
HAL Id: hal-02313747
https://inria.hal.science/hal-02313747

Submitted on 11 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Certifying Distributed Algorithms: Problem of Local
Correctness
Kim Völlinger

To cite this version:
Kim Völlinger. On Certifying Distributed Algorithms: Problem of Local Correctness. 39th Interna-
tional Conference on Formal Techniques for Distributed Objects, Components, and Systems (FORTE),
Jun 2019, Copenhagen, Denmark. pp.281-288, �10.1007/978-3-030-21759-4_16�. �hal-02313747�

https://inria.hal.science/hal-02313747
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

On Certifying Distributed Algorithms:
Problem of Local Correctness

K. Völlinger

Humboldt University of Berlin, Germany
voellinger@hu-berlin.de

Abstract. A certifying distributed algorithm (CDA) is a runtime ver-
ification method for distributed systems. Additionally to each output,
a CDA computes a witness – a correctness argument for the particular
output. If the witness is verified at runtime, the output is correct. The
output is distributed over the system with each component holding its
part of the distributed output.
In this paper, we investigate the case where the verification at runtime
fails. Assume one component computes its part of the distributed output
incorrectly. As a consequence, the distributed output is incorrect and the
verification fails. Some components may still hold a correct part of the
output. That is why we introduce the problem of local correctness of a
component: Is a component’s part of the output correct? As a case study,
we investigate local correctness for a CDA computing shortest paths as
used in distance-vector routing.

1 Introduction

A major problem in software engineering is assuring the correctness of a dis-
tributed system. A distributed algorithm runs on a distributed system where
components communicate with each other in order to solve a common problem.
The correctness of a distributed algorithm and of its implementation is crucial
for the correctness of a distributed system. While formal verification is often
too costly, testing is not sufficient if the system is of critical importance. Run-
time verification tries to bridge this gap; it is not complete since verification at
runtime can fail but it is a formal method based on mathematical reasoning.

Certifying Distributed Algorithms. A certifying distributed algorithm
(CDA) is a runtime verification method. In order to verify its input-output pair
(i, o), a CDA additionally computes a witness w such that if a witness predi-
cate holds for the triple (i, o, w), the input-output pair (i, o) is correct [10]. A
distributed checker algorithm decides the witness predicate at runtime [9]. To
enable distributed checking, the witness predicate is distributable, i.e. a property
in the system is expressed by stating properties for each component [7]. As an
example of a witness, consider a distributed algorithm where the components of
a network decide whether the network graph itself is bipartite. In case of a non-
bipartite network graph, an odd cycle in the graph is a witness since an odd cycle
is not bipartite itself. The witness predicate states that an odd cycle exists in

the network. A distributable variant of this witness is given in [7]. With a CDA,
a user does not have to trust the distributed algorithm, its implementation or
execution but only the checker. With a well-chosen witness, the checker is simple
and its verification feasible [9,8]. The idea of a CDA is to adapt the underlying
algorithm of a program at design-time such that it verifies its input-output pair
at runtime. In the typical setup of runtime verification, a system is instrumented
to send outputs to a trusted monitor which decides if a given property holds [3].
Analogously, a CDA is instrumented to compute a witness and send it to the
checker which decides if the input-output pair is correct.

Contribution of this Paper. The input, output and witness of a CDA are
distributed over the system with each system’s component holding its part. In
this paper, we assume that one component computes its part of the output in-
correctly. As a consequence, the distributed output is incorrect and verification
fails at runtime, i.e. the checker rejects. However, the outputs of some compo-
nents computed may still be correct. That is why we introduce the problem of
local correctness of a component: Is a component’s part of the output correct?
As a case study, we investigate local correctness for a CDA computing shortest
paths [10] as used in distance-vector routing [6].

Related Work. Certifying sequential algorithms are well established [5] but
there is little work on certifying distributed algorithms [10,8,7,9,1]. However,
CDAs can be classified as a distributed and choreographed runtime verification
approach since the checker is a distributed algorithm, as well as a synchronous
runtime verification approach since the system waits for the checker to accept [2].
To our knowledge, there is no work on the problem of local correctness.

