
HAL Id: hal-02321761
https://inria.hal.science/hal-02321761

Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Improved Test Solutions for COTS-Based Systems in
Space Applications

Riccardo Cantoro, Sara Carbonara, Andrea Florida, Ernesto Sanchez, Matteo
Sonza Reorda, Jan-Gerd Mess

To cite this version:
Riccardo Cantoro, Sara Carbonara, Andrea Florida, Ernesto Sanchez, Matteo Sonza Reorda, et al..
Improved Test Solutions for COTS-Based Systems in Space Applications. 26th IFIP/IEEE Interna-
tional Conference on Very Large Scale Integration - System on a Chip (VLSI-SoC), Oct 2018, Verona,
Italy. pp.187-206, �10.1007/978-3-030-23425-6_10�. �hal-02321761�

https://inria.hal.science/hal-02321761
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Improved test solutions for COTS-based systems in space

applications

Riccardo Cantoro1, Sara Carbonara1, Andrea Florida1, Ernesto Sanchez1,

Matteo Sonza Reorda1 and Jan-Gerd Mess2

1Politecnico di Torino, Torino, Italy
{riccardo.cantoro,sara.carbonara,andrea.floridia,

ernesto.sanchez, matteo.sonzareorda}@polito.it
2DLR, Bremen, Germany

Jan-gerd.Mess@dlr.de

Abstract. In order to widen the spectrum of available products, companies in-

volved in space electronics are exploring the possible adoption of COTS com-

ponents instead of space-qualified ones. However, the adoption of COTS devic-

es and boards requires suitable solutions able to guarantee the same level of de-

pendability. A mix of different solutions can be considered for this purpose.

Test techniques play a major role, since they must guarantee that a high per-

centage of permanent faults can be detected (both at the end of the manufactur-

ing and during the mission) while matching several constraints in terms of sys-

tem accessibility and hardware complexity. In this paper we focus on the test of

the electronics used within launchers, and outline an approach based on Soft-

ware-based Self-test. The proposed solutions are currently being adopted within

the MaMMoTH-Up project, targeting the development of an innovative COTS-

based system to be used on the Ariane5 launcher. The approach aims at testing

both the OR1200 processor and the different peripheral modules adopted in the

system, while providing new techniques for the identification of safe faults. The

results show the effectiveness and current limitations of the method, also in-

cluding a comparison between functional and structural test approaches.

1 Introduction

Space applications are known to be extremely challenging from a dependability

point of view, since they are supposed to work in a harsh environment (not only in

terms of radiation but also from the point of view of stresses coming from extreme

temperature, pression, vibration, etc.) with strong requirements in terms of reliability.

In order to reduce cost and especially to increase device availability, there is a trend

towards the adoption of Commercial Off-The-Shelf (COTS) components instead of

the space qualified ones. Obviously, this trend requires evaluating the costs and ef-

forts for guaranteeing that the resulting reliability still reaches the target threshold [2].

A special niche within the general domain of space applications relates to launchers.

In this case, the mission time is more reduced, while the radiation environment corre-

sponds to all the layers from ground up to the geostationary orbit (GEO). The MaM-

mailto:matteo.sonzareorda%7d@polito.it
mailto:Jan-gerd.Mess@dlr.de

MoTH-Up project [3], funded by the European Commission within the frame of the

Horizon 2020 research and innovation program, aims at developing and evaluating a

COTS-based system to be used in the telemetry unit of the Ariane5 (A5) launcher.

More in details, the MaMMoTH-Up system is composed of several boards targeting

data acquisition and processing, power management, and data transmission. All these

boards use COTS components, including a flash-based FPGA where several IPs are

mapped, including an OpenRISC1200 (OR1200) processor [4] whose design has been

properly modified to harden it with respect to radiation effects. The adoption of such

processor allows the MaMMoTH-Up system to perform significantly more powerful

functions than the system it is going to substitute, e.g., in terms of data analysis and

compression. In order to match the strict reliability targets of A5, the MaMMoTH-Up

system must be protected not only from the radiation effects, which are mainly re-

sponsible for Latch-up and transient fault effects, but also from possible permanent

faults arising during both the manufacturing process and the following system life. To

target permanent faults several test steps have been identified, which are performed

during and at the end of the manufacturing process, at the end of the assembly step,

and after the system is mounted in the final position. Some test is also performed

during the mission. The fault coverage which can be achieved by these test steps is

important, since it directly impacts the achieved reliability level. To estimate the Fault

Rate of the different components, we followed the FIDES guidelines [5], taking into

account the stress conditions which are applied to the system before and during the

mission. The Failure Rate is then derived by applying an FMECA (Failure Mode,

Effects, and Criticality Analysis) procedure [11] which identifies the fault effects (and

their criticality) and takes into account the timing and effectiveness (i.e., the fault

coverage) of the different test steps. Remarkably, some of them have to be performed

while the system is already mounted in its final position. Hence, they must basically

correspond to a self-test, during which some command is sent to the system, the sys-

tem performs a test of the hardware, and then results are sent outside. In the previous

versions of the target system, which was based on much simpler space qualified

hardware, a functional test was used for this purpose, where the system was asked to

perform some basic operations, and a check on the computed results was sufficient to

identify possible faults. Due to the much higher complexity of the MaMMoTH-Up

system, this approach can hardly guarantee the achievement of the required fault cov-

erage, especially on the OR1200 core. Hence, a structural test has been developed,

based on a set of self-test procedures in charge of checking the possible presence of

permanent faults affecting the processor core. The key difference between the two

approaches lies in the fact that the functional one checks whether the system is able to

deliver the expected functions, while the structural one identifies first some fault

model related to the implementation of the underlying circuit, and then tries to detect

the resulting faults. A major advantage of the structural approach clearly lies in the

fact that the adopted fault coverage metric can be more deterministically and quantita-

tively evaluated than for the functional approach. Moreover, while for simple systems

the functional approach (if suitably implemented) can achieve a sufficient testing

quality, for more complex systems (e.g., including a CPU, some memory, and periph-

eral modules) the same is not true, as we will experimentally show in the paper. When

dealing with a CPU-based system, the self-test procedures implementing the structural

approach follow the Software-based Self-test (SBST) paradigm [6]. Their code is

integrated in the application software and, when activated, forces the processor to

execute a proper sequence of instructions. The produced results are compacted into a

signature which is returned to the calling program, which can thus check the possible

presence of a fault by comparing it with the expected one.

