
HAL Id: hal-02319566
https://inria.hal.science/hal-02319566

Submitted on 18 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Using Trusted Execution Environments for Secure
Stream Processing of Medical Data

Carlos Segarra, Ricard Delgado-Gonzalo, Mathieu Lemay, Pierre-Louis
Aublin, Peter Pietzuch, Valerio Schiavoni

To cite this version:
Carlos Segarra, Ricard Delgado-Gonzalo, Mathieu Lemay, Pierre-Louis Aublin, Peter Pietzuch, et al..
Using Trusted Execution Environments for Secure Stream Processing of Medical Data. 19th IFIP
International Conference on Distributed Applications and Interoperable Systems (DAIS), Jun 2019,
Kongens Lyngby, Denmark. pp.91-107, �10.1007/978-3-030-22496-7_6�. �hal-02319566�

https://inria.hal.science/hal-02319566
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Using Trusted Execution Environments
for Secure Stream Processing of Medical Data

(Case Study Paper)

Carlos Segarra1[0000−0003−3455−7563], Ricard Delgado-Gonzalo1[0000−0002−7183−6257],
Mathieu Lemay1, Pierre-Louis Aublin2

Peter Pietzuch2, and Valerio Schiavoni3[0000−0003−1493−6603]

1 CSEM, Neuchâtel, Switzerland, cse,rdg,mly@csem.ch
2 Imperial College London, United Kingdom, p.aublin,prp@imperial.ac.uk

3 University of Neuchâtel, Switzerland, valerio.schiavoni@unine.ch

Abstract. Processing sensitive data, such as those produced by body sensors,
on third-party untrusted clouds is particularly challenging without compromis-
ing the privacy of the users generating it. Typically, these sensors generate large
quantities of continuous data in a streaming fashion. Such vast amount of data
must be processed efficiently and securely, even under strong adversarial models.
The recent introduction in the mass-market of consumer-grade processors with
Trusted Execution Environments (TEEs), such as Intel SGX, paves the way to
implement solutions that overcome less flexible approaches, such as those atop
homomorphic encryption. We present a secure streaming processing system built
on top of Intel SGX to showcase the viability of this approach with a system
specifically fitted for medical data. We design and fully implement a prototype
system that we evaluate with several realistic datasets. Our experimental results
show that the proposed system achieves modest overhead compared to vanilla
Spark while offering additional protection guarantees under powerful attackers
and threat models.

Keywords: Spark · data streaming · Intel SGX · medical data · case-study

1 Introduction

Internet of Things (IoT) devices are more and more pervasive in our lifes [22]. The num-
ber of devices owned per user is anticipated to increase by 26× by 2020 [19]. These
devices continuously generate all large variety of continuous data. Notable examples
include location-based sensors (e.g., GPS), inertial units (e.g., accelerometers, gyro-
scopes), weather stations, and, the focus of this paper, human-health data (e.g., blood
pressure, heart rate, stress).

These devices usually have very restricted computing power and are typically very
limited in terms of storage capacity. Hence, this continuous processing of data must
be off-loaded elsewhere, in particular for storage and processing purposes. In doing so,
one needs to take into account potential privacy and security threats that stem inherently
from the nature of the data being generated and processed.



2 Segarra et al.

Cloud environments represent the ideal environment to offload such processing.
They allow deployers to hand-off the maintenance of the required infrastructure, with
immediate benefit for instance in terms of scale-out with the workload.

Processing privacy-sensitive data on untrusted cloud platforms present a number of
challenges. A malicious (compromised) Cloud operator could observe and leak data, if
no countermeasures are taken beforehand. While there are software solutions that allow
to operate on encrypted data (e.g., partial [33] or full-homomorphic [24] encryption),
their current computational overhead makes impractical in real-life scenarios [25].

The recent introduction into the mass market of processors with embedded trusted
execution environments (TEEs), e.g., Intel Software Guard Extensions (SGX) [20] (start-
ing from processors with codename Skylake) or ARM TrustZone [1], offer a viable al-
ternative to pure-software solutions. TEEs protect code and data against several types of
attacks, including a malicious underlying OS, software bugs or threats from co- hosted
applications. The application’s security boundary becomes the CPU itself. The code is
executed at near-native execution speeds inside enclaves of limited memory capacity.
All the major Infrastructure-as-a-Service providers (Google [21], Amazon [2], IBM [3],
Microsoft [37]) are nowadays offering nodes with SGX processors.

We focus on the specific use case of processing data streams generated by health-
monitoring wearable devices on untrusted clouds with available SGX nodes. This set-
ting addresses the fact that algorithms for analyzing cardiovascular signals are get-
ting more complex and computation-intensive. Thus, traditional signal-processing ap-
proaches [29] have left the way to deep neural networks [45,43]. This increase in com-
putational expenditure has moved the processing towards centralized centers (i.e., the
cloud) when scaling up to a large fleet of wearable devices is needed. In order to il-
lustrate the concept, we present a system that computes in real time several metrics of
the heart-rate variability (HRV) steaming from wearable sensors. While existing stream
processing solutions exist [46,27], they either lack support for SGX or, if they do sup-
port it, are tied to very specific programming frameworks and prevent adoption in in-
dustrial settings.

