
HAL Id: hal-02313740
https://inria.hal.science/hal-02313740

Submitted on 11 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Model Checking HPnGs in Multiple Dimensions:
Representing State Sets as Convex Polytopes

Jannik Hüls, Anne Remke

To cite this version:
Jannik Hüls, Anne Remke. Model Checking HPnGs in Multiple Dimensions: Representing State Sets
as Convex Polytopes. 39th International Conference on Formal Techniques for Distributed Objects,
Components, and Systems (FORTE), Jun 2019, Copenhagen, Denmark. pp.148-166, �10.1007/978-3-
030-21759-4_9�. �hal-02313740�

https://inria.hal.science/hal-02313740
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1

Model checking HPnGs in multiple dimensions:
representing state sets as convex polytopes

Jannik Hüls1 and Anne Remke1

Westfälische Wilhelms-Universität, Münster, Germany
{jannik.huels; anne.remke}@uni-muenster.de

Abstract. Hybrid Petri Nets with general transitions (HPnG) include
general transitions that fire after a randomly distributed amount of time.
Stochastic Time Logic (STL) expresses properties that can be model
checked using a symbolic representation for sets of states as convex poly-
topes. Model checking then performs geometric operations on convex
polytopes. The implementation of previous approaches was restricted to
two stochastic firings. This paper instead proposes model checking al-
gorithms for HPnGs with an arbitrary but finite number of stochastic
firings and features an implementation based on the library HyPro.

1 Introduction

Hybrid systems combine continuous and discrete behavior and are used to model
and verify safety-critical systems. Different approaches exist for the reachability
analysis of Hybrid automata, e.g., flowpipe construction for different state-space
representations [23, 21, 12]. Hybrid Petri nets form a subclass of Hybrid automata
[2] and have further been extended to Hybrid Petri nets with general transitions
(HPnGs) in [14], that fire stochastically after a random delay. They form a sub-
class of stochastic hybrid systems with piece-wise linear continuous behaviour
without resets and a probabilistic resolution of discrete non-determinism. Albeit
these restrictions, they have been applied successfully to critical infrastructures,
like water and power distribution [8, 18]. Several approaches for Hybrid automata
extended with discrete probability distributions exist [31, 20, 28, 29]. More gen-
eral stochastic Hybrid systems often require a higher level of abstraction [19,
1]. Related Petri net approaches are also restricted e.g., w.r.t. the number of
continuous variables [15] or to Markovian jumps [5].

Stochastic Time Logic (STL) closely resembles MITL [3] or the temporal layer
of STL/PSL [22] and is used to specify properties of HPnGs. Their piece-wise
linear evolution of continuous variables allows to partition the state space into
convex polytopes (so-called regions) with similar characteristics [9]. The idea of
a polyhedra based representation of the state space has been explored before for
model checking HPnGs [11], for (flowpipe) approximations [6, 7] and to abstract
uncountable-state stochastic processes [27, 26]. Our approach explicitly includes
the stochastic behaviour over time into the state representation; every stochas-
tic firing adds a dimension to the state space. Model checking then identifies
all realizations of the random variables, which satisfy a given STL formula. The

2

satisfaction set of (the conjunction of) atomic properties is a single convex poly-
tope, and negation requires a translation into a convex representation. A previ-
ous approach using Nef polyhedra was restricted to models with two stochastic
firings [13] due to the restricted implementation of hyperplane arrangement in
the corresponding CGAL library. Recently, we proposed the translation of the
nodes of the parametric location tree (PLT) [17] into a geometric and symbolic
system representation. This construction allows to circumvent the problem of
hyperplane arrangement while still providing a geometric state set representa-
tion. Given the PLT of an HPnG model, this paper presents model checking
for STL properties in HPnGs with an arbitrary but finite number of stochastic
firings. For each STL operator an algorithm is introduced, based on geometric
operations on symbolic state set representations. Our implementation relies on
the library HyPro [25], which offers efficient implementations for operations on
convex polytopes [32] in higher dimensions. Being aware of other implementa-
tions [4],[30], we like HyPro’s convenient interfaces and conversion functions.

Model checking recursively follows the parse tree of the formula. Per region
a convex representation of its satisfying parts is returned. A simple but scal-
able example is used to showcase the feasibility of the approach. Note that the
resulting satisfaction sets implicitly contain the stochastic evolution and allow
to compute the probability that a HPnG satisfies a specific STL by integrating
over the density of each random variable.

Organisation: Section 2 discusses the modeling formalism, Section 3 illus-
trates the state-space generation using HyPro. Section 4 describes the logic
STL, for which Section 5 introduces the region-based model checking approach.

2 Hybrid Petri nets with general transitions

HPnGs are defined according to [14] with the extension to multiple stochastic
firings that fire after a randomly distributed amount of time as in [10].

Their key components are: Discrete or continuous Places which contain a
number of tokens or an amount of fluid. A marking M = (m,x) combines the dis-
crete marking m = (m1, ...,mnd), and the continuous marking x = (x1, ..., xnc),
for nd discrete and nc continuous places. The number of tokens in the i-th dis-
crete place is denoted mi and xi contains the value of the i-th continuous place.

Transitions change the content of places upon firing. Discrete transitions
(general, deterministic and immediate) change the number of tokens in discrete
places. Transitions may only fire if all enabling criteria are met. Deterministic
transitions fire after being enabled for a constant predefined amount time. Im-
mediate transitions fire after zero time. The random firing delay of a general
transition is distributed according to an arbitrary continuous probability dis-
tribution. Continuous transitions change the fluid level of connected input and
output places with a constant nominal rate. [14]. Arcs connect places and tran-
sitions and define via weights and priorities how their content changes, when a
transition fires. Guard arcs enable transitions based on the discrete or continuous
marking of connected places.

3

Definition 1. An HPnG is defined as a tuple (P,T ,A,M0, Φ). P is the set of
places, T the set of transitions and A the set of arcs. The initial marking is
denoted as M0 and the tuple of mappings Φ, further defines the model evolution.
The finite set P = Pd ∪ Pc combines discrete and continuous places. The finite
set of transitions T = T I ∪T D∪T G∪T F holds immediate, deterministic, general
and continuous transitions, T ∖T F holds the set of discrete transitions. The set
A is divided into three subsets: (i) The set of discrete arcs Ad ⊆ ((Pd × T D) ∪
(T D × Pd)) connects discrete places and transitions. (ii) The set of continuous
arcs Af ⊆ ((Pc × T F) ∪ (T F × Pc)) connects continuous places and transitions.
(iii) The set of guard arcs At ⊆ (((T D ∪ T I ∪ T G) × (Pd ∪ Pc)) ∪ (T C × Pd))
connects discrete and continuous places to all kind of transitions. The initial
marking M0 = (m0,x0) denotes the initial number of tokens and fluid levels
in the places. Parameter functions defining the specifics of enabling and model
evolution are collected in:

Φ = (ΦPb , Φ
T
p , Φ

T
d , Φ

T
st, Φ

T
g , Φ

A
n , Φ

A
u , Φ

A
s)

Example 1. Figure 1 shows a HPnG, which models a buffer (B) as continuous
place (double circle) with a varying number of continuous input transitions and
one continuous output transition (double rectangle). The buffer has a max. ca-
pacity of C = 100, starts with L = 10 and can be filled using producer pumps
I1...In and is drained by one demand pump D, each with nominal rate ri∪rd = 5.
The general transitions (rectangle) G1, ...,Gn,Gd disable the pumps connected via
guard arcs (two arrowheads) with weight 1 to the discrete places (circle).

