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Abstract Code reusability is the cornerstone of object-oriented pro-
gramming. Reuse mechanisms such as inheritance and trait composition
lay at the basis of a whole range of software engineering practices with
the goal to improve software quality and reliability. In this paper we
investigate code reuse mechanisms for actors, and find that it is cur-
rently difficult to specify the behaviour of an actor out of reusable parts.
We discuss different kinds of code reuse mechanisms in different kinds
of actor model, and we motivate why these mechanisms are currently
unsatisfactory. As a possible solution we define a new reuse mechanism
based on delegation-based trait composition. In a nutshell, the mechan-
ism allows programmers to compose the behaviour of actors, and every
time a compound behaviour is spawned into an actor, it will cause mul-
tiple actors to be spawned (one for each independent behaviour). Some
messages will be automatically delegated to the actor that implements
the desired functionality. We provide an implementation of this model in
a prototype Active Object language called Stella, and we formalise a sub-
set of Stella using a small-step operational semantics to unambiguously
define the different steps involved in our reuse mechanism.

Keywords: actors · delegation · active objects · code reusability

1 Introduction

In object-oriented programming, the principle of “programming against an in-
terface” helps to foster code reuse and reduce complexity, thus increasing the
reliability of individual components [20]. Essentially it is beneficial for the over-
all complexity of the program to design components as black boxes, because it
is then the sole responsibility of each individual component to ensure the func-
tionality it offers through its interface is correct. This principle manifests itself
in many reuse mechanisms, such as inheritance [15] and trait composition [12]
for class-based languages, and delegation for prototype-based languages [19]. In
actor-based programs, using components as black boxes is equally important but
for reasons other than just modularity and code reuse.

The behaviour of an actor is usually a combination of its internal state and
its interface, which is the set of messages that an actor can process [18]. The
only way to communicate with an actor is to send it a message that matches
an entry in its interface, which is important for two reasons. First, it makes it
easier for actors to protect their internal state from race conditions via interface
control [17] (essentially by asynchronously processing messages one by one).
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Second, a message-passing communication model is beneficial for (among others)
concurrency, fault tolerance, and distribution over a network.

Despite the principle of “programming against an interface” being ingrained
in the actor model almost by definition, it is rarely leveraged to facilitate mod-
ularisation and code reuse among actors. More specifically, currently there is
limited language support for composing the behaviour of an actor, i.e. its inter-
face, out of reusable parts.

Since code reuse is an important aspect of software engineering, we argue
that actor-based programs can benefit from a simple and well-defined code reuse
mechanism to control and reduce their complexity. To this end we introduce
Stella, a prototype language that implements an actor composition mechanism
based on asynchronous message delegation. The main contributions of this paper
are the design and definition of Stella, and a formalisation of a subset of Stella
that captures the precise semantics of the reuse mechanism.

In Section 2 we discuss the requirements of a suitable code reuse mechanism
for actors, and we discuss reuse mechanisms in a number of state-of-the-art actor
languages. In Section 3 we define Stella, and in Section 4 we define an operational
semantics for a subset of Stella.

2 Code Reuse in Actor-Based Languages

Before we look into existing reuse mechanisms, we define the term actor behaviour
and we specify the requirements of a reuse mechanism suitable for actors. We
adopt the terminology of [18] that defines the behaviour of an actor as the
description of its interface and state. The interface defines the list (and possibly
types) of messages that an actor can process, as well as the program logic to
process them. The state of an actor is defined as all the program state that is
synchronously accessible by the actor.

From a software engineering point of view it is beneficial to split up a mono-
lithic behaviour into multiple “reusable components” that can be composed using
a composition mechanism. We devise 2 goals or requirements for such a mech-
anism that is suitable for the actor model, which we base on well-established
design principles for object-oriented programming [24, Chapter 14].

Extensibility. The interface of behaviours can be extended to accept new mes-
sages, and a behaviour can specialise the acquired components to adapt them
to its own needs. Relating this to object-oriented programming, this is similar
to how a class can add, override, and specialise methods of a superclass, or to
how traits can add methods to a class which may also be further specialised.

Reusability. Pre-existing behaviours can be reused by extending, adapting or
specialising them via new behaviour definitions, without modifying the original
behaviour. In object-oriented programming this is similar to how a class may
be specialised via subclassing, while it remains independently instantiatable
regardless of new class definitions that rely on it.
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Over the years a number of reuse mechanisms have been proposed in different
kinds of actor languages that implement different kinds of actor model. In the fol-
lowing sections we discuss inheritance, trait composition, function composition,
and reuse via prototypes in the Communicating Event-Loops model.