The contributions of this case-study paper are twofold. First, we design and imple-
ment a complete system that can process heart-specific signals inside SGX enclaves
in untrusted clouds. Our design leverages SGX-SPARK, a stream processing system
that exploits SGX to execute stream analytics inside TEEs (described in detail in §2).
Note that our design is flexible enough to be used with different stream processing
systems (as further described later). Second, we compare the proposed system against
the vanilla, non-secure Spark. Our evaluation shows that the current overhead of SGX
is reasonable even for large datasets and for high-throughput workloads and that the
technology is almost ready for production environments.

This paper is organized as follows. In §2, we introduce Intel SGX, Spark, and SGX-
SPARK. The architecture of the proposed system is presented in §3, while we further
provide implementation details in §4. We evaluate our prototype with realistic work-
loads in §5 for which include experimental comparisons also against the vanilla Spark.
A summary of related work in the domain of (secure) stream processing is given in §6.
Finally, we present future work (§7) before concluding in §8.



Using TEEs for Secure Stream Processing of Medical Data 3

2 Background

To better understand the design and implementation details, we introduce some techni-
cal background on the underlying technologies that we leverage, as well as some of the
specific features interesting for cardiac signals. In §2.1, we provide background on the
technical aspects exploited in the remaining of this paper, specifically describing the
operating principles of Intel SGX, Spark and its secure counter-part SGX-SPARK. In
§2.2, we describe the specifics of the data streams that the system has to deal with from
the medical domain, such as heart-beat monitoring signals, together with the required
processing that our system allows to offload on an untrusted cloud provider.

2.1 Technical Background

Trusted Execution Environments and Intel SGX. A trusted execution environment
(TEE) is an isolated area of the processor that offers code and data’s confidentiality and
integrity guarantees. TEEs are nowadays available in commodity CPUs, such as ARM
TRUSTZONE and Intel®SGX.

Untrusted Code

1

Create Enclave

2

Call Trusted
Function

7

3

Trusted Code

Call
Gate

4
Execute

5

Return
6

Fig. 1: INTEL SGX execution workflow.

In comparison with ARM TRUST-
ZONE, SGX includes a remote attestation
protocol, support multiple trusted appli-
cations on the same CPU, and its SDK
is easier to program with. As mentioned
earlier, all the major IaaS providers offer
SGX-enabled instances on their cloud of-
fering, hence we decided to base the de-
sign of our system on top of it. Briefly,
the SGX extensions are a set of in-
structions and memory access exten-
sions. These instructions enable applica-
tions to create hardware-protected areas
in their address space, also known as,
enclaves [31]. At initialization time, the
content loaded is measured (via hashing)
and sealed. An application using an en-
clave identifies itself through a remote at-
testation protocol and, once verified, interacts with the protected region through a call
gate mechanism. In particular, Figure 1 breaks down the typical execution workflow
of SGX applications. After the initial attestation protocol, code in the untrusted region
creates an enclave and securely loads trusted code and data inside (Figure-Ê). When-
ever this untrusted code wants to make use of the enclave, it makes a call to a trusted
function (Figure-Ë, Figure-Ì) that gets captured by the call gate mechanism and, after
performing sanity and integrity checks (Figure-Í), gets executed (Figure-Î), the value
returned (Figure-Ï) and the untrusted code can resume execution (Figure-Ð). The se-
curity perimeter is kept at the CPU package and, as a consequence, all other software
including privileged software, OS, hypervisors or even other enclaves are prevented
from accessing code and data located inside the enclave. Most notably, the systems’



4 Segarra et al.

main memory is left untrusted and the traffic between CPU and DRAM over the pro-
tected address range is managed by the Memory Encryption Engine [26].

Spark and Spark Streaming. Spark is a cluster-computing framework to develop
scalable, fault-tolerant, distributed applications. It builds on RDDs, resilient distributed
datasets [46], a read-only collection distributed over a cluster that can be rebuilt if one
partition is lost. It is implemented in SCALA and provides bindings for PYTHON, JAVA,
SQL and R. SPARK STREAMING [47] is an extension of Spark’s core API that en-
ables scalable, high-throughput, fault tolerant stream (mini-batch) processing of data
streams [16]. The proposed system leverages Spark Streaming to perform file-based
streaming, by monitoring a filesystem interface outside the enclave.

SHM

Spark

Worker

Worker

Enclave

Spark Driver

&

Application

Entry Point

Driver

Enclave

T 1 · · · T N

Spark Master

Fig. 2: SGX-SPARK attacker model and collab-
orative structure scheme.

SGX-LKL and SGX-Spark. SGX-
LKL [11] is a library OS to run un-
modified Linux binaries inside enclaves.
Namely, it provides system support for
managed runtimes, e.g., a full JVM.
This feature enables the deployment of
Spark, and Spark Streaming applications
to leverage critical computing inside Intel
SGX with minimal to no modifications to
the application’s code. SGX-SPARK [15]
builds on SGX-LKL. It partitions the
code of Spark applications to execute the
sensitive parts inside SGX enclaves. Fig-
ure 2 depicts its architecture. Basically,
it deploys two collaborative Java Virtual
Machines (JVM), one outside (Figure 2,
Spark Driver) and one inside the enclave
(Figure 2, Driver Enclave) for the driver,
and two more for each worker deployed.
Spark code outside the enclave accesses
only encrypted data. The communication
between the JVMs is kept encrypted and is performed through the host OS shared mem-
ory. SGX-SPARK provides a compilation toolchain, and it currently supports the vast
majority of the native Spark operators, allowing to transparently deploy and run existing
Spark applications into the SGX enclaves.