The contribution of this paper lies first in describing a case of study (corresponding

to a subsystem including the OR1200 core, some memories, and an I/O peripheral)

where the characteristics of a functional and structural approach can be compared (not

only in terms of achieved fault coverage, but also of memory footprint and duration).

Secondly, it describes a scenario, where SBST can be effectively adopted, matching

the several requirements of the qualification, acceptance and in-fly test of a space

application. Finally, the target system is expected to perform a well-defined set of

functions and in a very specific configuration (e.g., in terms of memory address

space). Therefore, the FMECA is in charge of identifying which faults within the

considered cores can produce any failure, and which faults will never be able to do so,

e.g., because they relate to some hardware part which is not used by the application.

While a few techniques have been proposed to automatically identify some categories

of untestable faults, we focus here on those faults called Safe faults. These faults can-

not produce any failure due to the specific (hardware or software) constraints the sys-

tem matches during its normal operation. The paper shows that the number of safe

faults is far from being negligible and uses an improved version of the method pro-

posed in [7] to partly automate their identification, both within the CPU and the serial

interface core. Due to the impact of the considered scenario, the fault coverage results

reported in this paper are not directly comparable with those in [8], which focus on

end-of-manufacturing test, although they refer to the same processor. A preliminary

version of this paper appeared in [23], where only faults within the CPU core were

considered, while in this paper we extend the analysis to an I/O peripheral core, too.

The paper is organized as follows. Section 2 summarizes the main characteristics of

the MaMMoTH-Up system, both in terms of underlying hardware and performed

functions. Section 3 compares the functional and structural approaches, while Section

4 focuses on the identification of safe faults. Section 5 finally draws some conclu-

sions.

2 The MAMMOTH-UP System

2.1 General architecture and functions

The MaMMoTH-Up system shall provide an experiment and data acquisition op-

portunity on board the Ariane5 upper stage [3]. It is designed to offer the following

functionalities:

1. Acquire measurement data

2. Configure and control the experiment

3. Provide a power supply

4. Perform self-testing and fault management.

To meet these functional requirements, a COTS-based system including one experi-

ment controller (TCM-S), two computing nodes (OBC-S), two data acquisition boards

(AQB) and a power supply unit (PSU) was developed. The system is housed in a

pressurized and foam-cushioned container to protect it from the harsh environment on

board the launch vehicle. In order to collect sensor data and communicate with the

Ariane5 upper stage, the system offers analogue acquisition channels for temperature,

acceleration, vibration, shock as well as a CAN-interface for digital sensors and pres-

sure sensors and a RS422 interface for data down-link. Synchronization with the

launcher timeline and direct status reporting is done using three closed-current loops

as inputs and eight discrete output pins. During the mission, the system steps through

a number of different acquisition schemes according to the specific mission profile.

An acquisition scheme determines which sensors are activated at which sampling

rates up to 10 kHz. The data is collected and preprocessed by the computing nodes

and then sent to the experiment controller using the internal SpaceWire bus. On the

experiment controller, the data is analyzed, compressed and stored on a flash-based

mass memory before it is sent to the Ariane5 and downlinked using the launcher’s

telemetry chain. The complete data flow including its allocation to the different

boards is depicted in Figure 1.

Fig. 1. Data Flow

Each OBC-S board as well as the TCM-S board include a flash-based IGLOO2

FPGA. Each of these is holding an OR1200 soft core as well as accompanying IP

cores, e.g. for SpaceWire communication amongst the boards. The required software

images (three updatable images and three write-protected golden images) are kept in a

two gigabyte NAND-flash memory that is implemented on each board. For data stor-

age, the TCM-S is equipped with an additional sixteen gigabyte NAND-flash. The

data acquisition is performed by a custom IP core that samples ADC channels and

returns a block of samples to the software. Preprocessing, analysis and compression

are then performed by software run by the OR1200 processors. The data compression

algorithm consists of two steps whose computational load is divided between the

OBC-S and the TCM-S. The OBC-S boards perform a wavelet transform. The trans-

formed data is then sent to the TCM-S. From the received wavelet transform, certain

characteristics of the underlying data (e.g., value range and maximum gradient) are

deduced. The transformed coefficients are then encoded into an embedded bitstream.

According to the deduced characteristics of a given block, a certain number of bytes

in the downstream are allocated for this bitstream. All other bits are cut to save down-

link budget. The complete compression scheme is described in [9]. From a reliability

point of view, although the OR1200 processors on the FPGAs and especially their

memories and registers are hardened by duplication or triplication of some of the

underlying flip-flops, there is no redundancy at the unit or system level. If a detected

failure is not permanent, the system is able to recover by performing a software reset

or power-cycle on the affected board. Should this not be successful because the fail-

ure proves to be permanent, the board has to be deactivated, inevitably resulting in a

loss of the connected sensor channels. In this case, the MaMMoTH-Up system fol-

lows the concept of graceful degradation: although parts of the sensors cannot be

acquired anymore, the remaining transfer budget can be reallocated to use it as effi-

ciently as possible.

2.2 The OR1200 processor

The OR1200 is the only major RTL implementation of the OR1K architecture

spec. The OR1200 is a 32-bit scalar RISC with Harvard micro-architecture and 5

stage integer pipeline. The OR1200 core is mainly intended for embedded, portable

and networking applications. Fig. 2 shows its architecture.

