholds of λ1 and
λ2 by the precision 0.1.

Dynamic selection process is started by
searching the optimal values of thresholds λ =
{λ1, λ2}, where λ ∈ IR and λ ∈ [−0.5, 0.5].
This selection is applied in the testing step.
A classifier will be excluded from RC if the
confidence score is in the range of [0, 0.5] and
its probability estimate is higher than the bin
threshold, while a classifier which has a con-
fidence score between 0.51 to 1 will be elim-
inated from RC if its probability estimate is
less than the bin threshold (see eq. 2). The fi-
nal reliable classifier RCf is defined as a sub-
set of RC, which contains a set classifiers that
pass the threshold. This selection is called a
dynamic process because of the value of confidence score for each instance sti is
different and independent, so the number of RCf is also different for each test
datum.

RCf =

{
P (c|sti) ≤ ((vj + vj + 1)/2)− λ1 if sti ≤ 0.5
P (c|sti) ≥ ((vj + vj + 1)/2)− λ2 otherwise (2)
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There is no efficient way to define the values of ε1, ε2, λ1, and λ2 except with
an iterative process. The time complexity of the iterative loop C depends on its
precision p, which can be written as follows:

C =
(0.6− 0.4

p

)2(0.5− (−0.5)
p

)2
(3)

where C ∈ IR, p ∈ IR and p ∈ [0, 1]. 0.6 and 0.4 are the highest and lowest limit of
uncertainty respectively, while 0.5 and -0.5 are the the highest and lowest limit
of λ respectively. The representation of the possible values of λ is illustrated
in Figure 2. C can be optimized by limiting the values of λ1 and λ2 so that
0 < ((vj + vj + 1)/2)− λ1 ≤ 0.5 and 0.5 < ((vj + vj + 1)/2)− λ2 ≤ 1.

Our proposed method can be explained through algorithm 1. Line 1 describes
the instancesX that consists ofXtrain andXtest, the ground truth of the training
data Ztrain, base classifiers T , and a set if the interval limit V . The training
step of base classifiers is processed in lines 2-4. Reliability transformation and
static selection are conducted in lines 5-16. Then, lines 17-19 determine the
optimal thresholds of λ1 and λ2. After defining the reliable candidate RC and
the thresholds, a set of reliable candidate RCf is extracted from the process in
line 20 - 23. As it is shown in the line 20, the combination of RCf depends on the
characteristic of each instance x, hence it is called dynamic selection. Finally, a
majority voting is applied in line 23 to produce a set of recommended decision.

Algorithm 1 Dynamic Reliable Voting
1: Input: X, Ztrain, T , interval limit V
2: for t ∈ T do
3: Build classifier t= f(Xtrain, Ztrain)
4: Calculate the accuracy A
5: Amax ← 0
6: for ε1 ∈ [0, 0.5] and ε2 ∈ [0.5, 1] do
7: RC ← ∅
8: for t ∈ T do
9: Convert st into stc where c = 1
10: Regroup stc based on V and calculate |yt|v
11: Calculate |z = 1|v for each bin
12: P (1|s)v = |z=1|v

|yt|v

13: if
(
P (c|st1i) ≤ ε1 ∧ P (c|st2i) ≥ ε2

)
∨
(
At > A

)
then

14: t ∈ RC
15: if A > Amax then
16: Save the current ε1 and ε2
17: while λ1 and λ2 are not optimal do
18: Define the new values of λ1 and λ2

19: Evaluate ADRV

20: for x ∈ Xtest do
21: for t ∈ RC do
22: Determine RCf by the help of the equation 2.
23: MajorityV ote(RCf )
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4 Experimentation Results and Discussion

To evaluate our algorithm, a series of experiments were performed on eight dif-
ferent datasets. Next section discusses the dataset used, the protocol, and then
results are exposed.

4.1 Data Description and Protocol

Table 1. Dataset information.