2.2 Heart Rate Variability Analysis

The data streams used for the evaluation and the algorithms compiled with SGX-
SPARK belong to the medical domain and motivate the real need for confidentiality
and integrity. As further explained in §3, our use case contemplates a scenario where
multiple sensors track the cardiac activity of different users. The two most standard pro-
cedures for monitoring heart activity are electrocardiograms (ECG) and photoplethys-
mograms (PPG). An ECG measures the heart’s electrical activity and is the method
used by, for instance, chest bands. A PPG is an optical measure of the evolution of



Using TEEs for Secure Stream Processing of Medical Data 5

Time (s)

Amplitude (mV )

R0 R1 R2

gateway://data/data file.csv

time
(
R1

)
, time

(
R1

)
- time

(
R0

)
time

(
R2

)
, time

(
R2

)
- time

(
R1

)
.
.
.

Fig. 3: Schematic representation of an ECG signal. It shows three normal beats and the informa-
tion transferred from the sensor to the gateway. The most relevant part of the ECG wave are the R
peaks and the time elapsed between them. The RR intervals together with the R peaks’ timestamp
are sent from the sensor to the gateway.

blood volume over time and is the method used by wrist-based sensors [34]. Both pro-
cedures lead to an approximation of R peaks’ timestamps and the intervals between
them (RR intervals). The generation of the approximated diagram and the time mea-
sures are done inside the sensor. Figure 3 depicts a schematic representation of an ECG
and the values streamed from the sensor to the gateway: R peak’s timestamps and RR
intervals. With healthy individuals’ heart rate (HR) averaging between 60 to 180 beats
per minute (bpm), the average throughput per client is between 23 and 69 bytes per
second. An interesting use case of RR processing, besides HR approximation, is the
study of Heart Rate Variability (HRV). HRV [30] is the variation in the time intervals
between heartbeats and it has been proven to be a predictor of myocardial infarction.
Finally, despite the proposed system being specifically designed for streams with these
data features, its modular design (as we later describe in §3) makes it easy to adapt to
other use-cases.

3 Architecture

The architecture of the proposed system is depicted in Figure 4. It is composed of a
server-side component which executes on untrusted machines (e.g., nodes on the cloud),
where Intel SGX is available. The clients are distributed among remote locations. Each
client is a sensor generating samples, and a gateway aggregating and sending them pe-
riodically every n seconds to the cloud-based component. Similarly, clients fetch the
results at fixed time intervals (i.e., every 5 seconds in our deployments). The interac-
tion between the clients and the server-side components of the system happens over a
filesystem interface. Each client data stream is processed in parallel by the SGX-SPARK
job. In the reminder, we further detail these components.

3.1 Server-side

The server-side component is made by three different modules: a filesystem interface,
the SGX-SPARK engine, and a set of algorithms to analyze HRV. The filesystem inter-
face acts as a landing point for the batches of data generated by each client. It is moni-
tored by the SGX-SPARK engine. Currently, it is mounted and unmounted, respectively



6 Segarra et al.

· · · Client m Client

FileSystem Interface

SGX-Spark Engine

Host Shared Memory

driver-enclave.sh

master.sh

worker-enclave.sh

worker.sh

T1 T2 · · · TN

T1 T2 · · · TN

CSEM HRV
+ Identity
+ SDNN
+ HRVBands

sensor

eclipse-mqtt

mqtt-subscriber

consumer producer

Fig. 4: (Left) Schematic of the system’s main architecture. A set of clients bidirectionally
stream data to a remote server. The interaction is done via a filesystem interface. On the server
side, SGX-SPARK performs secure processing using different HRV analysis algorithms. (Right)
Breakdown of a packaged client: it includes a sensor and gateway that wrap four different mi-
croservices (MQTT broker, mqtt-subscriber, consumer, producer) to interact with the remote
end.

at start-up time and upon the shutdown of the service. The streaming engine and the pool
of algorithms are compiled together by the same toolchain, yet they are independent.
The SPARK engine (deployed in standalone mode) executes: the master process, the
driver process, and an arbitrary number of workers. In the case of SGX-SPARK jobs,
two JVMs are deployed per driver and worker process: one inside an enclave and one
outside. The communication between JVMs is kept encrypted and is done through the
host OS shared memory (see Figure 2). For each JVM pair, SGX-SPARK will initial-
ize a new enclave. The specific algorithm that the system will execute is currently set at
start-up time, although several concurrent ones can be executed, each yielding separated
results.