Fig. 2. OR1200 CPU Architecture

2.3 The UART core

The UART 16550 core provides serial communication capabilities, which allow

communication with a modem or other external devices, using a serial cable. The

peripheral core is designed to be maximally compatible with the industry standard

National Semiconductors’ 16550A device. It offers an 8-bit-wide Wishbone interface,

FIFO only operation and a debug interface. Figure 3 depicts the most relevant mod-

ules composing it. FIFOs are not explicitly represented since they are deeply embed-

ded in the transmitter and receiver logic.

Fig. 3. UART 16550 internal architecture.

3 Comparing the functional and the structural approaches

3.1 Background

In the frame of the actions to evaluate the reliability of the MaMMoTH-Up system

and to guarantee that the target figures are matched, a key role is played by the test

solutions adopted to identify possible permanent faults. These solutions are activated

in different phases of the product life time, since the qualification step until the opera-

tional phase (i.e., during the launch). We underline that these test solutions should be

usable and effective when applied in a scenario, where the target modules (e.g., the

FPGA implementing the processor) have been already mounted on their boards, and

each board has been included in the final box corresponding to the telemetry unit,

which has been installed in its final location within the launcher. Hence, the whole

test should be performed with very limited support from the outside, and should be

minimally invasive with respect to the target system. In order to evaluate the effec-

tiveness of these test solutions and to use meaningful fault coverage figures during the

reliability evaluation process, a metric must first be identified. Traditionally, a func-

tional metric is adopted. Since the early specification phases, the list of functions that

the system must support is defined. For each of them, a functional test is then devel-

oped, aimed at verifying that the target function is correctly performed by the system.

Hence, in this scenario a qualitative metric is adopted, which guarantees that the sys-

tem is not affected by any fault if all the functional tests for all the functions are suc-

cessful. When moving to more complex systems including COTS components, a dif-

ferent metric can be considered, which first identifies a structural fault model which is

supposed to represent the possible permanent faults in the target device, and then

computes the percentage of structural faults which are detected by the considered test

solution. One of the goals of the MaMMoTH-Up project is to define new procedures

for reliability evaluation, able to match the characteristics of COTS-based systems.

Given their complexity, the project partners decided to assess the effectiveness of the

functional approach when a structural fault model was adopted. Since the detailed

information about the structure of the adopted FPGA were missed, we decided to

perform such an assessment resorting to the popular stuck-at fault model, computing

first the fault coverage achieved by the functional test when the CPU circuitry

mapped on the FPGA was synthesized with a generic gate-level library. This ap-

proach is partly sup-ported by the results of [20], showing that the stuck-at fault mod-

el, when applied to FPGAs, provides Fault Coverage results which are not far from

those which can be obtained resorting to more accurate fault models, based on the

knowledge of the internal implementation of the device (which is not available in our

case). Moreover, we developed a set of SBST test procedures targeting the stuck-at

faults inside the system. These procedures (that we cumulatively call structural test in

the following) are integrated within the application software of the system and can be

easily launched from the outside or by the system itself when required. Each of them

returns a signature compacting the results produced by the test code, which can be

compared with the expected one. A mismatch means that a permanent fault exists in

the CPU core. In the following, we first report some information and figures (Table 1

and Table 2) about the functional test and the structural one (based on SBST proce-

dures) we developed for both the OR1200 processor and the UART peripheral core.

We will then report the experimental results aimed at comparing the effectiveness of

the two test approaches (Table 3 and Table 4).

3.2 The functional test

The functional test for the OR1200 processor is composed of a compression algo-

rithm that imposes a high workload on the arithmetic units of the processors. It is

essential that the processor is fault-free, because even small changes in single bits of

the output stream can result in a completely different set of data after decompression.

Since it is impossible to predict the exact sensor readings, the processor cannot be

checked using live data. Instead, precompiled blocks of sensor data together with

expected values for the resulting transformation coefficients and bitstream are used.

By comparing the output of the compression algorithm with the expected values, it is

checked whether the calculations can be executed as planned. However, in case of an

error, no diagnostic conclusions about the affected units within the processor can be

drawn. The second line of Table 1 reports the size and duration of the functional test

in terms of amount of memory to store the code and test time execution.

Table 1. Characteristics of the test programs for the OR1200.

 Size [Byte]
Duration

[#clock cycles]

Functional test 17,360 379,815

Structural test 25,676 74,761

genpc-if 2,896 41,635

ctrl 980 980

rf 10,076 7,281

opmux 544 508

alu 3,184 10,497

multmac 2,996 9,962

lsu 4,244 3,224

wbmux 756 674

Concerning the UART core, the functional test is in charge of verifying whether

the peripheral functionalities are fully operational. It is made of three main parts:

first, the peripheral is configured, selecting the appropriate operational mode and

BAUD rate; then, a sequence of characters is transmitted out; finally, at the end of the

transmission, it reads a sequence of characters. Such sequence is compared with the

expected one, checking whether they match or not. It is important to underline that the

initial configuration of the peripheral should reflect the one used in field. As for the

functional test of the OR1200 processor, in Table 2 the most relevant characteristics

of the functional test are shown.

Table 2. Characteristics of the test programs for the UART core.

 Size [Byte]
Duration

[#clock cycles]

Functional test 212 17,760

Structural test 2,996 651,687

3.3 The structural test

The structural test for the OR1200 core is based on a suite of test procedures that

target the different modules of the processor: program counter generator (genpc),

instruction fetch (if), control unit (ctrl), register file (rf), operand muxes (opmux),

arithmetic logic unit (alu), multiply and accumulate unit (multmac), load and store

unit (lsu) and write back multiplexer (wbmux). Each test program executes a sequence

of instructions aimed at stimulating as much as possible the target unit. At the end of

the test, a signature is stored in memory: if the produced result is different than the

expected one, it means that the CPU module is affected by a fault. All the test proce-

dures have been written manually following the guidelines provided in [8]. In the

following, we provide the most important characteristics of every one of the devel-

oped test programs.