Fig. 1. Scalable HPnG model.

Enabling rules Every continuous place has
an upper boundary defined in ΦPb ∶ Pc →
R+∪∞. (The lower boundary is always zero.)
ΦTst ∶ T

C → R+ defines the constant nomi-
nal flow rate for each continuous transition.
ΦTg ∶ T G → CDF assigns a unique cumula-
tive distribution function (CDF) to each gen-
eral transition, which does not depend on the
number of firings. ΦTp ∶ T D ∪ T C ∪ T G → N>0
defines a priority for each type of transition.
Using ΦAu ∶ At → {◁,R} with ◁ = {≥,<} as-
signs a comparison operator and a weight to each guard arc. ΦAn ∶ Ad → R+ deter-
mines the number of tokens moved when the transition fires and ΦAs ∶ AC → R+

defines a share for conflicting continuous transitions.
For transition T we define the set of input places IP(T), the set of output

places OP(T) and the set of places connected via guard arcs GP(T). Let Pdi ∈ P
d

denote the i-th discrete place and Pci ∈ P
c the i-th continuous place, respectively.

A discrete transition Tj ∈ T ∖ T C is enabled if the following conditions hold: (i)
Discrete guard arcs satisfy: ∀P di ∈ Pd∩GP(Tj), (◁, q) = ΦAu (⟨Tj , P

d
i ⟩) ∶mi◁q, (ii)

Continuous guard arcs satisfy: ∀P ci ∈ P
c ∩GP(Tj), (◁, q) = ΦAu (⟨Tj , P

c⟩) ∶ xi◁ q,
(iii) Connected input places satisfy: ∀P di ∈ IP(Tj) ∶mi ≥ Φ

A
n (⟨P

d
i , Tj⟩).

4

Continuous transitions may only be connected to discrete places via guard
arcs. The following needs to hold for a continuous transition TFj ∈ T F to be en-

abled: (i) Discrete guard arcs satisfy: ∀P di ∈ Pd∩GP(TFj), (◁, q) = ΦAu (⟨T
F
j , P

d
i ⟩) ∶

mi◁ q, and (ii) connected input places hold fluid: ∀P ci ∈ IP(T
F
j) ∶ xi > 0.

Model evolution Discrete transitions are associated with clocks. Let cj be the
clock associated with transition Tj ∈ T ∖T

F . If transition Tj is enabled cj evolves
with δcj/δt = 1, otherwise δcj/δt = 0. A deterministic transition fires when cj
reaches the transitions firing time defined by ΦTd ∶ T ∖ T F → R+. A firing of a
discrete transition changes the corresponding marking according to the weights
specified in ΦAn ∶ A → R+. A general transition may fire at any point in time, if
enabled, and changes the discrete marking similarly to the discrete transitions.
The probability that a general transition fires at the scheduled firing time of a
discrete transition is zero, hence, model evolution needs to consider all enabled
general transitions firing before or after the next scheduled deterministic event.

For a continuous transition P ci ∈ Pc we define the set of input transitions
IT (P ci), the set of output places OT (P ci). An enabled continuous transition fires
with its nominal rate. If a continuous place is at either boundary rate adaptation
is performed to connected continuous transitions. This decreases the inflow to
match the outflow if the place is full (or the other way around). Let r(TFj) be the

actual rate of the continuous transition TFj ∈ T F after adaptation. The in-flow

fin(P
c
i) of P ci ∈ P

c is defined as fin(P
c
i) = ∑TFj ∈IT (P ci) r(T

F
j), i.e., the sum of all

incoming rates. The out-flow is the defined as fout(P
c
i) = ∑TFj ∈OT (P ci) r(T

F
j). A

continuous place evolves with drift d(P ci) = fin(P
c
i) − fout(P

c
i).

Example 2. The enabling of the continuous transitions in Figure 1 depends on
the marking of the discrete places. Initially, each discrete place contains one
token, which satisfies the condition of the guard arc connecting them to Ii
and D, respectively, hence enabling them. Each general transition Gi is initially
enabled and when firing after a random delay, it disables input pump Ii. The
initial marking of place B is 10, and its drift depends on the number of enabled
producer pumps (and the enabling of D): d = ∑1≤i≤n ri − rd. Since all ri and rd
have the same rate 5, the initial drift is d = 5(n − 1).

3 State space representation using HyPro

The state of an HPnG contains all information required by the time-bounded
analysis, as well as model checking an HPnG. It is defined as Γ = (m,x,c,d,g),
where m and x are the discrete and continuous marking, respectively, and c =
(c1, ..., c∣TD ∣) is the vector of discrete clocks, d = (d1, ...d∣TC ∣) contains the drift
of each continuous place. Furthermore, g = (g1, ...g∣TG∣) indicates the time each
general transition has been enabled. The state space S = {Γ = (m,x,c,d,g)}
contains all reachable HPnG states w.r.t. the initial state Γ0 = (m0,x0,0,d0,0).
The continuous marking x changes with derivative d. The discrete clocks c

5

and the enabling time of general transitions g change with derivative 1 for all
enabled transitions. The discrete marking m and the drift of the continuous
places d change with events: (i) A continuous place reaching its lower or upper
boundary. (ii) A continuous place reaches the weight of a connected guard arc.
(iii) An enabled discrete transition fires. Events do not move time forward.

Although the state of the system Γ changes continuously with time, its
bounded evolution up to some maximum time τmax can be described symbolically
using a parametric location tree (PLT) [14] [17]. Nodes are so-called parametric
locations and symbolically represent all states, whose continuous marking only
differ due to the evolution of time. The occurrence of events results in branching
to new locations. A location is defined as a tuple Λ = (te, Γ,S, p). At time te
the system enters the parametric location and the state Γ follows the Definition
presented before. The potential domain S provides the bounds for each general
transition firing. The real number p is a probability assigned to each location
in case of a conflict. The number of random variables present in the system n
corresponds to the number of stochastic firings that occurred plus the number
of general transitions that are currently enabled but have not fired before τmax.
All random variables are collected in the vector s = (s0, ..., sn) and the domain
S = ([l0, r0], ..., [ln, rn]) contains all possible values for the random variables per
parametric location. We define s ∈ S iff si ∈ [li, ri] for all 0 ≤ i ≤ n.