ID Dataset X Att. IRNum. Cat.
1 BCWD 286 0 9 2.365
2 Vertebral 310 6 0 2.1
3 Ionosphere 351 33 0 1.786
4 Musk 476 166 0 1.3
5 Diabetes 768 8 0 1.866
6 Spambase 4601 57 0 1.538
7 Phising 11055 0 30 1.257
8 EES 14980 14 0 1.228

Table 1 provides the infor-
mation of the dataset that
were used in this experi-
ments. Eight datasets from
UCI repository [3] were used:
Breast Cancer Wisconsin Di-
agnostic (BCWD), Vertebral
Column (Vertebral), Iono-
sphere, Musk (version 1),
Indians Diabetes (Diabetes),
Spambase, PhishingWebsites,
and EEG Eye State (EES).
These data are selected in or-
der to study the behavior of our algorithm to handle from BCWD (286 in-
stances and 10 attributes) to EES data (14980 instances and 15 attributes). The
attributes vary between numeric (integer and real) and categorical. Since our
focus is to study the reliability aspect of various expertise of base predictors, we
avoid to use imbalanced dataset so that the performances of the algorithms are
not distracted by these conditions. Class imbalance problems can be measured
by the imbalance ratio (IR), defined as the ratio of the number of instances in
the majority class to the number of examples in the minority class [1]. Balanced
data are indicated in Table 1 by the IR score that is close to the value 1. The
experiments were conducted by train-test evaluation and the data were split into
67% of training set and 33% of testing set.

Five base classifiers were applied based on different knowledge representations
to obtain diversity among the models combination. We used Weka1 library to
build the models of C4.5 (Decision Tree), Naive Bayes (Bayesian), JRip (Rule),
Sequential minimal optimization (Function), and k-nearest neighbors (Lazy).
Then, we evaluated our proposed algorithm with MV, WMV [9], Stacking, and
Multi-Scheme (MS) by accuracy score. The parameters of all algorithms were
not changed and we considered the default setting of Weka. Ensemble algorithms
were tested in a condition where the base classifiers do not contain a spammer
as the first experiment. Then, 25 spammers were added to the base input as
second attempt. This second scenario where random predictors are higher than
the original classifiers is important to learn the reliability aspect of combination
methods [7]. Both experiments were conducted in Java. We set the precision of
the threshold p to 0.1 with the interval of the bin equals to 0.1.
1 http://www.cs.waikato.ac.nz/ml/weka/
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4.2 Results and Discussion

Table 2. Accuracy comparison between base classifiers and ensemble methods.

ID Data C4.5 NB JRip SMO kNN MV WMV DRV Stacking MS
1 0.663 0.642 0.653 0.663 0.663 0.653 0.674 0.663 0.642 0.642
2 0.786 0.748 0.786 0.796 0.806 0.757 0.757 0.777 0.777 0.748
3 0.897 0.906 0.889 0.906 0.880 0.923 0.923 0.923 0.889 0.880
4 0.823 0.816 0.709 0.816 0.835 0.835 0.835 0.842 0.816 0.816
5 0.711 0.719 0.703 0.699 0.727 0.797 0.770 0.785 0.695 0.789
6 0.907 0.898 0.916 0.937 0.926 0.942 0.943 0.943 0.911 0.937
7 0.943 0.927 0.941 0.940 0.966 0.966 0.957 0.966 0.956 0.966
8 0.779 0.671 0.713 0.727 0.796 0.796 0.766 0.796 0.770 0.796

mean 0.814 0.791 0.789 0.811 0.825 0.834 0.828 0.837 0.807 0.822
std dev. 0.098 0.112 0.112 0.109 0.100 0.106 0.103 0.103 0.108 0.105

Table 2 shows the accuracy comparison between base classifiers and ensemble
methods. The ID column represents the sequence number of dataset according to
the Table 1. The best algorithm is defined by an algorithm that has the highest
score of accuracy and the smallest value of standard deviation. kNN shows the
best result than the other learners on the side of base classifier. In another
way, C4.5 provides the smallest standard deviation among the others. Four out
of five ensemble methods exceed the average scores of all single classifiers. This
scenario confirms the benefit of ensemble methods to give a better accuracy score
than relying on a single classifier. Three voting based algorithms (MV, WMV,
DRV) show a superior average results compared to the results of Stacking, and
MS. It is normal to see that voting based methods have good results since the
base classifiers scores are quite good. WMV and DRV have the same deviation
score even though the accuracy score of each dataset is different. If we consider
the accuracy score of ensemble methods individually, DRV provides the highest
accuracy for six dataset.