2.1 Inheritance
The relation between inheritance and concurrent object-oriented programming
has been thoroughly researched. Part of this research is focussed specifically on
inheritance in actor-based languages such as Act3 [4] and ACT++ [16], which
are based on the work of Agha [3]. In these languages, a become statement
(fundamental to the model) is used to replace the behaviour of the current actor
with a new behaviour. This statement causes severe reusability issues due to the
Actor-Inheritance Conflict [17]. Consider a behaviour as being similar to a class,
then the conflict describes a fundamental issue where adding a new method to
a subclass may invalidate many superclass methods.

Classes in combination with inheritance fulfil the requirements of extensibility
and reusability. However, inheritance is known to have reusability issues when
used as the sole reuse mechanism [12]. Furthermore, nowadays it is generally
accepted as a good design principe in object-oriented programming to favour
object composition over class inheritance [7, 14]. For these reasons we do not
consider inheritance by itself to be a suitable reuse mechanism for actors.

2.2 Trait Composition
The Active Objects model is based on the work on ABCL/1 [27], and has modern
implementations in languages such as Pony [9] and Encore [8]. Here, actors
are typically instances of an active object class which describes mutable fields
and a set of methods that can be asynchronously invoked via message passing.
Pony and Encore support neither a become statement (which caused the Actor-
Inheritance Conflict from the previous section) nor reuse via inheritance. In the
case of Pony it is mentioned that composition is preferred to inheritance [1].

Instead of inheritance, Pony and Encore support stateless traits [12]. Traits
can be composed with behaviours and other traits to add new methods to the
composer. However, they do not fulfil our 2 requirements. Extensibility is only
partially fulfilled because, while traits can be used to extend a behaviour with
new functionality, they have a number of drawbacks. Most notably, stateless
traits are likely to be an incomplete implementation of some functionality unless
it is completely stateless [6]. The follow-up work on stateful traits also has some
drawbacks such as possibly breaking black-box encapsulation, and difficulties
regarding a linear object layout in memory [6]. Reusability is unfulfilled because
the trait composition mechanism cannot be used to compose behaviours.

2.3 Function Composition
Popular languages and libraries such as Erlang [5], Elixir [26] and Akka [23]
closely link behaviours and functional programming. In Erlang and Elixir, a



4 S. Van den Vonder et al.

blocking receive statement is used as part of a function body to dequeue 1
message from the mailbox of the current actor, and local actor state is encapsu-
lated via lexical scoping. In Akka (a library for Scala), the behaviour of an actor
is represented as a Scala partial function that is continually applied to mes-
sages by the receiving actor. Consequentially, behaviour composition is based
on function composition. For example, in Akka, the Scala andThen and orElse
function combinators compose two behaviours by respectively chaining two func-
tions (pass the output of 1 into the next) or switching over 2 functions (if the
given argument is not in the domain of the first, try the second).

We do not consider function composition to be a suitable reuse mechanism
because it does not support extensibility. Logically switching over behaviours
can be used to emulate some features of extensibility, e.g. the behaviour that
is the result of the composition (behaviourA orElse behaviourB) will accept
the union of messages accepted by both behaviours. However, the end result is
highly susceptible to the composition order; messages matched by both beha-
viours will always be processed exclusively by behaviourA. Furthermore, there
is no mechanism to deal with conflict resolution, for example when behaviourA
accidentally captures messages that should be processed by behaviourB.

2.4 Communicating Event-Loops

The Communicating Event-Loops model (CEL) originated in the E [22] language
and was later adopted by AmbientTalk [11]. Here, an actor is not described by a
behaviour. Instead, an actor is a vat of plain objects that are said to be owned by
the actor. Objects owned by one actor can have near references to objects within
the same vat and far references to objects in another vat. Method calls via a near
reference are synchronous; method calls via a far reference are asynchronous, are
sent to the actor that owns the object, which will eventually invoke the method.
In this model, the behaviour of an actor depends on which of its objects are
accessible via far references, since those determine which messages are accepted.

Both E and AmbientTalk define a prototype-based object model, which relies
on functions and lexical scoping for object instantiation and information hiding.
A problem occurs when two similar actors attempt to share a behaviour, which in
this model amounts to sharing an object. If two actors could reference the same
behaviour, they would have access to shared mutable state either via the shared
lexical scope, or via the shared object. Therefore, a CEL model in combination
with a prototype-based object model does not offer a suitable reuse mechanism
because, idiomatically, behaviours cannot be freely reused by different actors.