The PLT is generated using a depth-first search by extending all parametric
locations until τmax. We start from the initial parametric location, which extends
the initial state Γ0 by te = 0, p = 1 and S0 = ([0, τmax], . . . , [0, τmax]). In each
location the time until the next event is computed relatively to the entry time te
of that location. Note that the number of events that occur at the next minimum
event time τmin is finite [14], and for each possible event e, a new parametric
location is created with a marking adapted according to the causing event. Ad-
ditionally, each enabled general transition may fire before that point in time.
Hence, additional successors are scheduled for each enabled general transition
and the potential domains have to be set accordingly. The next minimum event
time is unique before the first stochastic firing. After a single stochastic firing si,
the entry time of a location, the clocks, the continuous marking and the potential
domains may linearly depend on the value of the corresponding random variable
si. The case of multiple general transition firings leads to multi-dimensional lin-
ear equations and the domains S may linearly depend on the vector of random
variables s. For each successor, the procedure is called recursively and the do-
mains are adapted to ensure the order of events. The intervals denote the values
of s, for which the causing event is the minimum next event.

Geometric representation of locations We propose model checking algorithms
for HPnGs that combine the tree-based approach of parametric locations with
the geometric representation of stochastic time diagrams (STD). The implemen-
tation of the presented algorithm allows the analysis of HPnGs with multiple
general transition firings. For each parametric location, we construct a n + 1-
dimensional geometric representation, one dimension for each random variable
and one for time. This corresponds to a region in an STD, as defined in [9].

6

For a given time t and a valuation of vector s, Γ (s, t) defines a specific system
state. For all system states in a region, the initial marking Γ (s, t).m and the
drift Γ (s, t).d do not change. As shown in [9], the amount of fluid and the clock
valuations are linear equations of s and t.

Definition 2. A region R is a maximal connected set of (s, t) points, for which:

∀(s1, t1), (s2, t2) ∈ R

⎧⎪⎪
⎨
⎪⎪⎩

Γ (s1, t1).m = Γ (s2, t2).m,

Γ (s1, t1).d = Γ (s2, t2).d.

The boundaries between regions, which represent the occurrence of an event,
are also characterized by linear functions of s and t and represent a multi di-
mensional hyperplane. We denote the hyperplane between regions R and R′ that
corresponds to event e as He

R,R′ . Using halfspace intersection, convex polytopes
are created as geometric representation of regions [9].

Time evolution Starting from a tuple (s, t) the time evolution is deterministic
within a region, such that a time step τ is defined through the forward time
closure as T +R (s, t) = {(s, t′) ∣ (s, t′) ∈ R ∧ t′ ≥ t}. The occurrence of an event e
does not advance time, but may lead to branching between locations, e.g. in case
multiple events are scheduled at the same time. Hence, a discrete step caused
by event e to other regions R′ is defined for all tuples that lie on the hyperplane
He
R,R′ , for R ≠ R′. The discrete successors of (s, t) are then defined as D+(s, t) =

{R′ ∣ ∃e.(s, t) ∈He
R,R′}. For a fixed valuation s, a finite path σ, starting at time

t0 is denoted as σ(s, t0) and defined as alternating sequence ((s, t0) ∈ R0)
τ1
Ð→

((s, t1) ∈ R0)
e1
Ð→ ((s, t1) ∈ R1)

τ2
Ð→ . . .

τn
Ð→ ((s, tn) ∈ Rn−1)

en
Ð→ ((s, tn) ∈ Rn), such

that (s, ti) ∈ T
+
Ri−1

(s, ti−1) and Ri ∈ D
+(s, ti) and ti = t0 +∑

i
j≥1 τj for all 0 ≤ i ≤ n.

A state is on path σ if it is in the forward time closure of a region in step i of σ:

(s, t) ∈ σ iff ∃R.∃i.(s, t) ∈ T +R (s, ti). (1)

For a definition of the resulting probability space, we refer to [24]. Note
that Zeno-behaviour is excluded by prohibiting cycles which potentially take no
time, i.e. cycles of only immediate and general transitions. This together with the
restriction to time-bounded reachability analysis ensures that a path is always
finite. The exclusion of cycles of general transition firings is mostly technical, as
the probability of infinitely many firings in finite time is zero with continuous
distributions.

The use of HyPro The algorithm presented in [17] to transform locations into
the graphical representation of regions heavily relies on the C++ library HyPro
[25]. Amongst other data structures, HyPro contains an implementation for
convex polytopes [32] as well as a wrapper class to the well-known Parma poly-
hedra library (PPL) [4]. We use the so-called H-representation for convex poly-
topes, where H is defined as the intersection of a finite set of halfspaces. Note
that previous implementations [10, 13] used Nef-polyhedra by CGAL, but were

7

limited to three dimensions. While Nef-polyhedra are closed under the set op-
erations union, intersection and set difference, they are not necessarily convex.
Convex polytopes are only closed under intersection. Section 5 will present model
checking algorithms that only deal with convex state set representations.

Note that HyPro is restricted to closed convex polytopes, that also need to
be bounded. This leads to difficulties when performing operations that are not
closed w.r.t. this representation, as e.g. negation. The restriction to bounded
polytopes however naturally fits our analysis and model checking approach, as
the state space is bounded by the maximum time of analysis.

Example 3. The running example focuses on the core complexity of the HPnG
formalism, i.e. the number of general transition firings. As shown in [8, 18], ana-
lyzing larger models with few random variables is not prohibitive. The random
variables modeling pump failures compete and hence increase model complexity.
In general, the resulting state space has n + 2 dimensions.

Fig. 2. A PLT and the region R1 of the root location.

Figure 2 shows the root location and the first level of child locations of the
PLT for n = 0. PLTs for all settings are available online1. The root location has
the entry time t = 0 and neither the potential domain is restricted nor any clock
has evolved. Since no input pump is present in this system, only the demand
pump is enabled, initially. The initial drift is d = −5 and given the initial level
L = 10 of place B, it takes 2 time units until B is empty. Hence, two events may
occur, i.e. either the demand is disabled first or B is empty. The entry times of the
child locations thus are t = s1 and t = 2, respectively. Their potential domains are
restricted s.t. the locations are only valid for s ∈ [0,2], if the general transition
fires before the place is empty, and s ∈ [2, τmax] otherwise.