Table 3. Accuracy comparison of ensemble methods after 25 spammers were added.

ID Data MV WMV DRV Stacking MS
1 0.6 0.653 0.663 0.642 0.642
2 0.657 0.755 0.777 0.748 0.777
3 0.769 0.376 0.88 0.863 0.88
4 0.747 0.589 0.829 0.854 0.816
5 0.664 0.641 0.734 0.664 0.711
6 0.799 0.605 0.924 0.918 0.937
7 0.815 0.46 0.966 0.955 0.966
8 0.673 0.559 0.796 0.7 0.796

mean 0.716 0.580 0.821 0.793 0.816
std dev. 0.077 0.118 0.100 0.120 0.110
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In contrast to the results of the first experiment, Table 3 provides a sig-
nificant decreasing values on MV and WMV after 25 spammers were added.
DRV gives the best result, followed by MS, Stacking, MV, and WMV respec-
tively. MV tends to give similar accuracy score for eight dataset indicated by
the smallest standard deviation score, while the accuracy scores of WMV are
the lowest among the others on six data. It means that the decision of MV and
WMV are distracted by the presence of the spammers, while DRV is able to
select the best combination and to eliminate the weak predictions. The ability
of ensemble methods to maintain the accuracy score is illustrated in Figure 3.
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Fig. 3. Accuracy distance before
and after 25 spammers were added
for eight dataset (smaller value is
better).

X-axis shows the sequence of the dataset,
while Y-axis shows the absolute accuracy
distance between the first and second trials
(lower value is better). This score is formu-
lated as ∆A = |A1 − A2|, where A1 is the
accuracy value of the first experiment and A2

is the accuracy score in the presence of spam-
mers. The distance scores of MV are higher
than DRV, Stacking, and MS on all dataset,
while WMV shows the highest accuracy in-
stability. This measure allows us to see the af-
fect of random predictors to the popular vot-
ing techniques. On the other hand, DRV im-
proves this drawback by considering predictor
reliability aspect, indicated by the lower score
similar to MS and Stacking.
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Figure 4 illustrates the computation time of five ensemble methods during the
training phase. It consists of two conditions where five base classifiers were used
as the input (see Fig. 4a) and after the spammers were added (see Fig. 4b). X-
axis represents eight data used and Y-axis indicates the number of second needed
in a log scale. The values written in the diagram describe the lowest and highest
time in each dataset. The performances of MV and WMV were computed from
the sum of training time of base classifiers, while the score of DRV was obtained
from the MV and the reliability diagram building time (see Eq. 3). Due to the
same complexity, MV line is not visible in the figure and is overwritten by the
WMV line. According to Figure 4a, all ensemble methods require similar time
to train when the number of instances is less than 500. It also shows that the
number of instances generally influences the computation time. Although, the
performances in BCWD and Diabetes show the opposite results due to their
specific characteristics. The superiority of voting based methods compared to
Stacking and MS can be seen in Diabetes, Spambase, Phising and EES. Similar
results are also presented in Figure 4b. Stacking and MS computed Vertebral,
Ionosphere, and Musk faster than the others. In contrary, the deviation between
their running time and voting algorithms for the second setup are greater than
the first experiments. MV, WMV, and DRV do not have varied results because
the spammers do not need significant time to calculate. Based on the comparison
of the first and the second figures, the number of base classifiers clearly affects
the computation time during the training phase.

5 Conclusion

A diverse group of classifiers are likely to make better decisions comparing to a
single learner. However, considering ensemble learning context, each classifier has
its own performance. Hence, reliability is a crucial problem when such classifiers
have contrasted performances. We propose dynamic reliable voting to solve the
problem on how to select the best combination of reliable classifiers and how
to handle uncertain labelers, i.e. spammer. The confidence score of prediction is
used as main information to produce a reliability diagram of each algorithm and
several filters are set to select the best candidates. Five classifiers are chosen as
the base models and the voting combination of their predictions for each datum
is changed dynamically according to the past experience of their probability
estimates. The result shows that our proposed algorithm provides a reliable
performance against the previous approaches on eight datasets before and after
the presence of spammers. In future work, we will improve our approach to adapt
uncertainty and imbalanced class. We will also enhance our algorithm to handle
multi-class and multi-label classification.
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