3.2 Clients

The client is a combination of: (1) a data generator that simulates a sensor and (2)
a gateway that interacts with the remote end. The data generator streams RR intervals.
These samples are gathered by the gateway, which stacks and sends them for processing
in a file-based streaming fashion. The typical size of these batches is in the 230—690
Bytes range. Each gateway is composed by: a message broker that handles the samples,
a service that handles data pre-processing and batch sending, and a fetcher that directly
greps from the server’s filesystem.

3.3 Threat Model

We assume that the communication between the gateway and the filesystem is kept pro-
tected (e.g., encrypted) using secure transfer protocols (more in Section 4). Given this



Using TEEs for Secure Stream Processing of Medical Data 7

assumption, the threat model is the same as typical systems that rely on SGX. Specifi-
cally, we assume the system software is untrusted. Our security perimeter only includes
the internals of the CPU package. The trusted computing base is Intel’s microcode as
well as and the code loaded at the enclave, which can be measured and integrity can be
checked. We assume that in our case the client package is trusted and tamper-proof. We
focus on protecting the areas outside user’s control. However, if the client package is
deployed in, for instance, a RASPBERRY PI, the Trusted Computing Base (TCB) could
be further reduced using ARM TRUSTZONE and OP-TEE [9].

3.4 Known Vulnerabilities

As for the known vulnerabilities, SGX (in particular the memory encryption engine)
is not designed to be an oblivious RAM. As a consequence and adversary can perform
traffic analysis attacks [26]. Moreover, side-channel attacks [38] and speculative ex-
ecution attacks (Spectre-like [13] and Foreshadow [42]) have still successful against
enclaves and will require in-silicon fixes.

4 Implementation

This section presents the further implementation details. To stress-test our evaluation,
we replaced real sensors with synthetic data generators. Additionaly, we deploy a large
number of Docker containers [5] to mimic a fleet of concurrent clients.

4.1 Server-side

We rely on the original SGX-SPARK implementation, and we only modify it to sup-
port a different in-enclave code deployment path, so that the .jar archive is available
inside the enclaves and the shared memory. The application code is implemented in
the Scala programming language [14]. Applications must adhere to the RDD API [10]
to be usable inside the SGX enclaves. We use SGX-SPARK via Structured Streaming
jobs, and must also adhere to the same API. We have implemented two state-of-the-
art HRV analysis algorithms, namely SDNN and HRVBands [39]. The SDNN algorithm
measures the standard deviation of NN (RR in our case) intervals. HRVBands performs
frequency domain calculations: high-frequency (HF) power, low-frequency (LF) power
and HF to LF ratio. For the sake of performance comparison, we also include results
using an identity algorithm, simply reading the input data stream and outputting it.
The implementation of these algorithms rely on basic Spark Streaming operators, and
their corresponding Scala implementations. We use the file-based data stream input for
SPARK streaming.4

4 https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/streaming

https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/streaming


8 Segarra et al.

4.2 Clients

Clients correspond to body-sensors strapped to the body of a user. These are connected
to a gateway, (e.g., a Raspberry Pi) packaged together. Our implementation decou-
ples the clients into into five different microservices (see Figure 4, right). For evalu-
ation purposes, the sensor is a PYTHON service that generates random RR intervals.
These are published into the MQTT queue [8,6] following a uniform time distribu-
tion. The gateway is composed by a MQTT queue and broker service. We rely on
eclipse-mosquitto5, a mqtt-sub service that subscribes to the specific topic and
generates data files with several samples, and a producer and consumer services that
interact with the remote filesystem. These components are implemented in Python, and
consist of 888 Lines of Code (LoC). Our prototype relies on Docker to facilitate the
deployment of new clients, and on docker-compose [4] to easily group orchestrate
their deployment. The communication between the client and the server happens via
SSH/SecureFTP to ensure transport layer security when transferring user’s data.

4.3 Deployment

To ease scalability and reproducibility of both server and client, deployment is orches-
trated by a single script detached from both execution environments. Specifying the
remote location, the SGX-SPARK engine, the streaming algorithm and the filesystem
interface are initialized either container-based or on metal. Specifying the number of
simulated users and their location, a cluster of clients is dynamically started. On exe-
cution time, a Spark streaming service located in a remote server with a master process
and an arbitrary number of Spark workers (or executors) interacts with a standalone
Docker Swarm composed by the cluster of clients, a name discovery service and an
overlay network. This architecture scales to hundreds of clients.

5 Evaluation

In this section, we present the experimental evaluation. We first present the evaluation
settings for both the client and the server components. Then, we describe the metrics
of interest on which we focus our experiments. Finally, we present our results. Our
experiments answer the following questions: (i) is the design of the proposed system
sound? (ii) is our implementation efficient, (iii) what is the overhead of SGX, and (iv)
is it scalable?

5.1 Settings

Clients. Each client (e.g., a body sensor in real-life) is emulated by a standalone Docker
application. We deploy them on a quad-16core (64 hardware cores) AMD EPYC 7281
with 64 GiB of RAM running Ubuntu v18.04 LTS (kernel 4.15.0-42-generic). The
client containers are built and deployed using Docker (v18.09.0) and docker-compose
(v1.23.2). We use docker-machine (v0.16.0) with the virtualbox disk image. Each

5 https://hub.docker.com/_/eclipse-mosquitto/

https://hub.docker.com/_/eclipse- mosquitto/


Using TEEs for Secure Stream Processing of Medical Data 9

machine hosts 20 clients, the maximum number of services supported by its local net-
work, and it registers itself to the Swarm via a name discovery service running on an-
other machine. Inter-container communication rely on the overlay network driver. We
pull the latest images available on Docker Hub for the Consul name discovery service
(v1.4) and the eclipse-mosquitto (v1.5) message broker.

