
HAL Id: hal-02294600
https://hal.science/hal-02294600

Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bringing Kleptography to Real-World TLS
Adam Janovsky, Jan Krhovjak, Vashek Matyas

To cite this version:
Adam Janovsky, Jan Krhovjak, Vashek Matyas. Bringing Kleptography to Real-World TLS. 12th IFIP
International Conference on Information Security Theory and Practice (WISTP), Dec 2018, Brussels,
Belgium. pp.15-27, �10.1007/978-3-030-20074-9_3�. �hal-02294600�

https://hal.science/hal-02294600
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Bringing kleptography to real-world TLS

Adam Janovsky1(�), Jan Krhovjak2, and Vashek Matyas1

1 Masaryk University
adamjanovsky@mail.muni.cz

2 Invasys, a.s.

Abstract. Kleptography is a study of stealing information securely and
subliminally from black-box cryptographic devices. The stolen informa-
tion is exfiltrated from the device via a backdoored algorithm inside an
asymmetricaly encrypted subliminal channel. In this paper, the kleptog-
raphy setting for the TLS protocol is addressed. While earlier proposals
of asymmetric backdoors for TLS lacked the desired properties or were
impractical, this work shows that a feasible asymmetric backdoor can be
derived for TLS. First, the paper revisits the existing proposals of klepto-
graphic backdoors for TLS of version 1.2 and lower. Next, advances of the
proposal by Gołębiewski et al. are presented to achieve better security
and indistinguishability. Then, the enhanced backdoor is translated both
to TLS 1.2 and 1.3, achieving first practical solution. Properties of the
backdoor are proven and its feasibility is demonstrated by implementing
it as a proof-of-concept into the OpenSSL library. Finally, performance
of the backdoor is evaluated and studied as a tool for side-channel de-
tection.

Keywords: Asymmetric backdoor · Cryptovirology · Kleptography ·
TLS

1 Introduction

Tamper-proof devices were proposed as a remedy for many security-related prob-
lems. Their advantage is undeniable since they are protected from physical at-
tacks and it is difficult to change the executed code. However, they inherently
introduce a trust into the manufacturer. It was shown that such devices are the-
oretically vulnerable to the presence of so-called subliminal channels [20]. Such
channels can be used to exfiltrate private information from the underlying system
covertly, inside cryptographic primitives. As a consequence, malware introduced
by a manufacturer or a clever third-party adversary can utilise subliminal chan-
nels to break the security of black-box devices.

This paper concerns kleptography – the art of stealing information securely and
subliminally – for the TLS protocol. The field of kleptography was established
in the 1990s by Yung and Young [18]. Kleptographic backdoors for many proto-
cols and primitives were proposed ever since. For instance, we mention the RSA



2 A. Janovsky et al.

key generation protocol [18] and the Diffie-Hellman (DH) protocol [19]. Using
kleptography, an attacker can subvert a target cryptosystem to deny confiden-
tiality and authenticity of transferred data. Thus, it is important to explore the
feasibility of kleptographic backdoors for various protocols, alongside with the
methods for defeating such backdoors.

Several challenges arise when inventing a kleptographic backdoor. First, one must
assure that such backdoor cannot be detected by looking at inputs and outputs
of an infected device. Furthermore, the exploited channel is often narrow-band
and the computing performance of the device should not be overly affected. Last
but not least, one must prove the security of both the original cryptosystem and
the encrypted subliminal channel.

Previous work on kleptography in the TLS protocol [9,21] showed that it is pos-
sible to utilise a single random nonce to exfiltrate session keys. Both backdoors
exploit a random field inside ClientHello message, 32-byte nonce that is sent to
server by a client. The proposal [9] was rather a sketch of an asymmetric back-
door and it lacked few key properties. The work [21] was an important theoretical
result and proven asymmetrical backdoor for the TLS protocol. Nonetheless, it
remains impractical to implement. Also, neither of the papers addressed TLS of
version 1.3. More insight into the related work follows in Section 5.