The genpc and if modules are tested together using a single program. Any type of

instruction from the Instruction Set must be tested. The program is written in such a

way, that each type of instruction is followed by an unconditional jump to a procedure

to the bottom of the code that updates the value of the signature and then it jumps

back again to the top. In this way, the program counter adder inside the genpc is well

tested, since it continuously jumps backward and forward, so performing addi-tions

and subtractions. In order to test the ctrl module, it is necessary to give it as inputs all

the possible instructions from the Instruction Set: arithmetic, logic, branch, jump,

compare, multiply, load and store, immediate or register-to-register. Since the ctrl

module also generates signals to freeze some selected stages of the pipeline or to acti-

vate the forwarding when data hazards occur, it is important to include some instruc-

tion sequences with suitable data dependency in order to stimulate those signals. The

values of the operands are not so important in this case, so random values are chosen

for the operations. The rf module is tested using register to register operations. Basi-

cally, the test consists in writing a value into a register and then reading it. The test is

divided into four parts. In the first part of the test, the stack pointer and the link regis-

ters are tested. In the second part, the first half of the registers (r2-r15) is tested, as-

suming the other part is not faulty and using one among these registers to hold the

signature. In the third part of the test, the second half is considered in turn, assuming

the first part is not faulty. The values written in the registers are 0x55555555 and

0xAAAAAAAA. To protect the CPU core against temporary faults the register file

has been duplicated and the first operand is read from one register, while the second

operand is read from the second register; the write back operation updates both regis-

ters. Hence, it is necessary to perform each instruction twice, swap-ping the two oper-

ands, in order to read the values from both registers. The opmux module selects the

operands for the execution units, choosing between values coming from the register

file or from the various pipeline registers when forwarding is needed. The idea to test

this module is to choose arithmetic, logic, load/store and multiply instructions in such

a sequence that causes data dependencies in different stages of the pipeline. The alu

module test addresses all the possible arithmetic/logic instructions of the instruction

set. Some special values generated resorting to an Automatic Test Pattern Generation

(ATPG) tool launched on the combinational part are chosen as operands to better test

its functionalities and all the operations are performed choosing as operands all the

possible combinations between the values above. The test of the mult_mac module

depends significantly on the values chosen for the operands. Therefore, an ATPG tool

has been used again to generate proper input values. The test program consists in a

series of multiplications (also with immediate, signed and unsigned operands), multi-

ply-accumulate and multiply-subtract instructions of the computed random operands.

Division instructions also involve the mult_mac module to operate and it has also

been tested. Since the mac instruction uses special purpose registers to accumulate, it

is necessary to read the values written in these registers after each multiply-

accumulate instruction. For testing the lsu module, all kinds of load and store instruc-

tions are considered: load/store byte or word, extended to zero or signed. The program

is constituted of a sequence of instructions to write and read contiguous locations in

memory; each block is composed of instructions performing the following three steps:

a) Storing a value in a memory location, b) Reading the value from the same location,

c) Updating the signature. The values chosen to be written in memory are random and

the offset to be added to the base address is a large value (from 16,380 to 17,380).

The wbmux module chooses the value to be written back into the register file, whether

it comes from the memory system (for a load instruction) or from the execution units.

Since this module basically corresponds to a mux, the program is very similar to that

developed for the opmux module. Table I summarizes the characteristics of the Func-

tional and Structural tests for the OR1200 processor in terms of size and duration. For

the Structural test, we detailed these figures for each test procedure.

The structural test of the UART consists of a unique test program, which was devel-

oped following the guidelines presented in [22]. Differently than in the aforemen-

tioned work, the UART was exclusively configured in one operational mode, namely

the very same that the application software is using within the MaMMoTH-Up sys-

tem. In fact, there is no reason to test the peripheral in all the possible operational

modes: the only operational mode that matters is the one used when the device is in

mission mode. After a first initialization phase, a loopback connection is activated.

This feature is normally available in most serial communication protocols, and it is

essential for devising any in-field testing strategy. The structural test can be split in

different phases as well, each of them targeting the test of a specific module.

First the transmitter and receiver FIFOs are tested. FIFOs can be tested resorting to

any test algorithm developed for a register file, as the one proposed in [21]. The two

FIFOs can be considered as a unique register file, since whenever an entry is written

in the transmitter FIFO, the same entry is written in the receiver FIFO as well. The

significant difference with respect to a register file lies in the fact that the entries are

not randomly addressable, since the access to the FIFO is performed through specific

pointers. As specified in [21], first the entries are grouped into two groups (group 0

and 1), depending on the hamming distance of their encodings. Then, the patterns

0x55 and 0xAA are applied (that is, written and then read) to the FIFO. Patterns are

written to the transmitter FIFO by initiating a transmission, and read out when the

transmission ends. On the transmission, the same patterns are also applied to the re-

ceiver FIFO. It is worth noting that since the entries are not randomly addressable, the

sequence of write operations to the FIFO should be fixed and carefully constructed, in

order to write the intended pattern to the specific entry. Specifically, the algorithm

requires that the value 0x55 is written to group 0 and 0xAA to group 1.Then, the test

is repeated, but with the patterns inverted.

The second part of the test focuses on the circuitry embedded in the receiver, in

charge of detecting possible transmission errors. For some error types (e.g. break

indicator error, overrun error), it is required to simply force the error during the

transmission and then check whether it was acknowledged by reading out the periph-

eral register that keeps track of such events. For example, the overrun error is tested

by simply transmitting a number of characters higher than the number of entries in the

receiving FIFO. For other types of error (namely, parity and frame error), they are

caused by physical faults (e.g., noise) in the communication channel. Hence, it is

required to deactivate the loopback connection for emulating these errors. A transmis-

sion of a certain number of characters is first initiated. While the transmission is still

ongoing, the loopback connection is disabled. Depending on how long the connection

is interrupted it is possible to emulate both parity and frame (i.e., missing STOP bit in

the received frame) errors, and consequently excite the logic that checks incoming

data for these types of errors. Short periods of interruption cause parity errors, while

longer one can trigger the frame ones. The characteristics of the functional and struc-

tural test procedures of the UART are reported in Table 2. It is noteworthy that the

structural test requires a considerable higher number of clock cycles than the func-

tional one due to the higher complexity of the latter. Specifically, they originate from

the fact that the structural test fully tests the FIFOs and the error detection logic,

which require several transactions to be completed and (for the error detection test)

interruption of the transmission. Moreover, it is important to underline that the pe-

ripheral transmits data at lower frequency (i.e., the BAUD rate) compared to the one

used by the CPU.