A possible avenue to explore could be to design a class-based CEL language
which can eliminate shared mutable state. While we consider this to be a viable
approach to our problem, in this paper we opt for a different approach that we
consider to be simpler and more applicable to other actor languages.
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2.5 Problem Statement

In the previous sections we discussed different kinds of reuse mechanisms in dif-
ferent kinds of actor model. In Section 2.1 we discussed the relationship between
inheritance and actors, and concluded that inheritance by itself is not a suitable
reuse mechanism for actors. For Active Objects (Section 2.2) we discussed trait
composition and how it does not fulfil our requirements, because traits have a
number of drawbacks and cannot be used to compose behaviours themselves.
We discussed actor languages where behaviours are encapsulated by functions
(Section 2.3), where we motivated that function composition is not a suitable
composition mechanism. Finally, for the Communicating Event-Loops model
(Section 2.4) we discussed that a prototype-based object model would lead to
shared mutable state between actors if behaviours could be reused.

The problem that we tackle in this paper is to define a code reuse mechan-
ism for behaviours that fulfils the requirements of extensibility and reusability.
The mechanism defines (1) how the interface of behaviours can be extended
with functionality defined by different components (extensibility), and (2) how
behaviours themselves can be reused to define new behaviours (reusability).

3 Delegation-based Actor Composition in Stella

In this section we introduce Stella, a prototype language based on the Active
Objects model, where behaviours can be composed with a mechanism based on
delegation-based trait composition [10]. We opted for a language-based approach
(rather than a library) to convey the mechanism in a clear and concise manner.
It also ensures consistent run-time semantics, particularly with respect to the
definition of behaviours and message sending between actors. We first give a
motivating example that benefits from reusable behaviours, and in the sections
thereafter we gradually introduce the different aspects of Stella. For brevity we
only implement parts of the motivating example to introduce the base language
and to explain behaviour composition (the precise semantics of which are form-
alised in Section 4)1.

3.1 Motivating Example

A modern approach to building “real-time” or “live” applications are stream-
based frameworks such as ReactiveX, which describes the API of a class of
streaming frameworks in over 18 languages [2]. These frameworks provide ab-
stractions for data streams together with an extensive collection of built-in op-
erators to transform and combine them. Consider a temperature monitoring
application that visualises live measurements of many heterogenous sensors. De-
pending on units of measurement and user preferences, measurements may have
to be transformed from one unit to another. This can be done by mapping a
1 The code for the complete example is available and can be run at http://soft.vub.
ac.be/~svdvonde/examples/DAIS19/.

http://soft.vub.ac.be/~svdvonde/examples/DAIS19/
http://soft.vub.ac.be/~svdvonde/examples/DAIS19/
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Subscribable 

provides: 
  ­ subscribe 
  ­ unsubscribe 
  ­ collect 

Stream 

requires:
  ­ collect­subscribers

provides: 
  ­ publish 
  ­ receive 

Operator 

SocketStream 

provides:  
  ­ on­data 

Map 

provides: 
  ­ receive 

"delegates to"

Figure 1: Composition of behaviours in an actor-based streaming framework.

conversion function over a stream of measurements using some built-in map op-
erator, resulting in a new stream of data.

Streaming frameworks are often designed sequentially, i.e. new input data is
first propagated to all connected streams before the next input can be accepted,
and parallelising this process is non-trivial. With composable behaviours we can
design a simple framework where streams and operators are actors, such that
multiple computations can run in parallel.

Figure 1 depicts the different behaviours involved in our streaming frame-
work. Every behaviour lists the methods that it provides, and for clarity we also
list when a behaviour expects a certain method to be present in its composer
that it does not implement itself. The framework provides a SocketStream be-
haviour to abstract over a typical socket connection as a data stream, and also 1
built-in Map operator to map a function over a stream. Common functionality for
operators is factored out into an Operator behaviour (which also behaves like a
stream), and common functionality of streams is factored out into Stream and
Subscribable. Stream implements functionality for publishing and receiving
values, Subscribable simply keeps a list of other streams (actors) that should
receive new publications.

3.2 The Base Stella Language

In this section we introduce the base Stella language without behaviour com-
position. Similar to other Active Object languages, Stella has an active layer of
active object classes and actors, and a passive layer of regular classes and objects
We omit the details of the passive object layer since its definition is irrelevant
to the problem of behaviour composition.