In this work we make the following contributions:

– We modify the backdoor [9] to achieve better security of the backdoor and
also idistinguishability in a random oracle model.

– We prove that our proposal is an asymmetric backdoor for all versions of the
TLS protocol, including TLS 1.3.

– We implement the backdoor as a proof-of-concept into the OpenSSL library,
confirming its feasibility.

– We evaluate the performance of the backdoor and discuss its detectability.

The remainder of the paper is organized as follows. Section 2 gives basic back-
ground on kleptography. In Section 3 we show a design of our backdoor. Section 4
comments on how we implemented the backdoor and gives the exact results of
our performance tests. It also shows how a timing channel can be used to detect
our backdoor. Section 5 reviews related work and, finally, Section 6 concludes
the paper.

2 Kleptography background

The work on kleptography utilises cryptology and virology and naturally extends
the study of subliminal channels [20]; those are further encrypted and embedded



Bringing kleptography to real-world TLS 3

into the devices, creating so-called asymmetric backdoors. As of 2018, secretly
embedded backdoor with universal protection (SETUP) is a supreme (and only)
tool in the field of kleptography. One could therefore say that kleptography
studies development of asymmetric backdoors and possible defenses against them
at the same time. Kleptography concerns black-box environment exclusively, as
in white-box setting scrutiny allows to detect such channel. The aim of this
section is to introduce necessary techniques that are involved in an asymmetric
backdoor design. We begin with a formal description of an asymmetric backdoor
adopted from [20].

Definition 1. Assume that C is a black-box cryptosystem with a publicly known
specification. A SETUP mechanism is an algorithmic modification made to C to
get C ′ such that:

1. The input of C ′ agrees with the public specifications of the input of C.

2. C ′ computes efficiently using the attacker’s public encryption function E
(and possibly other functions) contained within C ′.

3. The attacker’s private decryption function D is not contained within C ′ and
is known only by the attacker.

4. The output of C ′ agrees with the public specifications of the output of C.
At the same time, it contains published bits (of the user’s secret key) which
are easily derivable by the attacker (the output can be generated during key-
generation or during system operation like message sending).

5. Furthermore, the output of C and C ′ are polynomially indistinguishable to
everyone except the attacker.

6. After the discovery of the specifics of the SETUP algorithm and after discov-
ering its presence in the implementation (e.g. reverse engineering of hard-
ware tamper-proof device), user (except the attacker) cannot determine past
(or future) keys.

Consider that an asymmetric backdoor itself can be a subject of cryptanalysis.
That is why the resulting subliminal channel must be encrypted according to
good cryptographic practice. To keep the notation unambiguous, we call the per-
son who attacks the backdoor an inquirer. We say that an asymmetric backdoor
has (m,n) leakage scheme if it leaks m keys/secret messages over n outputs of
the cryptographic device. The desired leakage bandwidth that asymmetric back-
door should achieve is (m,m), meaning that the whole private information is
leaked within one execution of the protocol. Further, a publicly displayed value
that also serves as an asymmetric backdoor is denoted a kleptogram.



4 A. Janovsky et al.

2.1 Example of asymmetric backdoor

The paper continues with an example of RSA key generation SETUP [18] to
illustrate the concept of asymmetric backdoors. The backdoor allows for efficient
factorization of RSA modulus by evil Eve. First, Eve generates her public RSA
key (N,E) and embedds it into the contaminated device of Alice together with
a subverted key-generation algorithm:

1. The device selects two distinct primes p, q, computes the product pq = n
and Euler’s function ϕ(n) = (p− 1)(q − 1).

2. The public exponent is derived as e = pE (mod N). If e is not invertible
modulo ϕ(n), new p is generated.

3. Private exponent is computed as d = e−1 (mod ϕ(n)).

4. Public key is (n, e), private key is (n, d).

After obtaining the kleptogram e contained in public key (n, e), Eve can use her
private key (N,D) to compute

eD = pED = p (mod N).