Server. The server components run on host machines with Intel ® Xeon ® CPU
E3-1270 v6 @ 3.80 GHz with 8 cores and 64 GiB RAM. We use Ubuntu 16.04 LTS
(kernel 4.19.0-41900-generic) and the official Intel ® SGX driver v2.0 [7], and SGX-
LKL [11]. We use an internal release of the SGX-SPARK framework.

5.2 Experiment configurations

We compare the results of 3 different systems (or execution modes): the vanilla Spark
(our baseline), the SGX-SPARK system with enclaves disabled (i.e. collaborative JVMs
communicating over SHM which run outside the SGX enclaves) and SGX-SPARK with
enclaves enabled. The latter mode is the one the proposed system runs in. The current
implementation of SGX-SPARK (still under development) does not provide support for
Spark’s Streaming Context inside enclaves. To overcome this temporary limitation,
we evaluate the SDNN and Identity algorithms in batch and stream mode. For the
former, all three different execution modes are supported. For the latter, we present es-
timated results for SGX-SPARK with enclaves enabled, basing the computation time on
the batch execution times and the additional overhead against the other modes. The al-
gorithms are fed with a data file or a data stream, respectively. In the streaming scenario,
an output file is generated every ten seconds. In a multi-client scenario, each client has
a separated data stream (or file) and consequently a different result file. A streaming
execution consists of 5 minutes of the service operating with a specific configuration.
We execute our experiments 5 times and report average and standard deviations.

Metrics. To assess performance, scalability, and efficiency, we consider average
batch processing times for streaming jobs, and elapsed times for batch executions. Note
that we mention batch in two different contexts: batch execution (one static input and
static output) and streaming batches. Spark Streaming divides live input data in chunks
called batches determined by a time duration (10 seconds in our experiments). The time
it takes the engine to process the data therein contained is denoted as batch processing
time. In order to obtain all batch processing times, we rely on the internal Spark’s
REST API [12]. Since the GET request fetches the historic of batch processing times
for the running job, one single query right before finishing the execution provides all
the sufficient informations for our computations. In order to obtain the elapsed times
for batch executions, a simple logging mechanism suffices.

Workload. The clients inject streams as cardiac signals, as shown earlier (§2.2).
Each signal injects a modest workload into our system (230 - 690 bytes per minute).
Hence, to assess the efficiency and the processing time as well as to uncover possi-
ble bottlenecks, we scale up the output rate of these signals with the goal of inducing
more aggressive workloads. We do so in detriment of medical realism, since arbitrary
input workloads do not relate to any medical situation or condition. Table 1 shows the
variations used to evaluate the various execution modes.



10 Segarra et al.

Table 1: Different input loads used for Batch Executions (BE) and Streaming Executions (SE).
We present the sample rate they simulate (i.e. how many RR intervals are streamed per second)
and the overall file or stream size (Input Load).

Experiment s rate (samples / sec) Input Load

BE - Small Load {44,89,178,356,712,1424} {1,2,4,8,16,32} kB
SE - Small Load {44,89,178,356,712,1424} {1,2,4,8,16,32} kB / sec
BE - Big Load {44,89,178,356,712,1424}∗1024 {1,2,4,8,16,32}MB
SE - Big Load {44,89,178,356,712,1424}∗1024 {1,2,4,8,16,32}MB / sec

5.3 Results

Batch Execution: input file size. The configuration for the following experiments is:
one client, one master, one driver, one worker, and a variable input file that progressively
increases in size. We measure the processing (or elapsed) time of each execution and
present the average and standard deviation of experiments with the same configuration.
The results obtained are included in Figure 5.

From the bar plot we highlight that the variance between execution times among
same execution modes as we increase the input file size is relatively low. However,
it exponentiates as we reach input files of 4-8 MB. We also observe that the slow-
down factor between execution modes remains also quite static until reaching the before
mentioned load threshold. SGX-SPARK with enclaves, if input files are smaller than 4
MB, increases execution times x4-5 when compared to vanilla Spark and x1.5-2 when
compared to SGX-SPARK with enclaves disabled. Note that, since a single client in
our real use case streams around 230 to 690 bytes per minute, the current input size
limitation already enables several concurrent clients.

Streaming Execution: input load. As done previously, we scale the load of the
data streams that feed the system. We deploy one worker, one driver and one client,
query the average batch processing time to Spark’s REST API, and present the results
for the Identity and SDNN algorithms. Results are summarized in Figure 6.