A program written in Stella is a set of top-level behaviour definitions and
regular class definitions. Every program must define a Main behaviour that is
instantiated as the first actor of the program. Listing 1 implements two beha-
viours Stream (Lines 1-5) and Subscribable (Lines 7-14). Stream implements
generic stream functionality for publishing and receiving data. It has two meth-
ods called publish and receive with 1 formal parameter data (Lines 2-4 and 5).
Publishing data to a stream simply amounts to sending a receive message to all
subscribers. The logic of sending that message is contained within local definition
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1 ( actor Stream
2 ( def-method ( publish data)
3 (def f ( lambda ( subscriber ) (send subscriber 'receive data)))
4 (send self 'collect-subscribers f))
5 ( def-method ( receive data) 'do-nothing ))
6
7 ( actor Subscribable
8 ( fields subscribers )
9

10 ( def-constructor (init) ( set! subscribers '()))
11
12 ( def-method ( subscribe subscriber )
13 ( set! subscribers (add subscribers subscriber )))
14 ( def-method ( collect f) ( for-each subscribers f)))

Listing 1: Implementation of the Stream and Subscribable behaviours.

f (Line 3) that is bound to a lambda function2. When the lambda is invoked,
it sends the receive message to subscriber with the data to be published as
single argument. Iterating over subscribers of the stream is done by sending a
collect-subscribers message to the current actor via pseudo-variable self
with f as argument. The default receive method on Line 5 simply returns the
symbol ’do-nothing.

The Subscribable behaviour stores a list of subscribers to a stream. Its
definition is analogous to Stream but shows the use of fields (local actor state)
and constructors. In this case there is 1 field subscribers (Line 8), a constructor
named init (Line 10), and 2 methods subscribe and collect (Lines 12-13
and 14). A constructor is a special method that is called exactly once when
an actor is spawned. Behaviours without a constructor will be initialized by a
default constructor. In this case the init constructor initializes the local field
subscribers to an empty list via the special form set! (assignment).

Bodies of constructors and methods contain either special forms (like set!)
or synchronous method invocations on regular objects. Here, we use the following
syntax where methodName is invoked on object target with the given argument
expressions.

(methodName target arg1 ... argn)

In that vein, the invocation of send in Stream (Listing 1 Line 3 and 4) is simply
the invocation of the send method on an object that represents a reference to an
actor. Similarly, the add and for-each methods (Line 13 and 14) are invocations
on a list object.

Actors can be spawned via a spawn special form that returns a reference ob-
ject that can be used to send asynchronous messages to the newly spawned actor.
For example, the following expression spawns an actor with the Subscribable
behaviour that is initialized by calling the init constructor.

(spawn Subscribable 'init)

2 Stella does not have functions. Using a process similar to Lambda Lifting, a lambda
statement is transformed to an object with an apply method
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1 ( actor Operator
2 ( delegate-to Stream )
3 ( delegate-to Subscribable ( rename 'collect 'collect-subscribers ))
4
5 ( def-constructor (init stream )
6 ( spawn-delegate Subscribable 'init)
7 ( spawn-delegate Stream )
8 (send stream 'subscribe self)))

Listing 2: Implementation of the Operator behaviour.

1 ( actor Operator
2 ( delegate-fields Subscribable Stream ) // run-time syntax
3
4 ( def-constructor (init stream )
5 ( spawn-delegate Subscribable 'init) // populate special field
6 ( spawn-delegate Stream ) // populate special field
7 (send stream 'subscribe self))
8
9 ( def-method ( subscribe subscriber )

10 ( delegate Subscribable 'subscribe subscriber ))
11 ( def-method ( collect-subscribers f) // renamed method
12 ( delegate Subscribable 'collect f))
13
14 ( def-method ( publish data) ( delegate Stream 'publish data))
15 ( def-method ( receive data) ( delegate Stream 'receive data)))

Listing 3: Compile-time expanded version of the Operator behaviour.

3.3 Delegation-based Behaviour Composition in Stella

In this section we introduce a new composition mechanism for behaviours in-
spired by delegation-based trait composition in AmbientTalk [10]. In a nutshell,
a behaviour can statically acquire the methods of other behaviours, and spawn-
ing an actor from a compound behaviour creates multiple actors that each run
part of the compound behaviour. We will refer to these actors as the delegate
actors. Messages that match an acquired method are automatically delegated to
the corresponding delegate actor. To explain the different aspects of behaviour
composition, we implement the Operator behaviour from Figure 1.