Thus, Eve can factorize the modulus n, and compute the private exponent d
just by eavesdropping the public key. The reader may notice that the backdoor
requires e to be uniformly distributed on the group (otherwise the backdoor can
be detected), which leaves it unsuitable for real use. Yet, this toy example illus-
trates the concept of asymmetric backdoors beautifully. It is not difficult to prove
that the backdoor fullfils all conditions of SETUP, if e is to be picked uniformly
in the clean system. Also, we note that this backdoor exhibits the ideal leakage
bandwidth (m,m). However, this backdoor lacks perfect forward secrecy. Indeed,
when the attacker’s private key (N,D) is compromised, an inquirer can factorize
all past and future keys from the particular key generating device.

2.2 Kleptography in the wild

Recall that an asymmetric backdoor is a modification of already established al-
gorithm. Detection of such modification therefore proves its malicious nature. In
contrast, when an algorithm is designed to be kleptographic initially, its malev-
olence cannot be decided so easily. To illustrate this aspect, we briefly revisit
the DUAL_EC_DRBG pseudorandom number generator invented by the NSA3. The
generator was standardized in NIST SP 8000-90A [2]. Later, a bit predictor with
advantage 0.0011 was presented in [8]. Despite this serious flaw we concentrate
on a different problem. In particular, the paper [2] shows potential kleptographic
tampering. To be exact, the generator requires two constants on an elliptic curve,

3 National Security Agency.



Bringing kleptography to real-world TLS 5

i.e., P,Q ∈ E(Fp), and the security of the internal state relies on the intractabil-
ity of discrete logarithm problem for these constants. Consequently, if one is able
to find scalar k such that P = kQ, they are able to compute the inner state of
the generator efficiently based on the output. This naturally breaks the security
of the generator. Despite the fact that arbitrary P,Q can be used for the gen-
erator, NIST standard forces the use of fixed constants with unknown origin.
Naturally, NSA is alleged to provided the backdoored constants. The practical
exploitability of backdoored constants was shown in [17]. However, one cannot
prove nor disprove that the constants for the standard are backdoored except
for the NSA. This aspect suggests that not many SETUPs are likely to appear
in the wild, but rather delicate modifications of otherwise secure algorithms are
expected, such that their sensitivity to efficient cryptanalysis can be viewed as
a coincidence.

3 Attack design

Our proposal is based on [9] by Gołębiewski et al. However, several drawbacks
are eliminated by our construction, and properties of the backdoor are treated
more rigorously. The needed improvements w.r.t. the proposal [9] were:

– To achieve indistinguishability of kleptogram from random bit string,

– to ensure that reverse-engineering of the infected device will not compromise
security of any session,

– to allow recovery of master secret to attacker even if she misses to eavesdrop
some sessions.

An additional goal was to minimize the computational overhead introduced by
the backdoor to avoid possible detection by timing analysis.

3.1 Backdoor description

During the TLS handshake, assuming no pre-shared key is involved and a new
session is to be established, all traffic keys are derived from a pre-master secret
and publicly available values. Thus, for an attacker, it suffices to obtain the pre-
master secret to decrypt whole session. Additionally, the pre-master secret can
be derived via DH method, eventually via RSA method in the case of TLS 1.2
and lower 4 (The removal of the RSA key exchange method from TLS 1.3 makes
it more difficult to debug or inspect encrypted connections for the industry
4 By DH method we refer to DH modulo prime. Nowadays, Diffie-Hellman over elliptic
curves (ECDH) is mostly used in TLS connections. We stick to the modular case,
even though our method can be translated to elliptic curves easily.