3.4 Results

For the purpose of our experiments, we created a simulation setup where both the

OR1200 processor and the UART cores lie in a system composed also of a 64 MB

RAM, as in the MaMMoTH-Up OBC-S boards. They were synthesized and mapped

to the CMOS NanGate 45nm Open Cell Library. The obtained netlists are used to

perform the fault simulation experiments with a commercial EDA tool. Using this

setup, we evaluated the stuck-at Fault Coverage obtained by both the functional and

the structural test described above.

Results are reported in Table 3 for the CPU core, detailing also the results achieved

on each component module. As the reader can notice, the Fault Coverage achieved by

the Functional test on the CPU core is far lower than the one of the Structural test.

This supports the claim that a Functional test cannot be effectively used when com-

plex COTS-based systems are used. It is also worth underlining that the comparison

between the two tests provides very different results depending on the considered

module. For some of them (e.g., genpc) the fault coverage achieved by the Functional

test is slightly higher than by the Structural test. This is basically due to the fact that

some modules can be tested in a good way by executing long programs, and the Func-

tional test is much longer than the Structural one. However, for modules that include

large combinational parts (e.g., alu and mult-mac) or require a specific sequence of

operations to be tested (e.g., rf) the Structural approach is far more effective.

Table 3. Stuck-at (SA) fault coverage of functional and structural test on OR1200.

Module Total SA faults Functional Test Structural Test

Whole CPU 124,612 32.09 % 81.89 %

genpc 4,906 60.80 % 57.97 %

if 2,268 50.57 % 71.12 %

ctrl 4,320 71.53 % 80.25 %

rf 39,056 33.97 % 90.93 %

opmux 2,530 90.51 % 96.05 %

alu 14,532 46.04 % 78.50 %

mult_mac 39,398 13.91 % 95.77 %

sprs 5,522 8.31 % 37.61 %

lsu 2,708 67.61 % 65.99 %

wbmux 2,286 69.29 % 78.83 %

freeze 126 75.40 % 76.98 %

except 6,716 15.86 % 18.92 %

cfgr 232 0.00 % 0.00 %

Table 4 reports the results of the fault simulation campaigns concerning the UART.

By comparing columns three and four of such table, it can be noticed that the fault

coverage follows the same trend as for the OR1200, i.e., the functional test achieves a

significantly lower fault coverage than the structural one. In particular, the structural

test clearly outperforms the functional test for all the modules composing the UART.

Indeed, for most of the units (e.g., the circuitry of receiver and transmitter) composing

the peripherals the structural test at least doubles the fault coverage of the functional

one.

This is a further evidence that strengthens our claim for the necessity of a more

complex and detailed structural test when dealing with these systems. Specifically to

this case study, it is evidently not enough verifying whether the peripheral is actually

able to deliver the intended functionalities. Considering for example the transmitter

and receiver FIFOs (Tx_fifo and Rx_fifo, respectively), if one would rely on the result

of the functional test solely, 80% of the faults for each FIFO would be missed.

Table 4. Stuck-at (SA) fault coverage of functional and structural test on the UART core.

Module Total SA faults Functional Test Structural Test

Whole UART 17,876 36.38% 68.00%

wb_interface 1,400 53.36% 63.36%

regs 15,962 35.38% 69.83%

transmitter 3,956 41.86% 94.08%

Tx_fifo 2,196 20.40% 99.73%

receiver 7,794 32.13% 70.45%

Rx_fifo 2,196 20.17% 99.36%

dbg 338 0% 0%

4 Safe Faults

We denote as Safe Faults those faults that can never produce a failure in the con-

sidered system1. One of the goals of the FMECA process is their identification, since

they do not contribute to the Failure Rate, and should thus be removed from the Fault

List to be considered when evaluating the Fault Coverage achieved by the test proce-

dures.

Moving from the space domain to the automotive one, we could mention that the

ISO 26262 standard for automotive applications also considers Safe Faults, and de-

fines them as “application dependent”. Clearly, Safe Faults include untestable faults,

i.e., faults for which no test exists. Hence, it can be useful to review the different cat-

egories included in the set of Safe Faults for a given system:

• Structurally (or combinationally) untestable faults, i.e., faults for which a test does

not exist even if the combinational block where the fault is located is fully control-

lable and observable (e.g., via scan test). Examples of faults belonging to this cate-

gory include faults that cannot be tested due to some redundancy in the combina-

tional logic. Structurally untestable faults identification is a by-product of the com-

binational ATPG process, for which very effective algorithms are known [24].

Hence, if a gate-level description of the block is available, an ATPG tool can iden-

tify these faults.

• Sequentially untestable faults, i.e., faults that do not belong to the previous group,

but cannot be tested due to the sequential behavior of the circuit, for example, be-

cause the circuit cannot reach any of the states required for their test. Several

works proposed techniques to automatically identify these faults, either in a generic

circuit [12][13][14][17][18] or specifically in a CPU [15]. Sequentially untestable

faults identification is a sub-problem of sequential ATPG, which is known not to

be a practically solvable problem for generic real circuits. Design for Testability

techniques (e.g., scan) have been introduced to circumvent this problem reconfig-

uring the circuit under test at test time.

• On-line functionally untestable faults, [10], i.e., faults that do not belong to the

previous groups, but cannot be tested in a functional manner (i.e., without resorting

to Design for Testability) in the operational conditions the target device works in.