The geometric representation of the root location is shown in the right part of
Figure 2. The region R1 is created by halfspace intersection: Every region is first
restricted by the entry time of the location and τmax and the potential domain
of the random variables. Hence for the root location the halfspaces defined by
t ≥ 0 and t ≤ τmax as well as s ≥ 0 and s ≥ τmax are intersected. Intersecting the
halfspaces defined by the entry time of the respective locations, i.e. t ≥ 0, t ≤ s1
and t ≤ 2, then creates R1.

1 https://uni-muenster.sciebo.de/s/A3mNHLclM8233T5

8

4 Stochastic Time Logic

A logic for expressing properties of interest for HPnGs at a certain time was
introduced in [11] and denoted as Stochastic Time Logic (STL). This paper
concentrates on computing those subsets of the domain S for which Φ holds at
a given point in time. An STL formula Φ is built according to Equation 2:

Φ ∶∶= xP ≥ c ∣ mP = a ∣ ¬Φ ∣ Φ ∧Φ ∣ ΦU [0,T]Φ, (2)

where xP ≥ c and mP = a are continuous and discrete atomic properties and
T ∈ R+ a time bound. The satisfaction relation from [11] is adapted, to cover
branching between locations:

Γ (s, t) ⊧ xP ≥ c iff Γ (s, t).xP ≥ c, (3)

Γ (s, t) ⊧mP = a iff Γ (s, t).mP = a, (4)

Γ (s, t) ⊧ ¬Φ iff Γ (s, t) ⊭ Φ, (5)

Γ (s, t) ⊧ Φ1 ∧Φ2 iff Γ (s, t) ⊧ Φ1 ∧ Γ (s, t) ⊧ Φ2, (6)

Γ (s, t) ⊧ Φ1U
[0,T]Φ2 iff ∃σ(s, t).∃τ ∈ [t, t + T].Γ (s, τ) ⊧ Φ2 ∧ (s, τ) ∈ σ(s, t)

∧ (∀τ ′ ∈ [t, τ].Γ (s, τ ′) ⊧ Φ1 ∧ (s, τ ′) ∈ σ(s, t)). (7)

The until operator holds if a path σ starting in (s, t) exists, such that a point
in time τ ≥ t exists, for which Φ2 holds and that for all time points in τ ′ ∈ [t, τ]
the formula Φ1 holds and all corresponding states (s, τ ′) lie on σ, according to

Equation 1. We define the satisfaction set for time t′, denoted Satt
′

and the
satisfaction set for a region SatR as follows:

Satt
′

(Φ) = {s ∈ S ∣ Γ (s, t′) ⊧ Φ} and SatR(Φ) = {(s, t) ∈ R ∣ Γ (s, t) ⊧ Φ}. (8)

The former satisfaction set contains all possible stochastic firing times, such
that their time evolution from t′ on satisfies a given STL formula Φ. These
subsets of the domain of all random variables present in the system are also
called validity intervals. The latter satisfaction set contains all points (s, t) ∈ R,
such that Γ (s, t) satisfies Φ. Note that Φ can also be wrapped into a probability
operator ϕ ∶∶= P&p(Φ), where & ∈ {<,>,≤,≥} is a comparison operator and p ∈
[0,1] a probability bound. This expresses that for a given point in time, the
probability that a formula Φ holds matches the threshold p. This probability
can be computed from the resulting satisfaction sets, which implicitly includes
information about the stochastic behaviour. This computation is however not
covered in this paper. We also exclude the nesting of multiple until operators.

Example 4. All states with a disabled consumer pump are identified by Φ1 ∶=
(mU = 0) and Φ2 ∶= ¬(xB ≤ 2) ensures that the buffer does not have less than
two units of fluid. Checking whether the buffer is emptied within 4 time units,
while the output pump stays on, is formulated as Φ3 ∶= (mU = 1)U [0,4](xB ≤ 0).

9

5 Model Checking STL

This section presents STL model checking algorithms for HPnGs. To obtain
Satt

′

(Φ), first all regions the model can be in at time t′ are identified. Geometri-
cally, these regions all have a non-empty intersection with hyperplane Ht′ . Then
the general model checking function is called per candidate region for the overall
STL formula and returns a satisfaction set SatR(Φ) per region R. Following the
recursive definition of STL formulas, operator-specific algorithms are called to
compute satisfaction sets along the parse tree of the STL formula. Model check-
ing discrete and continuous atomic formulae as well as their conjunction solely
relies on the intersection of regions with halfspaces. However, model checking
negation and the time-bounded until operator requires the set operations com-
plement, set difference and union, which may result in non-convex polytopes. We
use sets of convex polytopes instead of performing the operation union to ensure
that the model checking algorithms are closed w.r.t. the state representation.

5.1 Model checking algorithms per operator

Model checking STL is performed along the parse tree of the formula for all
regions in which the system can be at time t′. Negation and conjunction are
independent of time t′, and return the set of convex polytopes SatR(Φ). Because
of the relative definition of the time bound [0, T], the algorithm for until is
executed only for t′, and returns the satisfaction set w.r.t. time t′ and region R:

Satt
′,R(Φ1U

[0,T]Φ2) = {s ∈ S ∣ (s, t′) ∈ R ∧ Γ (s, t′) ⊧ Φ1U
[0,T]Φ2}. (9)

Note that the interplay between the different kind of satisfaction sets is explained
in Section 5.2. Recall that polytopes are represented as the intersection of a finite
number of halfspaces. We create a polyope representation P by intersecting mP

halfspaces:

P =
mP

⋂
i=1

hi,P , where hi,P = {x ∈ Rd∣cTi ⋅ x ≤ di}. (10)

Restricting polytopes to their intersection with R allows defining satisfaction
sets per region as the finite union of nΦ non-necessarily disjoint polytopes PRi :

PR = P ∩R, and SatR(Φ) =
nΦ

⋃
j=1

PRj = {(s, t) ∈ R ∣ Γ (s, t) ⊧ Φ}. (11)

Atomic formula Model checking discrete and continuous atomic formula is shown
in [17] and [11]. For completeness, we present the algorithm per region, as shown
in Listing 1. It takes as input a specific region R and a discrete or continuous
atomic property Φ and outputs a satisfaction set, which contains all states in R
that satisfy Φ. For a continuous atomic formula Φ, the region has to be intersected
with the halfspace representing the continuous level hxP ≥c. (Line 3) A discrete
formula is satisfied in the entire region or not at all, hence, a test whether the
considered regions meets the marking specified by the formula Φ is sufficient.
(Line 4)

10

Theorem 1. The satisfaction set SatR(Φ) w.r.t. a region R is empty or a con-
vex polytope in case Φ is an atomic property.