6 A. Janovsky et al.

– for example in datacenters of intrusion detection systems. This led to two
RFC drafts [10, 11] that would mitigate this issue. The former allows for opt-
in mechanism that allows a TLS client and server to explicitly grant access
to the TLS session plaintext. The latter relies on introducing static DH key
exchange method to TLS 1.3. Naturally, both drafts inherently weaken the TLS
1.3 protocol and did not become a part of the final TLS 1.3 RFC. A question
arises, whether the stated motivation behind introducing such drafts was honest,
as debugging and inspection of traffic is possible even with ephemeral DH, only
at a cost of adjusting infrastructure.). In the case of DH method, a shared secret
is established between the server and the client. In the case of RSA method,
server’s certificate is required and used to encrypt random bytes generated on
the client device. Those bytes then serve as the pre-master secret. We exploit the
32-byte random nonce sent by the client during ClientHello message to derive a
secret only the attacker can obtain. We further sanitize that secret and use it as a
seed during the function that creates the client’s contribution to the pre-master
secret.

We begin with the presentation of the original kleptographic construction by
Gołębiewski et al. The authors suggest to hardcode a DH public key Y = gX on
an infected device. During the first handshake on the device, a random value k is
selected and gk is published as the ClientHello random nonce. During subsequent
executions, the ClientHello random nonce is not subverted, but the PMS is then
derived deterministically from H(Y k, i), where H denotes a hash function and i
is a counter to ensure that the secrets will differ across sessions. Notice that when
an attacker fails to eavesdropp the first handshake, she will not be able to recover
any of subsequent sessions. At the same time, if an inquirer manages to capture
the first handshake and any of k or X, it allows the inquirer for a decryption
of all previous and subsequent sessions. Also, the value Y k must be stored in
non-volatile memory on the infected device and is prone to reverse engineering,
thus violating condition 6 of SETUP. Last but not least, the published nonce gk
can be distinguished from a random bit string since it is an element of a group,
see [6] – this violates condition 5 of SETUP. Our improvements aim to eliminate
all of the presented drawbacks.

The exact design of our proposal is as follows. Prior to the deployment, a de-
signer generates a DH key pair on the X25519 curve, denoted Y = gX . The
public key Y is then hard-coded into the infected device, together with the 128-
bit key for AES, denoted K and the counter. The initial value of the counter is
1 and is incremented by 2 after each execution. Suppose that the infected device
connects to the server and the handshake is initiated. When construction of the
ClientHello message is triggered, the infected device generates 32 random bytes
denoted k and computes the public key gk. The value gk is then encrypted with
AES-CTR into C = EK(gk) and published as a kleptogram inside the Clien-
tHello random nonce. Meanwhile, value S = Y k is derived on the device as a
shared secret between the attacker and the device. When the attacker eaves-
dropps the value C, she is able to derive gk = DK(C) and then S = gkX using



Bringing kleptography to real-world TLS 7

Algorithm 1: Generate kleptogram and seed
Input: A public key Y , AES-CTR key K with counter
Output: The kleptogram C and seed S
k ← 32 random bytes
C ← EK(gk)

S ← Y k

delete value k securely
return (C, S)

Algorithm 2: Generate pre-master secret
Input: Key exchange method, DH parameters and public key of server if

needed, seed S
Output: Pre-master secret PMS
if key exchange method is RSA then

PMS ← PRF(S, 46 bytes)
else

l← length of DH prime in bits
Z ← DH public key of server
x← S
do

x← PRF(x, l bits)
while x = 0 or x = 1 or x ≥ p
PMS← Zx

end
return PMS

her private key X. After obtaining S, the attacker can replicate the compu-
tation of the infected device. When the pre-master secret is to be derived, we
differentiate two cases:

1. If the RSA method is used, the value S is stretched to 46 bytes by the TLS
1.2 pseudorandom function (PRF) and sent as the pre-master secret.

2. If the DH method is used, the server first sends the DH parameters to the
client, including the prime p. The value S is then stretched by the TLS 1.2
PRF to the string of the same length as prime p. This bit string is checked
to fulfill requirements for DH private key (not being 0, 1 or ≥ p) and is used
as the client’s private key. If the requirements are not met, the output of
PRF is repeatedly used as an input to PRF until proper key is generated.