On-line functionally untestable faults can be related for example to the specific

memory configuration adopted by the system [16]. Several bits in the processor

Program Counter or in the registers storing the addresses in the Load-Store Units

become untestable if the memory area storing the code and the data is less than the

maximum one.

Safe faults include and extend the previous categories. In the following we report

some examples of safe faults:

1 When performing FMECA, it is common to also categorize faults depending on the criticality

of the resulting failures, i.e., on how serious their effects are. Reliability figures typically

depend only on critical safe faults. For the purpose of this paper we ignore any distinction

within the set of safe faults.

• The debug circuitry possibly existing in a processor generates safe faults, since

debug facilities are not used during the normal behavior, and most faults within it

cannot impact the system behavior and produce any failure.

• Several faults in the Design for Testability hardware (e.g., the scan chains) used for

end-of-manufacturing test also correspond to safe faults: for example, faults on the

scan-in input of the scan flip-flops are safe faults.

In [7], we reported some results concerning the identification of safe faults in the

openMSP430 processor. In that paper, we also considered those safe faults that cannot

produce any failure due to the specific application code executed by the CPU. As a

simple example, if the system application only uses integer arithmetic, faults in the

Floating-Point Unit become untestable.

4.1 Safe Faults identification

The typical approach for safe faults identification is based on manual analysis. In

many project teams, the designers, test engineers, and reliability/functional safety

experts systematically cooperate to categorize faults and (based on their effects) iden-

tify safe faults. Clearly, this process is extremely time consuming (and hence expen-

sive), as well as prone to possible errors. For this reason, in [7] we proposed an ap-

proach, which aims at partly automating the safe faults identification process taking

into account all the constraints coming from the application scenario, including the

application software to be run by the CPU. Some preliminary results coming from the

application of the same method to the OR1200 CPU have been reported in [19]. In

this paper, we improve the procedure used in [7] and [19] and extend the work report-

ed in [23] to peripheral modules, not necessarily CPU only. The improved method is

now able to identify a larger number of safe faults, thanks to a mechanism allowing to

exploit the power of a commercial ATPG tool. In the following, the proposed method

for safe faults identification is detailed. For sake of generality, it is presented assum-

ing a generic sequential circuit as Device Under Analysis (hereinafter, DUA). How-

ever, as it is explained further in this section, the applicability of the proposed method

spans DUAs of different kinds, namely from CPUs (as in the above-mentioned works)

to peripheral cores (as described in this paper). Our method for safe faults identifica-

tion operates on the gate-level netlist of the DUA, and it is based on the following

steps:

1. We identify the set of all inputs of the DUA which will remain at a fixed value dur-

ing the system operation (e.g., the Normal/Test signal). Let us call PIfixed this set.

2. We perform several simulation experiments on the DUA running the actual work-

load that the circuit will experience in the operating conditions and with different

but realistic data input sequences. Then, we use the toggle activity to identify the

set FFpossibly-fixed of flip-flops which never toggle.

3. We focus on FFpossibly-fixed, and manually check whether any of the flip-flops in this

set may possibly toggle if a different sequence of input data and events is consid-

ered. The remaining set of flip-flops, called FFfixed is composed of those flip-flops

that will never toggle in the operating conditions.

4. We resort to an ATPG tool to identify the faults in the combinational logic of the

DUA that become untestable once the constraints coming from the fixed values of

the PIfixed and FFfixed signals are applied. In other words, the combinational logic is

extracted from the whole gate-level netlist and then we specify the inputs of such

portion of circuit whose values always remain fixed during the operational phase

(i.e., connecting the inputs either to ground or to VDD). Finally, given these condi-

tions on the inputs, the ATPG tool is asked to generate test patterns for all the pos-

sible faults within the combinational logic. At the end of the generation process,

the ATPG tools identifies a certain number of untestable faults due to the con-

straints on the combinational logic inputs. These faults correspond to safe faults for

the system.

The method is also applicable to combinational circuits. In this case, the procedure

described above can be simplified since it is not necessary to consider the values of

flip-flops. Moreover, the reader should note that in [7] and [19] the last step was per-

formed resorting to a simple topological analysis of the effects of the fixed values in

the combinational logic: the analysis identified for each gate the possible safe faults

caused by any fixed value on the inputs of the fault. To perform the same step, in this

paper we resort to an ATPG tool, so that a larger number of safe faults can be identi-

fied, taking into account the constraints on the input signals of the combinational

logic. The reasoning behind the usage of an ATPG tool originates from the test pat-

tern generation process itself. As an example, let us consider the portion of combina-

tional logic shown in Fig. 4, where I0 to I4 represent the inputs of the logic cone for

the output Out. Let us assume that as a result of the analysis in steps 1 to 3, we realize

that I4 always remains to a fixed value (i.e., zero, therefore connected to ground). We

can now force the ATPG tool to derive a test pattern for the fault stuck-at-0 on the

output of gate U3. For testing the stuck-at-0 on that signal, the ATPG tool has to force

U3 inputs both to 1 and then propagate up to the Out signal. The only input pattern

that satisfies these requirements would be 01111. However, I4 is connected to ground.

Therefore, the value of U3 is always at 0 independently from the other inputs of the

logic cone. If the ATPG tool is not able to derive a test pattern given the constraints

on the inputs, it means that the fault can be marked as untestable. Since the constraints

on the inputs derive from a workload that mimics the operating condition of the DUA,

the occurrence of that fault will never cause a failure and can be labeled as safe.

Leveraging an ATPG tool allowed us to increase by about 3% the number of safe

faults identified by this step with respect to the results presented in [19]. Moreover,

the usage of a commercial tool also makes the applicability of the proposed method

easier. It is important to underline that our method cannot identify all safe faults in the

system. However, we claim that it can identify a significant number of them and rep-

resents a first step towards the automation of the whole safe fault identification proce-

dure, thus contributing to significantly reducing its cost.

Fig. 4. Safe Fault Identification process with an ATPG tool.

4.2 Results

We implemented a tool based on a set of TCL scripts interacting with a logic simu-

lator and an ATPG to implement the procedure described in the previous sub-section.

