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Abstract. Computational fields have been proposed as an effective ab-
straction to fill the gap between the macro-level of distributed systems
(specifying a system’s collective behaviour) and the micro-level (individ-
ual devices’ actions of computation and interaction to implement that
collective specification), thereby providing a basis to better facilitate the
engineering of collective APIs and complex systems at higher levels of
abstraction. This approach is particularly suited to complex large-scale
distributed systems, like the Internet-of-Things and Cyber-Physical Sys-
tems, where new mechanisms are needed to address composability and
reusability of collective adaptive behaviour. This work introduces a full
formal foundation for field computations, in terms of a core calculus
equipped with typing, denotational, and operational semantics. Criti-
cally, we apply techniques for formal programming languages to collec-
tive adaptive systems: we provide formal establishment of a link between
the micro- and macro-levels of collective adaptive systems, via a result
of computational adequacy and abstraction for the (aggregate) denota-
tional semantics with respect to the (per-device) operational semantics.

Keywords: Distributed computing - Core calculus - Type system - De-
notational semantics - Operational semantics - Computational adequacy.

1 Background

Aggregate computing [6] is a paradigm aiming to address the complexity of large-
scale distributed systems, by means of the notion of computational field [15] (or
simply field): this is a collective, distributed map from computational events
(when and where a device executes a computational action, also called a round)
to computational objects (data values of any sort, including higher-order objects
such as functions and processes) representing the result of computation at that
event. Computing with fields means computing such global data structures, and
defining a reusable block of behaviour means to define a reusable computation
from fields to fields. This functional view holds at any level of abstraction, from
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low-level mechanisms of the language up to whole applications, which ultimately
work by getting input fields from sensors and processing them to produce out-
put fields for actuators. Most importantly, computing with fields is functional
and hence declarative: (i) the designer focusses on the intended global goal of
system behaviour, while the dynamics of interactions is left to the underlying
platform (i.e., semantics); and (4i) one can scale with complexity by relying on
functional composition: libraries of reusable building blocks can be constructed,
and successive layering can be used to bottom-up derive whole applications.

The field calculus [I1I] is a tiny functional language providing basic con-
structs to work with ﬁeldsﬂ It provides a unifying approach to understanding
and analysing the wide range of approaches to distributed systems engineering
that make use of computational fields [BJ21]. The operational semantics of field
calculus [IT] can act as a blueprint for actual implementations where myriad
devices interact via proximity-based broadcasts. More recently, the field calcu-
lus has been used to investigate formal properties of resiliency to environment
changes [I8/20] and to device distribution [7]. Its expressiveness has been inves-
tigated by introducing the cone Turing Machine [I].

The higher-order field calculus [12] combines self-organisation and code mo-
bility by extending the field calculus with a semantics for distributed first-class
functions. It allows self-organisation code to be naturally handled like any other
data, e.g., dynamically constructed, compared, spread across devices, and exe-
cuted in safely encapsulated distributed scopes. Ultimately, this calculus provides
programmers with a novel first class abstraction, a “distributed function field”.
This is a dynamically evolving map from a network of devices to a set of exe-
cuting distributed processes: in each space-time region where the proces is the
same, devices form a coalition collectively carrying on that process in isolation.

2 Contributions of [3]

This paper presents syntax and operational semantics of the higher-order field
calculus together with new contributions: a type system for the higher-order
version of the calculus, a denotational semantics, and associated properties. The
new, enhanced syntax is parametric in the set of the modeled data values (in [12]
Booleans, numbers, and pairs were explicitly modeled). Moreover, the if con-
struct has been removed by encapsulating its branching capability into function
calls, which now take the form of a function field applied to arguments, implic-
itly enacting branching. Then, a novel key insight and technical result of this
paper is that the notoriously difficult problem of reconciling local and global
behaviour in a complex adaptive system [20] can be connected to a well-known
problem in programming languages: correspondence between denotational and
operational semantics. On the one hand, denotational semantics can be used to
characterise computations in terms of their collective effect across space (avail-
able devices) and time (device computation events)—i.e., the macro level. On

4 Much as A-calculus [J] captures the essence of functional computation and FJ [I4]
the essence of class-based object-oriented programming.
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the other hand, operational semantics gives a transition system dictating each
device’s individual and local computing/interactive behaviour—i.e., the micro
level. Correspondence between the two, formally proved in this paper via com-
putational adequacy and a form of abstraction (c.f. [I0J19]) that we call computa-
tional abstraction, thus provides a formal micro-macro connection: one designs a
system considering the denotational semantics of programming constructs, and
an underlying platform running the distributed interpreter defined by the op-
erational semantics guarantees a consistent execution. This is a significant step
towards effective methods for the engineering of self-adaptive systems, achieved
thanks to the standard theory and framework of programming languages.

3 Conclusions, Related and Future Work

The work presented in this paper builds on a sizable body of prior work, for which
the field calculus can somewhat act as a lingua franca: foundational approaches
to group interaction (ambients [§], shared-spaces [22]), device abstraction lan-
guages (TOTA [I5], Hood [23]), pattern languages [16], information movement
languages [17], and spatial computing languages (MGS [I3] and Proto [4]). Ac-
cordingly, future plans include consolidation of this work to investigate variants
of the field calculus [2], to support an analytical methodology and a practical
toolchain for system development, and to isolate fragments of the calculus that
satisfy behavioural properties such as self-stabilisation developed in [20].
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