We obtain results for vanilla Spark, and SGX-SPARK without enclaves, and we
estimate them for SGX-SPARK with enclaves. We observe similar behavior as those in
Figure 5. Variability among same execution modes when increasing the input stream
size is low until reaching values of around 4 to 8 MB per second. Similarly, the slow-
down factor from vanilla Spark to SGX-SPARK without enclaves remains steady at
around x2-2.5 until reaching the load threshold. As a consequence, it is reasonable to
estimate that the behavior of SGX-SPARK with enclaves will preserve a similar slow-
down factor (×4-×5) when compared with vanilla Spark in streaming jobs. Similarly,
the execution time will increase linearly with the input load after crossing the load
threshold of 4 MB. Note as well how different average batch processing times are in
comparison with elapsed times, in spite of relatively behaving similar. The average of
streaming batch processing times smoothens the initial overhead of starting the Spark
engine, and data loading times are hidden under previous batches’ execution times.



Using TEEs for Secure Stream Processing of Medical Data 11

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16 32A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Input File Size (kB)

Batch Identity

Vanilla Spark
SGX−Spark w/o Enclaves
SGX−Spark w/ Enclaves

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 32A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Input File Size (kB)

Batch SDNN

Vanilla Spark
SGX−Spark w/o Enclaves
SGX−Spark w/ Enclaves

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 32A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Input File Size (MB)

Batch Identity

Vanilla Spark
SGX−Spark w/o Enclaves
SGX−Spark w/ Enclaves 5

1
.5

4
 s

 

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16 32A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Input File Size (MB)

Batch SDNN

Vanilla Spark
SGX−Spark w/o Enclaves
SGX−Spark w/ Enclaves 6

3
.5

3
 s

 �

1
1
4
.7

8
 s

 

Fig. 5: Evolution of the average elapsed time, together with its standard deviation, as we increase
the size of the input file. We compare the three different execution modes for each algorithm.
Mode SGX-SPARK w/ enclaves is the mode our system runs in.



12 Segarra et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 4 8 16 32A
v
g
. 
B

a
tc

h
 P

ro
c
e
s
s
in

g
 T

im
e
 (

s
)

Input Load (kB / s)

Streaming Identity

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves (EST)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 16 32A
v
g
. 
B

a
tc

h
 P

ro
c
e
s
s
in

g
 T

im
e
 (

s
)

Input Load (kB / s)

Streaming SDNN

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves (EST)

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8 16 32A
v
g
. 
B

a
tc

h
 P

ro
c
e
s
s
in

g
 T

im
e
 (

s
)

Input Load (MB / s)

Streaming Identity

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves (EST)

3
.6

3
 s

 

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 8 16 32A
v
g
. 
B

a
tc

h
 P

ro
c
e
s
s
in

g
 T

im
e
 (

s
)

Input Load (MB / s)

Streaming SDNN

Vanilla Spark
SGX−Spark w/o Enclaves

SGX−Spark w/ Enclaves (EST)

5
.4

5
 s

 �

9
.8

1
 s

 

Fig. 6: Evolution of the average batch processing time as we increase the the input file size.
We compare the results of the three different execution modes. Note that those corresponding to
SGX-SPARK w/ enclaves are estimated basing on the results in Figure 5 and the slow-down with
respect to the other execution modes.



Using TEEs for Secure Stream Processing of Medical Data 13

6 Related Work
Stream processing has recently attracted a lot of attention from academia and indus-
try [28,32,44]. Apache Spark [46] is arguably the de-facto standard in this domain,
by combining batch and stream processing with a unified API [48]. Apache Spark
SQL [18] allows to process structured data by integrating relational processing with
Spark’s functional programming style. Structured streaming [17] leverages Spark SQL
and it compares favorably against the discretized counterpart [47]. However, the former
lacks security or privacy guarantees, and hence it was not considered. The proposed
system relies on SGX-SPARK, as it directly extends Spark with SGX support.

Opaque [49] is a privacy-preserving distributed analytics system. It leverages Spark
SQL and Intel SGX enclaves to perform computations over encrypted Spark DataFrames.
In encryption mode, Opaque offers security guarantees similar to the proposed sys-
tem. However, (1) the Spark master must be co-hosted with the client, a scenario not
supported by our multi-client setting and (2) it requires changes to the application code.
In oblivious mode, i.e., protecting against traffic pattern analysis attacks, it can be up
to 46× slower, a factor not tolerable for the real-time analytics in our setting. Secure-
Streams [27] is a reactive framework that exploits Intel SGX to define dataflow pro-
cessing by pipelining several independent components. Applications must be written in
the Lua programming language, hindering its applicability to legacy systems or third-
party programs. DPBSV [35] is a secure big data stream processing framework that
focuses on securing data transmission from the sensors or clients to the Data Stream
Manager (DSM) or server. Its security model requires a PKI infrastructure and a dy-
namic prime number generation technique to synchronously update the keys. In spite
of using trusted hardware on the DSM end for key generation and management, the
server-side processes all the data in clear, making the framework not suitable for our
security model.

Homomorphic encryption [23] does not rely on trusted execution environments and
offers the promise of providing privacy-preserving computations over encrypted data.
While several works analyzed the feasibility of homomorphic encryption schemes in
cloud environments [41,40], the performance of homomorphic operations [25] is far
from being pragmatic.

Further, for the specific problem of HRV analysis, while periodic monitoring solu-
tions exist [36], they are focused on embedded systems. As such, since they off-load
computation to third-party cloud services, these solutions simply overlook the privacy
concerns that the proposed system considers.