The required time to run the simulation campaign to gather the data for the Toggle

analysis and to process them to extract the list of Safe Faults (including the ATPG

step) is in the order of a few hours. In the following we will present and discuss the

experimental results for the same setup used in Subsection 3.4, including the OR1200

CPU and the UART.

By using the same commercial ATPG tool we also identified the number of struc-

turally untestable faults in the OR1200, which amounts to 80. Following the proposed

procedure and referring to the environment and application code of the OBC-S board,

we identified a set of safe faults in the OR1200 processor, as reported in the second

column of Table 5. We also computed the Safe Fault Coverage (SFC) for the Func-

tional and Structural tests (columns 4 and 5), defined as:

𝑆𝐹𝐶 =
#𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠

#𝑓𝑎𝑢𝑙𝑡𝑠 − #𝑠𝑎𝑓𝑒 𝑓𝑎𝑢𝑙𝑡𝑠

The reported results show that:

• The number of safe faults is relevant, accounting for about 13% of the whole

stuck-at fault list.

• The percentage of safe faults varies widely from one module to another. It is about

20% for modules such as mult_mac and sprs (dealing with special purpose regis-

ters, which are not significantly used by the application). It is also significant for

modules such as if, genpc and rf, which are not fully used by the application code.

• The SFC figure achieved by the structural test procedures is quite high (taking also

into account the observability constraints of the test environment) and allows

(combined with some further test techniques implemented at a higher level) to fully

match the reliability requirements for the MaMMoTH-Up system.

Table 5. Safe stuck-at fault coverage (SFC) of functional and structural tests for the OR1200.

Module Safe faults
Safe faults w.r.t.

total faults

SFC

Functional

Test

Structural

Test

CPU 16,183 12.98 % 36.88 % 84.41 %

genpc 425 8.66 % 66.57 % 63.24 %

if 204 9.00 % 55.57 % 76.74 %

ctrl 13 0.30 % 71.74 % 80.42 %

rf 5,550 14.21 % 39.60 % 92.89 %

opmux 41 1.62 % 92.00 % 96.47 %

alu 75 0.51 % 46.28 % 78.54 %

mult_mac 7,861 19.95 % 17.38 % 97.04 %

sprs 1,070 19.38 % 10.31 % 44.41 %

lsu 7 0.26 % 67.79 % 66.16 %

wbmux 0 0.00 % 69.29 % 78.83 %

freeze 7 5.55 % 79.83 % 79.51 %

except 912 13.58 % 18.35 % 21.85 %

cfgr 18 7.76 % 0.00 % 0.0

Concerning the UART core, we followed the same procedure and the results are gath-

ered in Table 6. Preliminarily, as for the OR1200 analysis, the ATPG tool identified

13 structurally untestable faults. Compared to the previous case study, when dealing

with a peripheral it can be observed that the percentage of safe faults is considerably

higher (29% against 13%). This mainly stems from the fact that the functionalities

offered by a peripheral often depend on a set of configuration registers whose value is

written in the initialization phase. Thus, because of these registers, non-negligible

portions of the design can be actually unused. As a consequence, most of these faults

belongs to the regs unit, which embeds such configuration registers and the control

part. Specifically to the considered UART:

• The receiver is the module which is directly affected by the configuration registers.

Among the other duties, this unit is in charge of generating interrupts as response

to several events. In our application, the UART was used in polling solely. As a

consequence, the interrupt facilities are not used at all. The same reasoning applies

also to the Modem configuration. The peripheral can be connected to an external

model through a dedicated interface, which is not needed by the application. Final-

ly, depending on the format of the transmission format, some portions of the circuit

become inactive as well. All these factors affect partially the FIFO as well, for

which some safe faults were identified.

• Safe faults can be found also in the transmitter, although their number is signifi-

cantly smaller compared to the receiver. These faults mainly originates from: 1)

modem not being used and 2) the configuration of the transmission format (e.g.,

the selected BAUD rate).

• The debug unit (dbg) is not used at all, since this unit is mainly intended for check-

ing the correctness of the operation during the development phase and clearly not

for the in-field operations.

• The remaining safe faults are part of the control circuitry, included in the regs

module.

By comparing the fourth column of Table 6 with the fourth of Table 4, it is possible to

observe that removing the safe faults significantly increases the fault coverage

achieved by the structural test, reaching quite high SFC figures. Furthermore, remov-

ing safe faults considerably reduces the effort for the development of the self-test

procedures. Indeed, the test engineer should not target all the possible faults affecting

the UART, but instead exclusively the ones considered critical for the application

(i.e., not safe) However, it is worth noting that 16% of the remaining undetected faults

might still include safe faults. From the experiments, it emerged that most of them

could be linked to the interrupt circuitry. However, they cannot be clearly identified

with the current methodology, thus we decided not to include them in the set of safe

faults.

Table 6. Safe stuck-at fault coverage (SFC) of functional and structural tests for the UART

16550.

Module Safe faults

Safe faults

w.r.t. Total SA

faults

SFC

Functional

Test

Structural Test

UART 5,192 29.04% 49.96% 84.02%

wb_interface 340 24.29% 69.62% 74.81%

regs 4,484 28.09% 47.85% 84.99%

transmitter 217 5.49% 43.89% 97.17%

Tx_fifo 0 0.00% 20.40% 99.68%

receiver 2,213 28.39% 42.36% 81.04%

Rx_fifo 288 13.11% 20.89% 99.42%

dbg 338 100.00% 100% 100%

5 Conclusions

This paper deals with the adoption of COTS components in the design and manu-

facturing of electronic systems to be used on a launcher. We focused on the MaM-

MoTH-Up system to be used on board the Ariane5 launcher, which represents a

testbench for developing a suitable design and manufacturing flow compatible with

the adoption of COTS components. In particular, we focused on the test of a couple of

modules within the whole system (i.e., the CPU core and a serial peripheral core),

showing first that a functional test is not able to achieve a sufficient test quality, while

structural SBST test procedures can be much more effective. We also focused on the

identification of safe faults, i.e., those faults that cannot produce any failure due the

hardware and software constraints provided by the application environment. We pro-

posed a semi-automated method able to significantly reduce the cost and effort for

safe faults identification, showing that the method can identify a significant number of

safe faults. We reported experimental results on the OR1200 processor core used

within the MaMMoTH-Up system. The same experiments were also performed on a

peripheral for serial communication embedded in the system (namely the UART

16550). Although the proposed method has been experimentally evaluated referring to

stuck-at faults, only, the same approach can be adopted to deal with other fault mod-

els (e.g., transition delay faults, or bridges), if required. We are currently working

towards the development of improved techniques for safe faults identification and

towards a new and more effective release of our SBST procedures.