Once the pre-master secret is generated, the handshake continues ordinarily.

The backdoor is described by Algorithms 1 and 2. Algorithm 1 generates the
ClientHello random nonce and the seed S. The latter is further processed by
Algorithm 2 to derive the pre-master secret.



8 A. Janovsky et al.

The paper [14] proves that the counter mode (CTR) is polynomially indistin-
guishable from random bit string on the assumption that the underlying cipher
is a pseudorandom function (PRF). This holds when the value of the counter
never repeats. We have selected the AES in the CTR mode with a key of 128
bits to achieve indistinguishability. Some properties of this selection must be
further discussed. First, NIST recommends [2] to limit the number of calls of
pseudorandom number generator (PRNG) keyed with hard-coded value to 248

blocks. Since AES-CTR is essentially a PRNG, this recommendation should be
respected. Consider that birthday collisions are likely to appear only after 264

bits of output, so they are trivially treated by the NIST recommendation. Since
the backdoor uses two blocks of AES-CTR for one handshake, this limits the
functioning of the backdoor to 247 handshakes. It is emphasized that once the
backdoor is reverse engineered and the symmetric key is obtained, the indistin-
guishability is broken.

3.2 Properties of SETUP proposal

Theorem 1. Under the following assumptions, our proposal is a SETUP:

– A random oracle is used to generate the values k and to sanitize the values
C instead of a TLS PRF.

– AES is a random permutation.

– Computational DH assumption holds.

Proof. The reader can easily verify that properties 1-3 of SETUP hold for our
backdoor. To prove property 4, we show how the attacker can obtain the seed S
by eavesdropping on the handshake traffic. Notice that once the seed S is known,
anyone can replicate the computation of the device that leads to the pre-master
secret.

When the attacker obtains the ClientHello nonce, she can decrypt it with the
AES key K, obtaining the public key of the device gk. The attacker can further
utilise her private key X to compute the shared value S = gkX = Y k. Consider
that when the DH key exchange method is used, the attacker must also eavesdrop
the public key of the server and the parameters of the exchange; but those are
sent in plaintext. To conclude, property 4 holds as well.

We proceed with the property 5. If AES is a random permutation, then AES-
CTR produces ciphertext indistinguishable from uniformly distributed bit string
as shown in [14]. Thus, one cannot distinguish between the kleptogram C and
random bit strings (unless the collisions occur, which was discussed earlier).
Further, the resulting pre-master secrets (both for RSA and DH method) are
uniformly distributed too, since we utilize the random oracle to sanitize C.

Recall that non-volatile memory of the infected device contains AES key K with
the counter and the public key Y . Only the key Y is relevant to the confidentiality



Bringing kleptography to real-world TLS 9

of the shared secret S. Notice that obtaining shared secret gkX from gk and gX

is equivalent to solving ECDH problem. We therefore conclude that the property
6 holds. ut

To summarize, properties 1, 2, 3, 4 hold unconditionally for our proposal. The
property 6 requires a computational DH assumption. Moreover, the property
5 requires a random oracle and AES to be a random permutation. This seems
sufficient, as for the practical deployment, speed is more pressing than provable
indistinguishability.

Regarding the perfect forward secrecy, an inquirer is not able to recover past
session secrets if she obtains the private key of the device, k. However, after
obtaining the key X, the inquirer can break all past (and future) sessions.

4 Attack implementation

We have implemented the asymmetric backdoor into the OpenSSL library of
version 1.1.1-pre2. Choosing this library allowed us to reveal whether the back-
door can pose as a regular malware, without the requirements of a black-box
environment. When one designs malware in black-box setting, she is allowed to
change both implementation and header files of the infected library. On the con-
trary, only the compiled binaries are infected in case of regular malware. The
OpenSSL does not expose many low-level functions from a cryptographic library
to high-level functions that are used in the TLS handshake. Our work shows that
the proposal can be embedded into the compiled binary, leaving the header files
untouched.