2 Preliminaries: Certifying Distributed Algorithms

As distributed systems, we consider networks that are asynchronous (i.e. no
global clock), static (i.e. unchanged topology) and id-based (i.e unique iden-
tifiers). We model the communication topology of a network as a connected
undirected graph N = (V,E): a vertex represents a component, an edge a chan-
nel. A distributed algorithm describes for each component a reactive algorithm
such that all components together solve one problem (e.g. leader election or
coloring) [4,6]. The input i of a distributed algorithm is distributed such that
each component v ∈ V has its input iv and i = ∪v∈V iv; analogously for the
output. A CDA computes a distributed witness w additionally to its input-
output pair (i, o) such that if a predicate (the witness predicate) holds for the
triple (i, o, w), the pair (i, o) is correct [10]. We call a predicate that is defined
over a component’s input, output and witness a local predicate. A predicate
Γ is universally distributable with a local predicate γ if for all triples (i, o, w)
holds (∀v ∈ V : γ(iv, ov, wv)) −→ Γ (i, o, w), and existentially distributable if
(∃v ∈ V : γ(iv, ov, wv)) −→ Γ (i, o, w). A predicate is distributable if one of the
former applies, or if the predicate is implied by conjuncted and/or disjuncted
universally/existentially distributable predicates [7]. The witness predicate is dis-
tributable, and can be decided by a distributed checker algorithm at runtime.

Each component v has a checker algorithm that decides all local predicates over
(iv, ov, wv). Using a spanning tree, the checkers of the components aggregate the
evaluated local predicates upwards and combine them by logical conjunction or
disjunction depending on whether the according predicate is universally or exis-
tentially distributable; the root decides the witness predicate by combining the
evaluated distributable predicates [9]. Hence, if the distributed checker accepts,
the distributed input-output pair (i, o) is correct. The user of a CDA does not
have to trust the actual algorithm but the distributed checker. The simplicity of
the checker depends on the choice of the witness. Using the framework proposed
in [8,9], an implemented distributed checker can be verified.

Certifying Distributed Shortest Path Computation. A certifying vari-
ant of the distributed Bellman-Ford Algorithm computing shortest paths in a
network is described in [10]. We assume a network N = (V,E) where the chan-
nels have positive costs cost : E → R>0. The length of a path is the sum of
the costs of its edges. We assume one special vertex, the source s. The length
of a shortest path from the source to a vertex v is the distance of v. A function
Ds : V → R≥0 is a distance function for s iff [5]:

Ds(s) = 0 (1)
for each (u, v) ∈ E : Ds(v) ≤ Ds(u) + cost(u, v) (2)

for each v ∈ V, v 6= s there exists (u, v) ∈ E : Ds(v) = Ds(u) + cost(u, v) (3)

The distributed Bellman-Ford algorithm [6] solves the shortest path problem;
each component v computes its distance vDs to the source s. Note that we
distinguish the computed distance vDs from the actual distance Ds(v) since the
computed distance could be incorrect. In the certifying variant, each component
v additionally computes its part of the witness: the computed distances of its
neighbors, and a neighbor with which the property (3) holds – its parent in the
shortest path tree. The witness predicate is satisfied iff the properties (1)-(3)
hold. The checker of each component v decides the properties (1)-(3) as local
predicates for v. The witness predicate is universally distributable. Hence, if
the checker of each component accepts, the distributed checker accepts and all
computed distances are correct.

3 Problem: Local Correctness of a Component

We assume a CDA with a distributed checker for some problem. We know if the
distributed checker accepts, the particular distributed input-output pair is cor-
rect. We assume that one component is faulty and computes its part of the output
incorrectly. As a consequence, the distributed output is incorrect. Thereby, the
witness predicate does not hold and the distributed checker rejects. Hence, the
verification at runtime fails. A solution could be to repeat the whole computation
or to use another distributed algorithm. However, while the output of some com-
ponents may be affected by the incorrect output of the faulty component, other
components may still hold a correct part of the output. That is why we introduce

the problem of local correctness of a component: Is the output of a component
correct? In some scenarios, it might be interesting to identify and keep correct
parts of the output rather than repeating the computation. Hence, we think local
correctness is worth to investigate. Note that local correctness requires that we
know what correctness of a part of the distributed output means.

3.1 Case Study: Local Correctness in Shortest Paths Computation

We conduct a case study on local correctness for certifying shortest path com-
putation as introduced in Section 2. We elaborate whether witness and checker
are helpful in deciding local correctness. We assume that a component v 6= s
computes its output vDs incorrectly but with the right type (i.e. a positive num-
ber). Hence, vDs 6= Ds(v), vDs ≥ 0 and v 6= s. Each component u 6= v computes
its output uDs logically consistent to the faulty output vDs. Logically consistent
means that for each component u 6= v holds

uDs = 0 if u is the source (4)
uDs ≤ wDs + cost(u,w) for all neighbors w of u (5)
uDs = wDs + cost(u,w) for at least one neighbor w (6)

The properties (4)-(6) are equal to the properties (1)-(3) characterizing the
distance function except that we are stating them for the computed outputs
and only for the non-faulty components. The computed distances represent the
distance function Ds iff the characterization properties hold for all components.
Since v’s output is incorrect, the output uDs can be correct (uDs = Ds(u)) or
incorrect (uDs 6= Ds(u)) even though the properties (4)-(6) hold for u.