Acknowledgments. This work has been supported by the European Commission

through the Horizon 2020 Project No. 637616 (MaMMoTH-Up).

References

1. S. Avramenko; M. Sonza Reorda; M. Violante; G. Fey; J. -G. Mess; R. Schmidt,

“On the robustness of DCT-based compression algorithms for space applica-

tions”, 2016 IEEE 22nd International Symposium on On-Line Testing and Robust

System Design (IOLTS)

2. M. Pignol, “COTS-based applications in space avionics”, 2010 Design, Automa-

tion & Test in Europe Conference & Exhibition (DATE 2010)

3. http://www.mammoth-up.eu/

4. https://openrisc.io/

5. UTE FIDES guide 2009, Edition A, September 2010

6. M. Psarakis et al., “Microprocessor Software-Based Self-Testing”, IEEE Design

& Test of Computers, vol. 27, no. 3. May-June 2010, pp. 4-19

7. R. Cantoro, A. Firrincieli, D. Piumatti, E. Sanchez, M. Sonza Reorda, M. Restifo,

“About functionally untestable fault identification in microprocessor cores for

safety-critical applications”, IEEE Latin-American Test Symposium (LATS),

2018

8. N. Kranitis; A. Merentitis; G. Theodorou; A. Paschalis; D. Gizopoulos, “Hybrid-

SBST Methodology for Efficient Testing of Processor Cores”, IEEE Design &

Test of Computers, 2008, Volume: 25, Issue: 1, pp. 64 – 75

9. J.-G. Mess, R. Schmidt, G. Fey, “Adaptive Compression Schemes for Housekeep-

ing Data“, 2017 IEEE Aerospace Conference

10. P. Bernardi, M. Bonazza, E. Sanchez, M. Sonza Reorda, and O. Ballan, “On-line

functionally untestable fault identification in embedded processor cores”, Proc.

Design, Autom. Test Eur. Conf. Exhibit. (DATE), Mar. 2013, pp. 1462–1467

11. W. M. Globe, “Control Systems Safety Evaluation and Reliability”, third edition,

ISA, ISBN 978-1-934394-80-9

12. J. Raik, H. Fujiwara, R. Ubar, A. Krivenko, “Untestable Fault Identification

in Sequential Circuits Using Model-Checking”, Proc. IEEE Asian Test Sympo-

sium, 2008, pp. 21-26

13. Syal, M.; Hsiao, M.S., “New techniques for untestable fault identification in se-

quential circuits”, IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 5, no. 6, 2006, pp. 1117 – 1131

14. H.-C. Liang; C. L. Lee; Chen, J.E., “Identifying Untestable Faults in Sequential

Circuits”, IEEE Design & Test of Computers, Vol. 12 , No. 3, 1995, pp. 14-23

15. W.-C. Lai; Krstic, A.; Kwang-Ting Cheng, “Functionally testable path delay

faults on a microprocessor”, IEEE Design & Test of Computers, vol. 17, no. 4,

2000, pp. 6-14

16. A. Riefert; R. Cantoro; M. Sauer; M. Sonza Reorda; B. Becker, “A Flexible

Framework for the Automatic Generation of SBST Programs”, IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 2016, Volume: 24, Issue: 10,

pp. 3055 – 3066

17. David E. Long, Mahesh A. Iyer, Miron Abramovici, “FILL and FUNI: algorithms

to identify illegal states and sequentially untestable faults”, ACM Transactions on

Design Automation of Electronic Systems (TODAES), v. 5, n. 3, pp. 631-657, Ju-

ly 2000

18. Daniel Tille, Rolf Drechsler, “A fast untestability proof for SAT-based ATPG”,

12th International Symposium on Design and Diagnostics of Electronic Cir-

cuits&Systems, pp. 38-43, April 15-17, 2009

19. S. Carbonara, A. Firrincieli, M. Sonza Reorda, J.-G. Mess, “On the test of a

COTS-based system for space applications”, 24th IEEE International Symposium

on On-Line Testing and Robust System Design, 2018, poster session

20. Jaroslav Borecky; Martin Kohlik; Pavel Kubalik; Hana Kubatova, “Fault Models

Usability Study for On-line Tested FPGA”, 14th Euromicro Conference on Digi-

tal System Design, 2011, pp. 287-290

21. D. Sabena, M. Sonza Reorda and L. Sterpone, "A new SBST algorithm for testing

the register file of VLIW processors", 2012 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Dresden, 2012, pp. 412-417

22. A. Apostolakis, M. Psarakis, D. Gizopoulos and A. Paschalis, "Functional Proces-

sor-Based Testing of Communication Peripherals in Systems-on-Chip", IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, no. 8, pp.

971-975, Aug. 2007

23. R. Cantoro, S. Carbonara, A. Floridia, E. Sanchez, M. S. Reorda and J. Mess, "An

analysis of test solutions for COTS-based systems in space applications," 2018

IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC),

Verona, Italy, 2018, pp. 59-64.

24. M. Bushnell, V. Agrawal, Essentials of Electronic Testing for Digital, Memory,

and Mixed-Signal VLSI Circuits, Kluwer Academic Publisher, 2000