The Operator behaviour implements common functionality for all stream-
ing operators in our motivating example, which in this case only amounts to
ensuring that every instance of an operator behaves like a stream of data. Its
implementation is shown in Listing 2. A delegate-to statement (Line 2-3) is
used to declare that (at compile-time) all methods from the behaviours Stream
and Subscribable are acquired. A conflict may occur when acquiring two or
more methods with the same name. These must be explicitly resolved by ali-
asing or excluding certain methods using a rename or exclude statement re-
spectively. In this case, the collect method from Subscribable is renamed to
collect-subscribers for clarity rather than solving a conflict.

Before we can explain the run-time semantics of acquired methods (which
is different from traditional trait composition), we first show the effects of a
delegate-to statement at compile-time. Listing 3 shows the compile-time ex-
panded version of the Operator behaviour of Listing 2, which incorporates the
acquired methods. The added lines of code are Line 2 – a pseudocode statement
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to explain the run-time semantics – that declares 2 new (special) fields, Lines 9-
12 which are the acquired methods from the Subscribable behaviour (note that
the collect method is renamed), and finally Lines 14-15 which are the acquired
methods from the Stream behaviour.

The 2 new fields on Line 2 are generated by the compiler and carry the
name of the delegate behaviours. They are populated by the spawn-delegate
statements in the constructor (Lines 5-6), which is a special version of a reg-
ular spawn. Instead of returning the address of the new actor, it is stored in
the corresponding (generated) field that carries the name of the spawned beha-
viour. Thus, when Operator is spawned, it also spawns 2 delegate actors, and
by storing their addresses in generated fields we can guarantee that the contents
of these fields cannot be directly modified or retrieved. Consequentially, because
the address of delegate actors can never be shared with other actors, we keep the
process of spawning delegates completely transparent to users of a behaviour.

In contrast with regular trait composition for object-oriented programming,
the implementation of acquired methods is not copied over. Instead, a delegate
statement is generated that serves 2 purposes. First, delegate retrieves the del-
egate actor (from the generated fields) referenced by its first argument. Second, it
sends a special message to the delegate actor that, when the message is executed,
changes the self pointer of the delegate actor to that of the sender. This is a
crucial mechanism of trait composition that allows the delegate to communicate
with its delegator, which is similar to the unchanged this pointer for regular
trait composition in object-oriented programming [10,12]. The effect is that, any
time the delegate actor sends a message to self, the message is actually received
by its delegator. An example of where this mechanism is necessary is the Stream
behaviour of Listing 1 Line 4, where a collect-subscribers message is sent to
self to iterate over a list of subscribers stored in another behaviour.

4 Operational Semantics of Stella

In this section we formalise a subset of Stella via an operational semantics.
The formalisation entails the necessary details about actors, behaviours and
delegation. For brevity we omit the sequential class-based object-oriented subset
of the language, since this concern is orthogonal to actors and behaviours. The
goal of this formalisation is to describe the precise semantics of the composition
mechanism such that it can be reproduced in other languages. Our semantics is
based on the formalisation of JCoBox [25] and AmbientTalk [11].

4.1 Syntax

The abstract syntax of Stella is shown in Figure 2. Capital letters denote sets,
and overlines denote sequences (ordered sets). We may implicitly treat single
elements as sequences or sets of size 1 (e.g. A(. . .) is equivalent to {A(. . .)}).
Most of the syntax is shown in Section 3. Note that in this section we talk about
(active object) classes instead of behaviours.
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p ∈ Program ::= B

B ⊆ ClassDecl ::= (actor n D (fields f) H)
D ⊆ DelegationDecl ::= (delegate-to n (exclude m) (rename m m′))

H ⊆MethodDecl ::= (def-method (m x) e)

e ∈ E ⊆ Expression ::= x | self | (get f) | (set! f e) | (spawn n) |
(delegate d m e) | (send e m e)

x ∈ Variable, f, d ∈ FieldName, n ∪Main ∈ ClassName, m ∈MethodName
Figure 2: Abstract syntax.

k ∈ K ∈ Configuration ::= K(A, C) Configurations
C ⊆ ActorClass ::= C(n, f, d, M) Actor Classes

a ∈ A ⊆ Actor ::= A(i, M, Q, F, Fd, e) Actors
Q ⊆ Queue ::= msg Queues

F, Fd ⊆ Field ::= F(f, v) Fields
msg ∈Message ::=Msg(i, m, v) Messages

M ⊆Method ::=M(m, x, e) Methods
v ∈ Value ::= i | null Values

e ∈ E ⊆ Expression ::= . . . | v Runtime Expressions

i ∈ ActorId
Figure 3: Semantic entities.