Identifying the Faulty Component using the Checker. Since the wit-
ness predicate is universally distributable, the distributed checker rejects iff at
least one checker of a component rejects. The checker of the faulty component v
rejects. If vDs > Ds(v), the inequality (5) does not hold. There exists a neighbor
w of v such that Ds(v) = Ds(w) + cost(v, w). Hence, vDs > Ds(w) + cost(v, w).
In case of vDs < Ds(v), the equality (6) does not hold.

For each component u 6= v, the checker of u accepts. Since u’s output is
logically consistent, the properties (4)-(6) hold for u. We can identify the faulty
component by the rejection pattern of the distributed checker since exactly the
checker of v rejects. Moreover, the checker of v can even decide whether v com-
puted its distance too great or too small.

Fault Propagation. In the following, we investigate the local correctness
of a component by studying fault propagation into several subnetworks. To ex-
emplify, we consider the network N and a partitioning in the subnetworks I-VI
highlighted in gray boxes as shown in Fig. 1. For simplicity, we omit the cost of
a channel in the illustration. We argue under which circumstances the compo-
nents of a subnetwork hold a correct part of the output. For our reasoning, we
use arguments about the checker, witness and topology. We chose the topology of
the network such that we can illustrate all topology-based arguments. However,
arguments depending on the checker and witness are topology independent.

s

v

IV II
I

V VI
III

a)

b)

Network N with
subnetworks I-VI:

s is the source.
v is the faulty component.
 shows the parent relation
(only in subnetwork VI)
with the arrow pointing to a child.

x

Fig. 1. Example network to illustrate fault propagation into subnetworks. Costs of
channels are omitted. The parent relation is shown only in subnetwork VI.

Subnetwork I and II. Subnetwork I contains only the faulty component
v, and by assumption, v’s output is incorrect. Moreover, v is not the source s
which is the only component in subnetwork II. The source’s output is logically
consistent, and therefore the equation (4) holds. As a consequence, the source’s
output sDs = 0 is correct.

Subnetwork III. For each component u of the subnetwork III, the output
uDs is incorrect since each path from s to u has to contain v. More precisely,
a component u computes its distance to v correctly as Dv(u). Hence, uDs =
Dv(u)+vDs. If the output uDs would be correct, then uDs = Dv(u)+Ds(v), and
since each path from s to u contains v, it follows vDs = Ds(v). A contradiction
to our assumption vDs 6= Ds(v). Thus, uDs 6= Ds(u) for all components u of
subnetwork III.

Subnetwork IV. For each component u of the subnetwork IV, the output
uDs is correct. The output uDs could be only affected by the faulty output vDs

if the shortest path from s to u would contain v. Such an s-u path would contain
s at least twice. Since all costs of the channels and the faulty output vDs are
positive, such a path would never be computed as a shortest path. Hence, the
fault of v does not propagate into the subnetwork IV.

Subnetwork V. For each component u of the subnetwork V, its output uDs

is correct if the component v computed its distance too great: vDs > Ds(v). Note
that Ds(v) = Dx(v) + Ds(x), and hence, vDs > Dx(v) + Ds(x). Moreover, for
each component u holds Ds(u) ≤ Ds(x) due to the positive costs of channels.

Subnetwork VI. For the subnetwork VI, we additionally consider the com-
puted shortest path tree indicated by the computed parent relation. Using the
parent relation, we distinguish components which are non-descendants of com-
ponent v from components which are descendants of v.

Subnetwork VI a. The subnetwork VI a) contains the non-descendants
of v of the subnetwork VI. If the component v computed its output vDs too
small (vDs < Ds(v)), then all components of subnetwork VI a) have the correct
output. The reason is that these components did not choose the component v as
ancestor even though v offered an even smaller distance than it actually has.

Subnetwork VI b. The subnetwork VI b) contains the descendants of v.
Hence, a component u of the subnetwork VI b) has the output uDs = Dv(u) +

vDs. Hence, the output uDs is potentially faulty. In contrast to the outputs
of the components of the subnetwork III, uDs = Ds(u) could still hold since
there could be an s-u path without v which is a shortest and has the same sum
uDs. Furthermore, note that, in the case of vDs > Ds(v), the parent relation in
subnetwork VI b) is part of an actual shortest path tree since these components
chose v as an ancestor even though v offered a greater distance than it actually
has.

Cut Vertices. For the example network (Fig 1), we draw some conclusions
based on the topology. The components s, v and x are cut vertices, i.e. their
removal increases the number of connected components. Those cut vertices are
particularly interesting for fault propagation in our case study. Arguments using
cut vertex x work for any cut vertex that separates the source and faulty com-
ponent into different connected components. There are algorithms to detect cut
vertices in a network [11]. However, for a static network, cut vertices could be
known by initialization.