Proof. Let Φ ∶= mp = a. A discrete atomic property is satisfied in the whole
region or not at all. In either case, SatR(Φ) is a convex polytope. Let Φ ∶= xp ≥ c.
A continuous atomic formula may only be satisfied in part of the region. The
boundary c implies a halfspace hxP ≥c which after intersection with R again
results in a convex polytope as convex polytopes are closed under intersection.

Negation According to the semantics of STL and as implemented in [13], nega-
tion is defined as set difference. Convex polytopes are not closed under set differ-
ence, hence, the satisfaction set of Φ = ¬Φ1 is in general not a convex polytope.
We obtain a representation in terms of sets of convex polytopes, as follows. The
complement of a convex polytope with respect to a region R is a not neces-
sarily convex polytope PC and can be computed as the union of the inverted
halfspaces which define P . However, inverting halfspaces results in turning a
non-strict comparison operator in the halfspace definition into a strict compari-
son. This results in an open polytope, which HyPro currently does not support.
Hence, we define a non-disjunct complement w.r.t. region R:

PR
C̃
= (

mP

⋃
i=1

h∼i,P)∩R and h∼i,P =

⎧⎪⎪
⎨
⎪⎪⎩

{x ∈ Rd∣cTi ⋅X ≥ di} iff hi,P = {x ∈ Rd∣cTi ⋅ x ≤ di},
{x ∈ Rd∣cTi ⋅X ≤ di} iff hi,P = {x ∈ Rd∣cTi ⋅ x ≥ di}.

(12)
such that PR

C̃
∩ PR ≠ ∅ and results exactly in the facets of PR. Note that this

definition also results in non-disjunct satisfaction sets and imprecise borders of
the validity intervals that are computed after model checking each region. This
is currently circumvented by additionally storing in a separate vector whether a
halfspace is open or closed. In case the satisfaction set already consists of more
than one polytope, the negation of the respective formula requires building the
complement over a set of polytopes.

Listing 2 illustrates the general algorithm for the negation of an STL formula
with respect to region R. After instantiating the satisfaction set for ¬Φ (Line
1), the general model checking routine is called for Φ (Line 2). The resulting
satisfaction set consists of a set of convex polytopes, each created by the inter-
section of halfspaces. Hence, when computing the satisfaction set of ¬Φ, for each
polytope all creating halfspaces need to be inverted (Line 5–6) and collected.

Listing 1 Satisfaction set SatR(Φ) for atomic formula Φ and a region R.

1: SatR(Φ) ← ∅
2: if isContinuous(Φ) then
3: SatR(Φ) ← R ∩ hxp≥c
4: if isDiscrete(Φ) ∧ Γ.m = Φ.m then
5: SatR(Φ) ← R

6: return SatR(Φ)

11

Listing 2 Satisfaction set SatR(Φ) of a negated formula Sat(¬Φ) for region R.

1: SatR(Φ) ← modelcheck(R, Φ)
2: for all Pj ∈ SatR(Φ) do
3: H∼

PJ
← ∅ ▷ Set of convex polytopes that fulfill ¬Φ in R.

4: for all hi,Pj ∈ Pj do ▷ For all halfspaces defining P .
5: H∼

PJ
←H∼

PJ
∪ hi,Pj .invert()

6: for all x ∈ ⨉(H∼
Pj
) do ▷ For all elements in the cross product over all sets H∼

Pj
.

7: P ← x1 ∩R
8: for j ← 0; j > 1; j + + do ▷ For all halfspaces in the cross product.
9: P ← P ∩ xj

10: SatR(Φ) ← SatR(Φ) ∪ P
11: return SatR(Φ)

Listing 3 Satisfaction set computation of Φ1 ∧Φ2 for a region R.

1: SatR(Φ) ← ∅
2: Sat(Φ1) ← modelcheck(R, Φ1)
3: Sat(Φ2) ← modelcheck(R, Φ2)
4: for all Pi ∈ Sat(Φ1) do ▷ For all polytopes in Sat(Φ1)
5: for all Pj ∈ Sat(Φ2) do ▷ For all polytopes in Sat(Φ2)
6: SatR(Φ) ← SatR(Φ) ∪ (Pi ∩ Pj)
7: return SatR(Φ)

Then, the cross product over all these sets of inverted halfspaces per polytope
is required (Line 7), whereas each entry in the resulting tuple indicates an in-
verted halfspace from a specific polytope. For each element of the cross product,
a new polytope is constructed by successively intersecting the halfspaces that
correspond to each entry of the tuple with the region (Lines 8–10), ensuring the
intersection of all possible combinations of inverted halfspaces per polytope.

The resulting polytope, representing a part of the region satisfying ¬Φ, is
then added to the list of (not necessarily disjoint) convex polytopes, forming the
satisfaction set of ¬Φ (Line 11), which then is returned (Line 12).

Conjunction In case of a conjunction Φ = Φ1 ∧ Φ2 both satisfaction sets with
respect to a specific region R, namely SatR(Φ1) and SatR(Φ2), are required
and intersected to compute the satisfaction set Sat(Φ). Listing 3 illustrates the
algorithm using the representation as sets of convex polytopes. First, the model
checking algorithm is called recursively for Φ1 and Φ2. Then, each of the poly-
topes in Sat(Φ1) is intersected with each of the polytopes in Sat(Φ2) (Line 4–5)
and the result (if non-empty) is added to the resulting satisfaction set. (Line 6)

Theorem 2. The satisfaction set SatR(Φ) w.r.t. a region R, for an STL for-
mula Φ that consists of negation and conjunction only, is a set of not necessarily
disjunct convex polytopes.

12

Proof. We prove the above Theorem by structural induction over the parse
tree of the formula Φ, using the notation introduced throughout this section.
Inductive hypothesis: Suppose the theorem holds for arbitrary sub-formulas
Φ1 and Φ2, which only consist of negation and conjunction.
Inductive case 1: For an atomic formula Φ follows directly from Theorem 1
that Sat(Φ) contains at most one convex polytope.
Inductive case 2: In the following we distinguish between a formula Φ, where
the highest binding operator is a conjunction or a negation. Let Φ = Φ1 ∧ Φ2

be a conjunction. Using the constructor case, it follows that both satisfaction
sets Sat(Φ1) and Sat(Φ2) are sets of convex polytopes, which can be rewritten
according to Equation 11. When intersecting those unions of polytopes, applying
the distributive law yields again the union (of a union) of convex polytopes, as
the intersection of two convex polytopes PRi and PRj will always be convex again.

SatR(Φ1 ∩Φ2) = Sat
R(Φ1) ∩ Sat

R(Φ2) =
nΦ1

⋃
i=1

PRi ∩
nΦ2

⋃
j=1

PRj =
nΦ1

⋃
i=1

nΦ2

⋃
j=1

(PRi ∩ PRj).