– A program p is a set actor class declarations, one of which we assume will
be called Main.

– For simplicity, classes have no constructor.
– Because there are no constructors, there is no explicit spawn-delegate state-

ment required in the syntax because delegate actors can now be created ex
nihilo (i.e. without initializing them with run-time values).

– Methods have just one expression as their body, and there are no variable
definitions (e.g. via a let statement).

– Fields are accessed explicitly via get and set! statements.

4.2 Semantic Entities

The static and dynamic semantics are formulated as a small-step operational
semantics whose semantic entities are listed in Figure 3. Calligraphic letters
such as K and C are used as “constructors” to distinguish different semantic
entities syntactically.

The state of a program is represented by a configuration k which contains a
set of concurrently executing actors and a set of classes.

A class has a unique name n, fields f , delegate fields d (these are the generated
fields to store references to delegate actors, see Section 3.3), and a set of methods
M . In Section 4.4 we show how a class is produced from the abstract syntax.

An actor has a unique identifier i that we use as its address, a set of methods
M that can be invoked by the actor, a queue Q that holds a sequence of messages
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to be processed, a set F that maps fields to values, a set Fd that maps delegate
fields to delegate actors, and an expression e that the actor is currently executing.

A message msg is a triplet of a self address i to be used during execution
of the message (either the message receiver or the delegator), the name m of a
method to invoke, and a sequence of values v which are the method arguments.

A method M is a triplet containing the name of the method m, a sequence
of formal parameters x, and a body e.

Our reduction rules in Section 4.5 operate on “runtime expressions” which
are simply all expressions e extended with run-time values v, which can be actor
references i and null.

4.3 Notation

We use the ·∪ (disjoint union) operator to lookup and extract values from sets.
For example, S = S′ ·∪ s splits the set S into element s and the set S′ = S \{s}.
When the order of elements is important (e.g. for representing the message queue
of an actor) we use the notation S = S′ · s to deconstruct a sequence S into
sequence S′ = S \ {s} and s which is the last element of S. We denote both the
empty set and the empty sequence as ∅.

4.4 Static Semantics

Our reuse mechanism requires an additional compilation step to transform a
class declaration from the abstract syntax into a class that can be used at run-
time. In Figure 4 we define a number of auxiliary functions in a declarative style
to generate such a run-time class. We sum up their purpose:

gen Generates a set of methods (to be acquired by a class) based on a set of
pre-existing methods and a set of delegate-to statements. M represents a
set of pre-existing (non-acquired) methods of a class, C is a set of compiled
run-time classes, and D a set of delegation declarations. For each delegation
declaration, lookup the corresponding run-time class and generate a set of
methods to be acquired for this particular delegate.

genMethods Given a set of pre-existing methods M , a classname n, a set of
excluded methods mexcl, a set of aliased methods malias and a set of methods
M ′ to acquire, return a new set of methods possibly extended with newly
acquired ones. Methods in M ′ with name m are excluded if m ∈ mexcl, or
if a method m already exists in the pre-existing set of methods M . The lat-
ter ensures that methods from the base class take precedence over acquired
methods (they are not “overridden” by the delegate).

genMethod Generate the method to be acquired by a class.M is the original
method from the delegate class, n is the name of said class, and malias is a set
of tuples to possibly rename the generated method. The body of the generated
method is a delegate expression where n will refer to the delegate actor.

name Given a method name m and a set of possibly aliased methods malias,
return the (possibly aliased) method name.
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gen(M, C, ∅) = ∅
gen(M, C, D ·∪ (delegate-to n (exclude mexcl) malias)) =
genMethods(M, n, mexcl, malias, M ′) ∪ gen(M, C, D)

with C(n, f, d, M ′) ∈ C

genMethods(M, n, mexcl, malias, ∅) = ∅
genMethods(M, n, mexcl, malias, M ′ ·∪M(m, x, e)) =

genMethods(M, n, mexcl, malias, M ′), if m ∈ mexcl ∨ M(m, x′, e′) ∈M

genMethod(M(m, x, e), n, malias) ∪ ←↩

genMethods(M, n, mexcl, malias, M ′) otherwise

genMethod(M(m, x, e), n, malias) =M(name(m, malias), x, (delegate n m x))

name(m, malias) =
{

m′, if (rename m m′) ∈ malias

m otherwise
methodsOf((delegate-to n (exclude mexcl) malias), C) =
{name(m, malias) | (M(m, x, e) ∈M) ∧ (m /∈ mexcl)}

with C(n, f, d, M) ∈ C

Figure 4: Auxiliary functions for class compilation.