Arbitrary Topology. Some networks have no cut vertices. The arguments
based on the computed parent relation are independent of the topology. The par-
ent relation is part of the distributed witness. Moreover, the distributed checker
identifies the faulty component v, and indicates whether v computed its distance
too great or too small – both independent of the topology. Hence, the witness
and the checker help in deciding local correctness for some components.

4 Discussion

We introduced the problem of local correctness of a component. We investigated
local correctness in the context of a CDA where the runtime verification of a
distributed input-output pair fails due to a faulty component. In particular, we
conducted a case study of a CDA computing shortest paths, as for example used
in distance-vector routing. In order to tackle local correctness, we investigated
how a fault propagates through a network. We decided local correctness in sub-
networks using the distributed checker, the distributed witness and the topology.
We consider investigating local correctness in the context of a CDA promising
since the distributed witness gives additional insight, being an argument for the
correctness of an input-output pair.

Future Work. The case study could be extended by allowing the source
to be faulty or by having several faulty components. Another direction is to
study other problems. To study local correctness for a problem, there has to be
a specification about the correctness of a component’s output. Such a specifi-
cation does not always come as natural as for the shortest path computation.
Assume the problem of leader election where the components elect a unique
leader among them. It is not straightforward what a correct leader election of
a single component is since agreement on a leader is part of the problem. By
relaxing local correctness of a component’s output to the correctness of the out-
puts of a subnetwork, local correctness would be probably interesting for more
problems.

References

1. Akili, S., Völlinger, K.: Case Study on Certifying Distributed Algorithms: Reduc-
ing Intrusiveness. In: Lecture Notes in Computer Science: 8th IPM International
Conference on Fundamentals of Software Engineering. Springer (2019), to appear

2. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime Verification for Decentralised
and Distributed Systems. In: Lectures on Runtime Verification, pp. 176–210.
Springer (2018)

3. Hallé, S.: When RV Meets CEP. In: Falcone, Y., Sánchez, C. (eds.) Runtime Verifi-
cation: 16th International Conference, RV 2016, Madrid, Spain, September 23–30,
2016, Proceedings. pp. 68–91. Springer International Publishing, Cham (2016),
http://dx.doi.org/10.1007/978-3-319-46982-9_6

4. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (1996)

5. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying Algorithms.
Computer Science Review 5, 119–161 (2011)

6. Raynal, M.: Distributed Algorithms for Message-Passing Systems. Springer Berlin
Heidelberg (2013)

7. Völlinger, K.: Verifying the Output of a Distributed Algorithm Using Certification,
pp. 424–430. Springer International Publishing, Cham (2017), https://doi.org/
10.1007/978-3-319-67531-2_29

8. Völlinger, K., Akili, S.: Verifying a Class of Certifying Distributed Programs.
In: Barrett, C., Davies, M., Kahsai, T. (eds.) NASA Formal Methods - 9th In-
ternational Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10227, pp. 373–388 (2017),
https://doi.org/10.1007/978-3-319-57288-8_27

9. Völlinger, K., Akili, S.: On a Verification Framework for Certifying Distributed
Algorithms: Distributed Checking and Consistency. In: Baier, C., Caires, L. (eds.)
Formal Techniques for Distributed Objects, Components, and Systems - 38th IFIP
WG 6.1 International Conference, FORTE 2018, Held as Part of the 13th Inter-
national Federated Conference on Distributed Computing Techniques, DisCoTec
2018, Madrid, Spain, June 18-21, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 10854, pp. 161–180. Springer (2018), https://doi.org/10.1007/
978-3-319-92612-4_9

10. Völlinger, K., Reisig, W.: Certification of Distributed Algorithms Solving Problems
with Optimal Substructure. In: Calinescu, R., Rumpe, B. (eds.) Software Engineer-
ing and Formal Methods - 13th International Conference, SEFM 2015, York, UK,
September 7-11, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9276,
pp. 190–195. Springer (2015)

11. Xiong, S., Li, J.: An efficient algorithm for cut vertex detection in wireless sensor
networks. In: Proceedings of the 2010 IEEE 30th International Conference on Dis-
tributed Computing Systems. pp. 368–377. ICDCS ’10, IEEE Computer Society,
Washington, DC, USA (2010), http://dx.doi.org/10.1109/ICDCS.2010.38

http://dx.doi.org/10.1007/978-3-319-46982-9_6
https://doi.org/10.1007/978-3-319-67531-2_29
https://doi.org/10.1007/978-3-319-67531-2_29
https://doi.org/10.1007/978-3-319-57288-8_27
https://doi.org/10.1007/978-3-319-92612-4_9
https://doi.org/10.1007/978-3-319-92612-4_9
http://dx.doi.org/10.1109/ICDCS.2010.38

	On Certifying Distributed Algorithms: Problem of Local Correctness