The pre-release version of the library was chosen because it provides certain
functions for computations on the X25519 curve not available in previous re-
leases. The X25519 is implemented in a different way than other elliptic curves
in OpenSSL and older releases did not allow for the creation of specific keys
on this curve; only random keys could be created. We decided to expose some
low-level functions for direct use to achieve simpler implementation. This re-
sulted into modification of the header files. Nevertheless, high-level interfaces
could be used instead and the backdoor could be deployed as a compiled library.
We faced no serious obstacles that would prevent the backdoor installation to
the library.

4.1 Attack detection

We have also studied the possible detections of the infected library via side chan-
nels. As we worked in the desktop environment, we limit our attention to the



10 A. Janovsky et al.

timing channel. Nonetheless, a power side channel could be a viable detection
mechanism on different platforms. Several code snippets of both infected and
clean version of OpenSSL were isolated and their performance was evaluated
and compared. This creates a possible detection mechanism of the backdoor,
yet, with certain limitations. As expected, the backdoor performs slower than
the clean version. Nevertheless, this does not necessarily create a distinguisher.
Suppose that all devices of a certain kind are infected. Then there exists no refer-
ence to how the uninfected version should perform. The inquirer must therefore
somehow guess the expected performance and measure deviations based on this
estimate. Also, the library could be used on various hardware and outperform
clean versions when running on faster hardware.

Three code snippets were measured for the infected algorithm. In particular,
those were the RSA pre-mater secret generation snippet, the DH private key
generation snippet, and the ClientHello nonce generation snippet. The last snip-
pet was measured in two versions. The first version contained only one expo-
nentiation (computation of the public-key presented as kleptogram). The second
version was expanded by shared-secret derivation between the attacker and the
device. As the backdoor does not require any initialization except for loading
the AES counter (other keys can be hard-coded in the binary), this aspect was
ignored in the experiments.

Code snippet Average computation time in µs

Timer overhead 0.312

gk on X25519 171.132

ClientHello clean 4.726

ClientHello subverted 176.293

ClientHello subverteda 246 843

RSA PMS clean 4.887

RSA PMS subverted 11.185

DH private key gen. clean 3178.587

DH private key gen. subverted 3218.496

TLS context builder 374.5

Table 1. Average execution times of code snippets.

a Version with the shared secret precomputation.

4.2 Average execution times

Our measurements show that the whole subverted version runs by 0.248ms
(0.282ms) slower than the clean version when RSA (DH) key exchange method



Bringing kleptography to real-world TLS 11

is used. The subverted RSA key exchange method runs slower by the factor of
2.28 over the clean version. On the contrary, the subverted DH key exchange
method runs slower only by the factor of 1.01. This is because in the case of
RSA, the newly introduced computations take relatively much more time to the
overall key exchange method cost. It also can be seen that such an increase
in time cannot be spotted just by using the device. The interaction over the
network creates the opportunity for obfuscating the computation times. The ex-
ponentiations, or even parts of them, could be precomputed once the handshake
is initiated, stored, and only loaded from memory when needed. The more com-
plex the underlying protocol is, the larger is the space for obfuscations. It is
also questionable whether the inquirer will be able to isolate the corresponding
snippets on a tamper-proof device to obtain precise measurements.

To conclude, the timing-channel method is not reliable and most likely could be
evaded by a skilled adversary. Nevertheless, the proposal can be detected when
a clean version of the OpenSSL is at hand and benchmarking is available on
the same hardware on which the suspected version is running. As the highest
increase in time is seen when the ClientHello nonce is generated, this could
be the sweet spot for malware detection. Recall that the execution time of the
ClientHello nonce function should correspond to the time in which the library
generates 32 random bytes. If the function takes substantially larger amount of
time, the backdoor is likely to be present.