(13)
Let Φ = ¬Φ1 be a negation. According to Equation 11, let Sat(Φ1) = Sat

R(Φ1) =

⋃
nΦ1

j=1 P
R
j be a finite set of convex polytopes which all satisfy Φ1 in R. Then, it

follows that:

SatR(¬Φ1) ∶= R∖Sat
R(Φ1) = R∖(

nΦ1

⋃
j=1

PRj) = R∩¬(
nΦ1

⋃
j=1

PRj) = R∩
nΦ1

⋂
j=1

PR
C̃,j
. (14)

Note that the above definition also results in non-disjunct sets SatR(Φ) ∩
SatR(¬Φ) ≠ ∅. Using Equation 12, we can rewrite Equation 14 as the inter-
section of R with the intersection over all polytopes in Sat(Φ1) over the union
of all inverted halfspaces per polytope:

SatR(¬Φ1) = (
nΦ1

⋂
j=1

mP

⋃
i=1

h∼i,P) ∩R = (⋃
x∈X

mP

⋂
j=1

h∼i,P) ∩R = ⋃
x∈X

(
mP

⋂
j=1

h∼i,P ∩R) , (15)

where the Cartesian product over all sets HPi of defining halfspaces for polytopes
Pi in Sat(Φ1) is defined as X = ⨉

nΦ1

i=1 HPi , forall PRi ∈ SatR(Φ1).
The second equality follows from the distributive law for families of sets.

The last equality results in a set of convex polytopes, restricted to region R.
Together, both cases show that the satisfaction set of an STL formula, which
does not contain the until operator, can be expressed as a set of convex polytopes.

Time-bounded Until The time-bounded until operator Φ ∶= Φ1U
[0,T]Φ2 describes

a property for paths within the time interval [0, T] relative to time t′, hence the
algorithm potentially calls all regions that can be reached from the initially called
region within the time interval [t′, t′+T]. Geometrically, these are all regions that
lie between the halfspaces ht and h∼t+T . Recall from Section 3 that each location
is reached through a so-called source event. In the geometric representation, this
corresponds to a halfspace hR. Also, a region can be left through its other facets,
which mark the entrance into the children of that region in the PLT.

13

Listing 4 check until: satisfaction set Satt
′,R(Φ) w.r.t. region R, time hyper-

plane H and remaining time halfspace ht′+T for Φ = Φ1U
[0,T]Φ2.

1: set<interval> I1, I2, I3← ∅ ▷ Intervals validating Φ in the respective region.
2: SatR(Φ1) ← modelcheck(R,Φ1)
3: SatR(Φ2) ← modelcheck(R,Φ2)
4: R ← R ∩ ht′+T
5: I1← project(SatR(Φ2) ∩H) ▷ Intervals validating Φ2 immediately.
6: C ← project(SatR(Φ1) ∩H) ▷ Candidate intervals validating Φ1 immediately.
7: CΦ1∩Φ2 ← project(SatR(Φ1) ∩ SatR(Φ2))
8: CF ← project(SatR(Φ1) ∩ SatR(¬Φ1 ∧ ¬Φ2)) ▷ Projection of boundary states.
9: I2← C ∖ (CF ∩CΦ1∩Φ2) ▷ Set of intervals validating Φ1UΦ2 in R.

10: CN ← C ∖CF ∖ I2 ▷ Removing the non-convex parts of SatR(Φ1)
11: if CN ! = ∅ then ▷ Call function for children intersecting remaining candidates.
12: for all RC ∈ R.children() ∶He

R,Rc ∩ box(CN ,R)! = ∅ do
13: I3 = I3 ∪ (CN ∩ check until(Rc, Φ1, Φ2, ht+T ,He

R,Rc)))
14: return I1 ∪ I2 ∪ I3

According to Equation 9, a state in region R satisfies Φ if (i) it immediately
satisfies Φ2 or if (ii) a state Φ2 is reached inside R only via Φ1-states or if (iii) a
Φ2-state outside region R is reached, also only via Φ1-states. The first two cases
can be determined per region and the third case recursively model checks each
child until the property is satisfied or time t′ + T is reached. As the time bound
T is relative to time t′, computing the satisfaction of an until operator within
a region not only depends on Sat(Φ1) and Sat(Φ2), but also on their relative
distance with respect to time, which may vary within the region. To simplify the
matter, we compute Satt

′,R(Φ1U
[0,T]Φ2), (c.f., Equation 9) which corresponds

to fixing the t-component for all tuples (s, t) in a region to time t′.
Listing 4 describes the model checking process and first reduces the identified

region to the part that lies before the end of the time interval [0, T], (Line 4)
which is reached at time t′+T . The remainder of the algorithm operates on fami-
lies of multi-dimensional intervals which satisfy different combinations of Φ1 and
Φ2. They are obtained by projecting convex polytopes that are subsets of region
R onto the domain of the random variables S. We say that an interval I validates
a formula Φ at time t, if Γ (s, t) ⊧ Φ∀s ∈ I. All intervals that immediately validate
the until property are obtained by intersecting the satisfaction set of Φ2 with
the hyperplane H and then projecting the results onto the S-space (Line 5), as
indicated by the function project. Initially, check until is called for region R
in which the model can be at time t′, the hyperplane H is instantiated as t = t′.
Hence, I1 identifies all points in the region that satisfy Φ2 at time t′.

The algorithm then proceeds to identify those intervals that validate
Φ1U

[0,T]Φ2 within the region R. This corresponds to case (ii) in the above ex-
planation. First, a family C of candidate intervals is computed by projecting
those states that satisfy Φ1 when entering the region. This is done by inter-
secting the satisfaction set of Φ1 again with hyperplane H (Line 6). Another
family of candidate intervals CΦ1∩Φ2 is formed by the projection of goal states,

14

i.e., all (s, t) ∈ R which satisfy Φ1 ∩Φ2 (Line 7). However, only those candidates
s which, from time t′ on, continuously fulfill Φ1 on their path to a goal state
belong to the satisfaction set. Hence, we need to identify boundaries between
SatR(Φ1) and SatR(¬Φ1). CF contains the projection of those facets that do
not fulfill Φ2 (Line 8) and can be computed as the projection of the intersection
of SatR(Φ1) ∩ Sat

R(¬Φ1). According to Equation 14, the above intersection re-
turns precisely the points on the boundary between both satisfaction sets, due
to the non-disjunct definition of complement.