∀x1 ∈ D : ∀x2 ∈ D \ {x1} : methodsOf(x1, C) ∩ methodsOf(x2, C) = ∅
M = {M(m, x, e) | (def-method (m x) e) ∈ H}

d = {n | (delegate-to n (exclude m) (rename m m′)) ∈ D}
〈B ·∪ (actor n D (fields f) H), C〉 →c 〈B, C ∪ {C(n, f, d, M ∪ gen(M, C, D))}〉

Figure 5: Class compilation reduction rule.

methodsOf Given a delegation declaration and a set of run-time classes C,
return the set of all method names that would be acquired by C using the
delegation declaration.

Figure 5 defines a reduction →c to compile a set of class declarations B.
The reduction is defined as 〈B, C〉 →c 〈B′, C ′〉 where the tuple 〈B, C〉 initially
contains all class declarations B in the program, and C is empty. Compilation
fails when the conditions of the rule are not met and no element in B can
be reduced. This signifies an error in the program. Another possible error is
explicitly formulated by a precondition given on the first line of the premise that
prevents method conflicts between delegates, which means that the intersection
of the acquired methods for any 2 delegates is empty. A set of delegate fields d
is created using the classnames of delegates.
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Field-Get
F(f, v) ∈ F

A(i, M, Q, F, Fd, eut[(get f)])→a A(i, M, Q, F, Fd, eut[v])

Field-Set
F = F ′ ·∪ F(f, v0) F ′′ = F ′ ∪ {F(f, v)}

A(i, M, Q, F, Fd, eut[(set! f v)])→a A(i, M, Q, F ′′, Fd, eut[v])

Process-Msg
Q = Q′ · Msg(i′, m, v) M(m, x, e) ∈M

A(i, M, Q, F, Fd, v)→a A(i, M, Q′, F, Fd, e[i′/self ][v/x])
Figure 6: Actor-local reduction rules.

4.5 Dynamic Semantics
Evaluation Contexts We use evaluation contexts [13] to abstract over the
context of an expression, and to indicate which subexpressions should be fully
reduced before a compound expression can be reduced. The expression eut de-
notes an expression with a “hole” to identify the next subexpression to be re-
duced. The notation eut[e] indicates that expression e is part of an abstracted
compound expression eut, and that e should be reduced first before eut can be
reduced.

eut ::= ut | (set! f eut) | (send eut m e) |
(send v m v eut e) | (delegate d m v eut e)

Evaluation Rules Our evaluation rules are defined in terms of a reduction
on sets of configurations K → K ′. For clarity we split the rules defining this
reduction in two parts. Actor-local rules are defined in terms of a reduction
a →a a′ and can be applied in isolation (within one actor). Actor-global rules
are defined in terms of a reduction K →k K ′ and indicate interactions between
actors.

Actor-local Evaluation Rules Actors continually dequeue the first message
from their message queue, retrieve the correct expression to process this message,
and reduce this expression to a value. The next message can only be processed
after the expression is reduced to a value. An actor is considered idle when its
message queue is empty and its current expression has been completely reduced.
This is the only situation in which no rules apply to a particular actor. Otherwise,
if an actor is not idle and no rules can reduce its current expression, there is an
error in the program. We summarise the actor-local reduction rules in Figure 6.

Field-Get, Field-Set Values of fields are stored in a set F of 2-tuples that
map fields to values. A get expression is a simple lookup of the field, and
set! replaces the current association with a new one.