To the best of our knowledge, there are no privacy-preserving real-time streaming
systems specifically designed for medical and cardiac data. The proposed system fills
this gap by leveraging Intel SGX enclaves to compute such analytics over public un-
trusted clouds without changing the existing Java- or Scala-based source code.

7 Future Work

The current prototype can be improved along several dimensions. First, we envision to
support clients running inside ARM TrustZone: this TEE is widely available in low-
power devices (e.g., Raspberry PI), hence makes an ideal candidate to reduce the TCB



14 Segarra et al.

in the client-side of the architecture. Second, we intend to improve the plug-in mecha-
nism for additional analysis of the data, as currently a given algorithm is set at deploy-
time, while it is expected to load/unload those at runtime. Thirdly, we intend to study
the cost of deployment of such system over public cloud infrastructures such as AWS
Confidential Computing.

8 Conclusion

We presented a stream-processing architecture and implementation that leverage Spark-
SGX to overcome privacy concerns of deploying such systems over untrusted public
clouds. Its design allows to easily scale to different types of data generators (e.g., the
clients). The processing components that execute on the cloud rely on SGX-SPARK, a
stream processing framework that can executes Spark jobs within SGX enclaves. Our
evaluation shows that for typical signal processing, despite an observed overhead of
4×−5× induced by the current experimental version of SGX-SPARK, the performance
is still practical. This suggests that it will be possible in a near-future to deploy such
systems on a production-ready environment with performances that can easily satisfy
even strict Service Level Agreements, while keeping maintaining the costs to use the
cloud infrastructure reasonable. We intend to release the code as open-source.

9 Acknowledgements

We are grateful to the members of the LSDS Team 6 at Imperial College London to
have provided us early access to SGX-SPARK.

6 https://lsds.doc.ic.ac.uk/

https://lsds.doc.ic.ac.uk/


Using TEEs for Secure Stream Processing of Medical Data 15

References

1. ARM TrustZone Developer. https://developer.arm.com/technologies/trustzone
2. Coming Soon: Amazon EC2 C5 Instances, the next generation of Compute Optimized in-

stances. http://amzn.to/2nmIiH9
3. Data-in-use protection on IBM Cloud using Intel SGX. https://www.ibm.com/blogs/

bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/
4. Docker Documentation: Docker Compose. https://docs.docker.com/compose/
5. Docker: What is a Container? https://www.docker.com/resources/what-container
6. Eclipse Paho MQTT Implementation. https://www.eclipse.org/paho/
7. Intel Software Guard Extension for Linux OS Driver on GitHub. https://github.com/

intel/linux-sgx-driver
8. MQTT Communication Protocol. http://mqtt.org/
9. Open Portable Trusted Execution Environment. https://www.op-tee.org

10. RDD Programming Guide. https://spark.apache.org/docs/latest/
rdd-programming-guide.html

11. SGX-LKL on Github. https://github.com/lsds/sgx-lkl
12. Spark Documentation: REST API. https://spark.apache.org/docs/latest/

monitoring.html#rest-api
13. Spectre Attack SGX on Github. https://github.com/lsds/spectre-attack-sgx
14. The Scala Programming Language. https://www.scala-lang.org/
15. D3.2 SecureCloud: Specification and Implementation of Reusable Secure Microservices.

https://www.securecloudproject.eu/wp-content/uploads/D3.2.pdf (2017)
16. Apache Foundation: Spark streaming programming guide. https://spark.apache.org/

docs/2.2.0/streaming-programming-guide.html
17. Armbrust, M., Das, T., Torres, J., Yavuz, B., Zhu, S., Xin, R., Ghodsi, A., Stoica, I., Zaharia,

M.: Structured streaming: A seclarative API for real-time applications in Apache Spark. In:
ACM SIGMOD’18

18. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X., Kaftan, T.,
Franklin, M.J., Ghodsi, A., Zaharia, M.: Spark SQL: Relational data processing in Spark. In:
ACM SIGMOD’15

19. Barbosa, M., Mokhtar, S.B., Felber, P., Maia, F., Matos, M., Oliveira, R., Riviere, E., Schi-
avoni, V., Voulgaris, S.: SAFETHINGS: Data security by design in the IoT. In: IEEE
EDCC’17

20. Costan, V., Devadas, S.: Intel SGX explained. IACR’16
21. Darrow, B.: Google is first in line to get Intel’s next-gen server chip. http://for.tn/

2lLdUtD
22. Gartner: Leading the IoT Gartner Insights on how to lead in a connected world (2017)
23. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM STOC’09
24. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:

CRYPTO’12
25. Göttel, C., Pires, R., Rocha, I., Vaucher, S., Felber, P., Pasin, M., Schiavoni, V.: Security,

performance and energy trade-offs of hardware-assisted memory protection mechanisms. In:
IEEE SRDS’18

26. Gueron, S.: A memory encryption engine suitable for general purpose processors. IACR’16
27. Havet, A., Pires, R., Felber, P., Pasin, M., Rouvoy, R., Schiavoni, V.: SecureStreams: A reac-

tive middleware framework for secure data stream processing. In: ACM DES’17
28. Koliousis, A., Weidlich, M., Castro Fernandez, R., Wolf, A.L., Costa, P., Pietzuch, P.:

SABER: Window-based hybrid stream processing for heterogeneous architectures. In: ACM
SIGMOD’16

https://developer.arm.com/technologies/trustzone
http://amzn.to/2nmIiH9
https://www.ibm.com/blogs/bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/
https://www.ibm.com/blogs/bluemix/2018/05/data-use-protection-ibm-cloud-using-intel-sgx/
https://docs.docker.com/compose/
https://www.docker.com/resources/what-container
https://www.eclipse.org/paho/
https://github.com/intel/linux-sgx-driver
https://github.com/intel/linux-sgx-driver
http://mqtt.org/
https://www.op-tee.org
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://github.com/lsds/sgx-lkl
https://spark.apache.org/docs/latest/monitoring.html#rest-api
https://spark.apache.org/docs/latest/monitoring.html#rest-api
https://github.com/lsds/spectre-attack-sgx
https://www.scala-lang.org/
https://www.securecloudproject.eu/wp-content/uploads/D3.2.pdf
https://spark.apache.org/docs/2.2.0/streaming-programming-guide.html
https://spark.apache.org/docs/2.2.0/streaming-programming-guide.html
http://for.tn/2lLdUtD
http://for.tn/2lLdUtD


16 Segarra et al.

29. Kumar, A., Shaik, F., Rahim, B.A., Kumar, D.S.: Signal and image processing in medical
applications. Springer (2016)

30. Malik, M.: Heart rate variability: Standards of measurement, physiological interpretation,
and clinical use. Circulation

31. McKeen, F., Alexandrovich, I., Berenzon, A., Rozas, C.V., Shafi, H., Shanbhogue, V.,
Savagaonkar, U.R.: Innovative instructions and software model for isolated execution. In:
HASP’13

32. Miao, H., Park, H., Jeon, M., Pekhimenko, G., McKinley, K.S., Lin, F.X.: StreamBox: Mod-
ern stream processing on a multicore machine. In: USENIX ATC’17

33. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: EU-
ROCRYPT’99

34. Parák, J., Tarniceriu, A., Renevey, P., Bertschi, M., Delgado-Gonzalo, R., Korhonen, I.: Eval-
uation of the beat-to-beat detection accuracy of PulseOn wearable optical heart rate monitor.
In: IEEE EMBC’15

35. Puthal, D., Nepal, S., Ranjan, R., Chen, J.: DPBSV – An efficient and secure scheme for big
sensing data stream. In: IEEE TRUSTCOM’15

36. Renevey, P., Delgado-Gonzalo, R., Lemkaddem, A., Verjus, C., Combertaldi, S., Rasch, B.,
Leeners, B., Dammeier, F., Kübler, F.: Respiratory and cardiac monitoring at night using a
wrist wearable optical system. In: IEEE EMBC’18

37. Russinovich, M.: Introducing Azure Confidential Computing. https://azure.
microsoft.com/en-us/blog/introducing-azure-confidential-computing/

38. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard extension:
Using SGX to conceal cache attacks. In: DIMVA’17

39. Shaffer, F., Ginsberg, J.P.: An overview of heart rate variability metrics and norms. Frontiers
in Public Health

40. Stephen, J.J., Savvides, S., Sundaram, V., Ardekani, M.A., Eugster, P.: STYX: Stream pro-
cessing with trustworthy cloud-based execution. In: ACM SoCC’16

41. Tetali, S.D., Lesani, M., Majumdar, R., Millstein, T.: MrCrypt: Static analysis for secure
cloud computations. In: ACM OOPSLA’13

42. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Silberstein, M.,
Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. In: USENIX Security’18

43. Van Zaen, J., Chételat, O., Lemay, M., Calvo, E.M., Delgado-Gonzalo, R.: Classification of
cardiac arrhythmias from single lead ECG with a convolutional recurrent neural network. In:
BIOSTEC’19

44. Venkataraman, S., Panda, A., Ousterhout, K., Armbrust, M., Ghodsi, A., Franklin, M.J.,
Recht, B., Stoica, I.: Drizzle: Fast and adaptable stream processing at scale. In: ACM OSP’17

45. Xiong, Z., Nash, M., Cheng, E., Fedorov, V., Stiles, M., Zhao, J.: ECG signal classifica-
tion for the detection of cardiac arrhythmias using a convolutional recurrent neural network.
Physiological Measurement (Aug 2018)

46. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster comput-
ing with working sets. In: USENIX HotCloud’10

47. Zaharia, M., Das, T., Li, H., Shenker, S., Stoica, I.: Discretized streams: An efficient and
fault-tolerant model for stream processing on large clusters. In: USENIX HotCloud’12

48. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J.,
Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache
Spark: A unified engine for big data processing. Commun. ACM’16

49. Zheng, W., Dave, A., Beekman, J.G., Popa, E.A., Gonzalez, J.E., Stoica, I.: Opaque: An
oblivious and encrypted distributed analytics platform. In: USENIX NSDI’17

https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/

	Using Trusted Execution Environmentsfor Secure Stream Processing of Medical Data(Case Study Paper)