I2 then is computed (Line 9), i.e., the family of intervals validating the until
formula within region R by only taking those candidates s whose time evolution
(s, t) for t ≥ t′ continuously satisfies Φ1 and finally reaches a Φ2-state within
region R before t = t′ + T . To compute the family of intervals which validate
the until formula by reaching a Φ2-state in another region, first, the family of
intervals whose time evolution continuously satisfies Φ1 and which do not reach
a Φ2-state within region R is computed (Line 10). If this collection is non-empty
(Line 11), the model checking algorithm is called for each child of R, restricting
the potential domain to the box defined by CN and the states that can be reached
only via Φ1-states in R (Line 12–13). For each child, we collect those candidates
which reach a Φ2-state before time t′ + T within that child and intersect them
with the candidates whose time evolution continuously satisfies Φ1 and does not
satisfy Φ2 within the current region. Calling algorithm check until (Line 13)
instantiates hyperplane H as source event for each child location to account for
different possible entrance times of child locations. The algorithm returns the
family of intervals of the S domain (Line 14), which validate the until formula
in that region from time t′ on.

The approach is illustrated for three regions in Figure 3. The model check-
ing algorithm is called for an until formula Φ1U

[0,T]Φ2 and for region R1,
where H is initiated as hyperplane Ht′ = ht′ ∩ h

∼
t′ . The intersection of Ht′

and SatR(Φ2) is empty, hence I1, containing those states that immediately
satisfy the until formula, is empty. The candidate intervals are computed by
projecting the intersection of Ht′ and SatR(Φ1) and indicated in Figure 3.

Fig. 3. Intervals for time-bounded until.

Φ2 does not hold in Region R1,
hence CΦ1∩Φ2 and I2 are empty. In
the next step the facets between the
polytopes representing SatR(Φ1) and
SatR(Φ2) are projected as CF (also
shown below). They represent those
parts of the domain whose time evo-
lution after t′ not continuously satis-
fies Φ1. Hence, they have to be sub-
tracted from the candidate intervals,
yielding CN . Since the latter is not
empty, model checking is called recur-
sively for the children that have a non-

15

empty intersection with CN . In this example, the function is only called for R2,
where H is initiated as hyperplane representing the occurrence time of its source
event. First, I1 is the projection of H with SatR(Φ2), as indicated below the
state space. Then I2 is obtained as the intersection of the projection of all can-
didates with the projection of the facets between the polytopes representing
SatR(Φ1) and SatR(Φ2). Note that the computation of check until for region
R2 requires calling the function again for the child of R2 which lies above the
polytope representing SatR(Φ1) (not illustrated in the figure). For this part of
the candidates a Φ2-state cannot be reached in R2, nor is the end of the time
bound reached. The result of the function call for R2 is intersected with the
intervals in CN of region R1 and returned as Satt

′

(Φ).

5.2 Computing Satt
′(Φ) for nested formula and complexity

We have shown that model checking atomic and compound formulas Φ generally
results in a set of convex polytopes, containing all tuples (s, t) that satisfy Φ.
Model checking an until operator, however returns a set of intervals, i.e. all s ∈ S,
which validate the formula at time t′. To enable the conjunction of an until op-
erator with another arbitrary STL formula, its satisfaction set needs to be lifted
back into the region, by adding time t′ to all elements s ∈ Satt

′

(Φ1U
[0,T]Φ2).

This results in one convex polytope per interval. Convexity results directly from
the use of intersection, set difference and projection.

The general routine modelcheck(R,Φ) recursively calls the operator-specific
functions, as introduced above, along the parse tree of the formula. To com-
pute the overall satisfaction set Satt

′

(Φ), the satisfaction sets of all candidate
regions SatR(Φ) have to be intersected with the hyperplane representing time
Ht′ . The results are projected onto the S-space and the resulting validity inter-
vals are combined for all candidate regions. If the STL formula Φ is wrapped
inside a probability operator, multi-dimensional integration is performed over
the resulting set Satt

′

(Φ) using the density function of each random variable
combined with the branching probabilities. The computation of the PLT and
the multi-dimensional integration are explained in [16].

The complexity of the overall model checking routine depends on the number
of regions in the PLT ∣R∣ and the number of operators in the STL formula ∣L∣.
Negation requires geometric operations on the cross product of polytopes, which
is cubic in the number of halfspaces (O(∣HP ∣3)). Model checking Until relies on
a series of geometric operations, where polytope inversion has the worst case
complexity (similar to negation) and accesses at most ∣R∣ children. The worst
case complexity of the overall model checking routine is then O(∣HP ∣3×∣R∣2×∣L∣),
as it might be called for all regions. The dimensionality of halfspaces and regions
influences the the complexity of the geometric operations.

Model checking nested formula might result in a large list of convex poly-
topes, caused by negating non-atomic formulas (c.f. Section 5). This effect can
be reduced by rewriting the propositional parts of an STL formula in disjunctive
normal form. When negation is applied directly to atomic properties, it does not
increase the number of convex polytopes in the representation.

16

Φ1 ∶= (mU = 0), t′ = 4 Φ2 ∶= ¬(xB ≤ 2), t′ = 4 Φ3, t′ = 0

n ∣L∣ ∣CR∣ ∣Satt
′

(Φ1)∣ tc [ms] ∣Satt
′

(Φ2)∣ tc [ms] ∣Satt
′

(Φ3)∣ tc[ms]

1 9 7 4 3 4 112 5 208
2 31 20 7 12 14 2327 3 3200
3 139 97 68 61 63 37337 4 69218
4 667 456 327 306 320 897511 7 2055254
5 3683 2338 1797 2100 1961 26790200 N/A N/A

Table 1. Results for model checking Φ1, Φ2, and Φ3 ∶= (mU = 1)U [0,T](xB ≤ 0).

Example 5. Table 1 shows results for checking Φ1 and Φ2 at time t′ = 4 and
Φ3 at time t′ = 0, for a varying number of input pumps. The computations
have been performed on a MacBook Pro with 2.5 GHz i7 and 16 GByte RAM.
The number of locations generated before τmax = 20 is indicated by ∣L∣. Per
formula, we provide the number of candidate locations (∣CR∣), the number of

intervals stored in the satisfaction set (∣Satt
′

∣), and the respective computation
times. The number of candidate regions grows considerably with the number
of random variables present in the system. The computation times are much
larger for the until formula, n = 4 required 34 minutes and n = 5 could not be
solved. The large computation times for model checking an until formula are due
to the required geometric operations within a region and the recursive call for
child regions. In contrast model checking Φ1 only requires to check the discrete
marking, with is done in constant time per region. Checking Φ2 is more time
consuming, due to negation, but results for n = 5 can be obtained. The number
of candidates is slightly smaller for checking Φ3 at t′ = 0, as less branching has
taken place. Due to space limitations, this number is not included in the table.