Process-Msg Processing a message is only possible when the message queue
Q is not empty and the current expression is reduced to a value. The last
entry of the queue is removed and the corresponding method is retrieved. To
evaluate the body of the method we substitute the formal parameters x and
self with the values contained within the message. Note that self is either
the current actor (when the message was sent via a normal message send) or
the delegator (when the message was delegated).
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Send
A = A′ ·∪ A(i′, M ′, Q′, F ′, F ′d, e′) Q′′ =Msg(i′, m, v) ·Q′

K(A ·∪ A(i, M, Q, F, Fd, eut[(send i′ m v)]), C)→k

K(A′ ∪ {A(i, M, Q, F, Fd, eut[null]),A(i′, M ′, Q′′, F ′, F ′d, e′)}, C)

Delegate

F(d, i′) ∈ Fd

A = A′ ·∪ A(i′, M ′, Q′, F ′, F ′d, e′) Q′′ =Msg(i, m, v) ·Q′

K(A ·∪ A(i, M, Q, F, Fd, eut[(delegate d m v)]), C)→k

K(A′ ∪ {A(i, M, Q, F, Fd, eut[null]),A(i′, M ′, Q′′, F ′, F ′d, e′)}, C)

Spawn
makeActor(n, C) = A(i′, M ′, Q′, F ′, F ′d, e′) · delegates

K(A ·∪ A(i, M, Q, F, Fd, eut[(spawn n)]), C)→k

K(A ∪ {A(i, M, Q, F, Fd, eut[i′]),A(i′, M ′, Q′, F ′, F ′d, e′)} ∪ delegates, C)

Congruence a→a a′

K ·∪ K(A ·∪ a, C)→k K ∪ K(A ∪ a′, C)
Figure 7: Actor-global reduction rules.

zipFields(∅, ∅) = ∅

zipFields(d ·∪ d,A(i, M, Q, F, Fd, e) ·∪ delegates) = {F(d, i)} ∪ zipFields(d, delegates)

makeActor(n, C) = {A(i, M, ∅, F, Fd, null)} · delegates

with i fresh, C(n, f, d, M) ∈ C, F = {F(f, null) | f ∈ f}

delegates = {makeActor(n′, C) | n′ ∈ d}

Fd = zipFields(d, delegates)
Figure 8: Auxiliary functions to create actors.

Actor-global Evaluation Rules We summarise the actor-global evaluation
rules of Figure 7.

Send Describes an asynchronous message send to an actor. A new message is
added at the front of the queue Q′ of the receiving actor i′. The address of the
self reference passed as an argument in the message is also i′. This means
that the receiving actor will execute the message using its own address as self
parameter. Semantically, all arguments v are passed to the other actor via a
(deep) copy, but in our case there is no assignment other than local fields, and
therefore we do not explicitly create copies in this formalisation. The send
expression reduces to null.

Delegate Describes delegating messages. This rule is almost identical to Send,
except that the address of the receiver i′ is stored in a delegate field d in Fd,
and that the address of the sender i is passed in the message instead of i′.
Thus, when the receiver eventually processes this message, any messages it
sends to self during execution will be sent to the delegator i.

Spawn This rule describes the spawning of an actor given a classname n. Spawn-
ing an actor may add multiple actors to the program, namely the actor with
the spawned behaviour and all of its delegates (and all of their delegates, ...).
To create these actors in a single evaluation step we define an auxiliary func-
tion makeActor in Figure 8 that, given a classname n and all classes C, returns
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makeActor(Main, C) = A(i, M, Q, F, Fd, null)
〈∅, C〉 → K(A(i, M, {Msg(i, start, ∅)}, F, Fd, null), C)

Figure 9: Program initialization.

a sequence of newly created actors. The first element of this sequence is the
actor spawned from behaviour n, whose address i′ is the value of the reduced
spawn expression. All newly created actors are added to the configuration.

Congruence This rule relates the local and global reduction rules such that
reductions of local rules also progress the global system.

Finally, the rule in Figure 9 bridges compilation and evaluation, and shows
how to reduce a fully compiled program represented by a tuple 〈∅, C〉 into the
first configuration of the program. The first actor is an instance of the Main class
and contains a start message in its mailbox.

5 Conclusion

Code reusability is an important aspect of software engineering that can improve
software quality and reliability of actor-based systems. We approach this topic in
Section 2 by discussing different kinds of code reusability mechanisms in different
kinds of actor models. The discussed mechanisms do not fulfil 2 requirements
that we find essential for programming actor-based systems: extensibility and
reusability.

We introduce a prototype language in Section 3 called Stella with a be-
haviour composition mechanism based on delegation-based trait composition.
Here, a compound behaviour essentially describes a collection of actors that are
composed at runtime such that some messages are implicitly delegated from one
actor to another. It fulfils the requirement of extensibility because behaviours
can be easily extended with new methods defined elsewhere, and it fulfils self-
containment because every part of a composed behaviour can, by itself, also be
used to create new actors.
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