6 Conclusions

We proposed model checking algorithms for STL operators that can be used to
check properties of HPnGs with an arbitrary but finite number of stochastic fir-
ings, working only on convex state set representations. While the current paper
does not provide a framework to compute the probability that an STL formula
holds, the current results in terms of validity intervals can be used to synthesize
parameters for the timing of general transitions, which validate a specific for-
mula. To the best of our knowledge, we present a model checking approach for a
type of Hybrid Petri nets, that is neither restricted in the number of continuous
variables, nor in the number of stochastic firings. Future work will present an
algorithm to compute the complete satisfaction set SatR(Φ) for the until opera-
tor and compare computational complexities and efficiency of both approaches,
as well as an algorithm to evaluate the probability operator, taking into account
branching probabilities between locations. Furthermore, we plan to conduct a
large-scale case study, to evaluate the efficiency of the current implementation.
The transformation of a PLT to hybrid automata is being investigated.

17

References

1. A. Abate, J.-P. Katoen, J. Lygeros, and M. Prandini. Approximate Model Checking
of Stochastic Hybrid Systems. European Journal of Control, 6:624–641, 2010.

2. H. Alla and R. David. Continuous and hybrid petri nets. Journal of Circuits,
Systems, and Computers, 8(01):159–188, 1998.

3. R. Alur, T. Feder, and T.A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116–146, 1996.

4. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

5. M.H.C Everdij and H.A.P. Blom. Piecewise deterministic Markov processes repre-
sented by dynamically coloured Petri nets. Stochastics, 77(1):1–29, 2005.

6. G. Frehse, Zhi Han, and B. Krogh. Assume-guarantee reasoning for hybrid I/O-
automata by over-approximation of continuous interaction. In 43rd IEEE Conf.
on Decision and Control, pages 479–484, 2004.

7. G. Frehse, R. Kateja, and C. Le Guernic. Flowpipe approximation and clustering
in space-time. In 16th Int. conf. on Hybrid systems: computation and control, pages
203–212. ACM, 2013.

8. H. Ghasemieh, A. Remke, and B. Haverkort. Survivability analysis of a sewage
treatment facility using hybrid petri nets. In Performance Evaluation, volume 97,
pages 36–56. Elsevier, 2016.

9. H. Ghasemieh, A. Remke, B. Haverkort, and M. Gribaudo. Region-based analysis
of hybrid petri nets with a single general one-shot transition. In Int. Conf. on
Formal Modeling and Analysis of Timed Systems, pages 139–154. Springer, 2012.

10. H. Ghasemieh, A. Remke, and B. R. Haverkort. Hybrid petri nets with multiple
stochastic transition firings. In 8th Int. Conf. on Performance Evaluation Method-
ologies and Tools, 2014, pages 217–224. ICST, 2014.

11. H. Ghasemieh, A. Remke, and B.R. Haverkort. Survivability Evaluation of Fluid
Critical Infrastructures Using Hybrid Petri Nets. In IEEE 19th Pacific Rim Int.
Symp. on Dependable Computing, pages 152–161. IEEE, 2013.

12. A. Girard. Reachability of uncertain linear systems using zonotopes. In Hybrid Sys-
tems: Computation and Control, volume 3414 of LNCS, pages 291–305. Springer,
2005.

13. A. Godde and A. Remke. Model Checking the STL Time-Bounded Until on Hy-
brid Petri Nets Using Nef Polyhedra. In European Workshop on Performance
Engineering, pages 101–116. Springer, 2017.

14. M. Gribaudo and A. Remke. Hybrid petri nets with general one-shot transitions.
Performance Evaluation, 105:22–50, 2016.

15. G. Horton, V.G. Kulkarni, D.M. Nicol, and K.S. Trivedi. Fluid stochastic Petri
nets: Theory, applications, and solution techniques. Journal of Operational Re-
search, 105(1):184–201, 1998.

16. J. Hüls, C. Pilch, P. Schinke, J. Delicaris, and A. Remke. State-space con-
struction of Hybrid Petri nets with multiple stochastic firings. Technical re-
port, Westfälische Wilhelms-Universität Münster, 2018. Available at https://uni-
muenster.sciebo.de/s/BMwdh25rHgmDvb6.

17. J. Hüls, S. Schupp, A. Remke, and E. Ábrahám. Analyzing Hybrid Petri nets
with multiple stochastic firings using HyPro. In 11th Int. Conf. on Performance
Evaluation Methodologies and Tools, 2017.

18

18. M. R. Jongerden, J. Hüls, A. Remke, and B. R. Haverkort. Does your domestic
photovoltaic energy system survive grid outages? Energies, 9(9):736, 2016.

19. A. A. Julius. Approximate Abstraction of Stochastic Hybrid Automata . In Int.
Conf. on Hybrid Systems: Computation and Control, pages 318–332. Springer,
2006.

20. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 282(1):101 – 150, 2002.

21. C. Le Guernic and A. Girard. Reachability analysis of linear systems using support
functions. Nonlinear Analysis: Hybrid Systems, 4(2):250–262, 2010.

22. O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pages 152–166. Springer, 2004.

23. R. E. Moore, R. B. Kearfott, and M. J. Cloud. Introduction to interval analysis.
SIAM, 2009.

24. C. Pilch and A. Remke. Statistical Model Checking for hybrid Petri nets with mul-
tiple general transitions. In 47th Int. Conf. on Dependable Systems and Networks,
pages 475–486. IEEE, 2017.

25. S. Schupp, E. Ábrahám, I. B. Makhlouf, and S. Kowalewski. Hypro: A c++ library
of state set representations for hybrid systems reachability analysis. In 9th Int.
Symp. NASA Formal Methods, pages 288–294. Springer, 2017.

26. S. Esmaeil Zadeh Soudjani and A. Abate. Adaptive and sequential gridding pro-
cedures for the abstraction and verification of stochastic processes. SIAM Journal
on Applied Dynamical Systems, 12(2):921–956, 2013.

27. S. Esmaeil Zadeh Soudjani, C. Gevaerts, and A. Abate. FAUST: Formal Ab-
stractions of Uncountable-STate STochastic Processes. In Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems, pages 272–286. Springer,
2015.

28. J. Sproston. Decidable model checking of probabilistic hybrid automata. In Int.
Symp. on Formal Techniques in Real-Time and Fault-Tolerant Systems, pages 31–
45. Springer, 2000.

29. T. Teige and M. Fränzle. Constraint-based analysis of probabilistic hybrid systems.
IFAC Proceedings Volumes, 42(17):162 – 167, 2009.

30. The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,
4.10 edition, 2017.

31. L. Zhang, Z. She, S. Ratschan, H. Hermanns, and E. M. Hahn. Safety verification
for probabilistic hybrid systems. European Journal of Control, 18(6):572 – 587,
2012.

32. G. M. Ziegler. Lectures on polytopes, volume 152. Springer Science & Business
Media, 2012.