We do not release the source code for the reason that it could be easily misused
as a malware.

5 Related work

Our work is based on the concept [9]. In contrast to the original backdoor, our
solution cannot fullfils the conditions 5 and 6 of the SETUP mechanism. The pa-
per [22] by Young and Yung presents how to generate shared secret with ECDH
that is polynomially indistinguishable from random bit string. Furthermore, they
also mention its applicability to the TLS protocol and provide first asymmetric
backdoor for TLS. However, the proposal is rather impractical as to execute a
single backdoored handshake more than 300 ECDH key exchanges are required.
Injective mappings of strings on elliptic curve points [1,6] could have interesting
applications for kleptography, as their inversion could map ECDH keys to strings
that are polynomially indistinguishable from random strings. Regarding the de-
tection of backdoors via side channels, the paper [12] presents a method that
studies variance in execution times of functions which might reveal newly intro-
duced exponentiations to the protocol – a common facet of kleptography.

In recent years, major advances came in the field of defenses against klepto-
graphic adversaries. Most of them were published in [16]. The work achieves a



12 A. Janovsky et al.

general technique for preserving semantic security of a cryptosystem, if put into
the kleptographic setting. Also, the paper classifies already proposed defenses
into three categories:

– Abandoning the randomness in favour of deterministic computation [3–5],

– use of a trusted module that can re-randomize subverted primitives [7, 13],

– hashing the subverted randomness [15].

6 Conclusions

TLS is an essential protocol for securing data on the transport layer. As such,
TLS is omnipresent in an era of computer networks, having applications in https,
VPN, payment gateways and many others. The widespread use of TLS motivated
us to study its vulnerability in the kleptographic setting. We aimed to answer
whether a kleptographic backdoor can be practically implemented into the TLS
libraries.

Our efforts resulted into a design of an asymmetric backdoor for all versions of
the TLS protocol. Such backdoor can be used to exfiltrate session keys from a
captured handshake by a passive eavesdropper, leading to a denial of confiden-
tiality and authenticity of the whole session. We also demonstrated that it is
fairly simple to implement the backdoor into an open source TLS library while
maintaining a reasonable performance of the library. We stress that to install
our backdoor, an adversary must have access to the target device. In such cases,
other dangerous scenarios arise – we mention ransomware as an example. How-
ever, the important property of our backdoor is that it may stay unnoticed for
a long time on the target device. Also, it may be endorsed into a particular
hardware by its manufacturer or organizations with sufficient resources. We also
showed that timing analysis may prove as an effective defense, depending on the
powers of an inquirer.

For future work, we suggest to study whether an effective defense could be de-
rived for TLS on a protocol level, for instance, in the form of a protocol extension.
Regarding the offensive techniques, if mappings [1, 6] could be combined with a
cryptographic key, they would allow for ECDH secrets indistinguishable from a
random noise.

References

1. Aranha, D.F., Fouque, P.A., Qian, C., Tibouchi, M., Zapalowicz, J.C.: Binary
elligator squared. In: Selected Areas in Cryptography – SAC 2014. LNCS, vol. 8781,
pp. 20–37. Springer, Cham (2014)



Bringing kleptography to real-world TLS 13

2. Barker, E.B., Kelsey, J.M.: Recommendation for Random Number Generation Us-
ing Deterministic Random Bit Generators. Tech. rep. (2015)

3. Bellare, M., Hoang, V.T.: Resisting randomness subversion: Fast deterministic and
hedged public-key encryption in the standard model. In: Advances in Cryptology
– EUROCRYPT 2015. LNCS, vol. 9056, pp. 627–656. Springer, Berlin, Heidelberg
(2015)

4. Bellare, M., Jaeger, J., Kane, D.: Mass-surveillance without the state: Strongly
undetectable algorithm-substitution attacks. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security – CCS ’15. pp.
1431–1440. ACM, New York (2015)

5. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Advances in Cryptology – CRYPTO 2014. LNCS, vol. 8616,
pp. 1–19. Springer-Verlag, Berlin, Heidelberg (2014)

6. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer and Communications Security – CCS ’13.
pp. 967–980. ACM, New York (2013)

7. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls – secure communication on corrupted machines. In: Advances in Cryp-
tology – CRYPTO 2016. LNCS, vol. 9814, pp. 341–372. Springer-Verlag, Berlin,
Heidelberg (2016)

8. Gjøsteen, K.: Comments on dual-ec-drbg/nist sp 800-90, draft december 2005.
Tech. rep.

9. Gołębiewski, Z., Kutyłowski, M., Zagórski, F.: Stealing secrets with SSL/TLS and
SSH – kleptographic attacks. In: Cryptology and Network Security – CANS ’06.
LNCS, vol. 4301, pp. 191–202. Springer-Verlag, Berlin, Heidelberg (2006)

10. Green, M., Droms, R., Housley, R., Turner, P., Fenter, S.: Data Center use of
Static Diffie-Hellman in TLS 1.3. RFC Draft (2017), https://tools.ietf.org/
html/draft-green-tls-static-dh-in-tls13-01

11. Housley, R., Droms, R.: TLS 1.3 Option for Negotiation of Visibil-
ity in the Datacenter. RFC Draft (2018), https://tools.ietf.org/html/
draft-rhrd-tls-tls13-visibility-01

12. Kucner, D., Kutyłowski, M.: Stochastic Kleltography Detecion. In: Public-Key
Cryptography and Computational Number Theory. pp. 137–149. De Gruyter
(2001)

13. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Ad-
vances in Cryptology – EUROCRYPT 2015. LNCS, vol. 9056, pp. 657–686.
Springer, Berlin, Heidelberg (2015)

14. Rogaway, P.: Evaluation of some blockcipher modes of operation. Tech. rep., Cryp-
tography Research and Evaluation Committees (CRYPTREC) for the Government
of Japan (2011)

15. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Cliptography: Clipping the power of
kleptographic attacks. In: Advances in Cryptology – ASIACRYPT 2016. LNCS,
vol. 10032, pp. 34–64. Springer-Verlag, Berlin, Heidelberg (2016)

16. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against a
kleptographic adversary. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security – CCS ’17. pp. 907–922. ACM, New York
(2017)

17. S. Checkoway, et al.: On the practical exploitability of dual ec in tls implementa-
tions. In: SEC’14 Proceedings of the 23rd USENIX conference on Security Sym-
posium. pp. 319 – 335 (2014)

https://tools.ietf.org/html/draft-green-tls-static-dh-in-tls13-01
https://tools.ietf.org/html/draft-green-tls-static-dh-in-tls13-01
https://tools.ietf.org/html/draft-rhrd-tls-tls13-visibility-01
https://tools.ietf.org/html/draft-rhrd-tls-tls13-visibility-01


14 A. Janovsky et al.

18. Young, A., Yung, M.: The dark side of “black-box” cryptography or: Should we
trust capstone? In: Advances in Cryptology – CRYPTO ’96. LNCS, vol. 1109, pp.
89–103. Springer-Verlag, Berlin, Heidelberg (1996)

19. Young, A., Yung, M.: Kleptography: Using cryptography against cryptography. In:
Advances in Cryptology – EUROCRYPT ’97. LNCS, vol. 1233, pp. 62–74. Springer,
Berlin, Heidelberg (1997)

20. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. Wiley,
Hoboken, NJ (2004)

21. Young, A., Yung, M.: Space-efficient kleptography without random oracles. In:
Information Hiding: 9th International Workshop, IH 2007. LNCS, vol. 4567, pp.
112–129. Springer-Verlag, Berlin, Heidelberg (2007)

22. Young, A., Yung, M.: Kleptography from standard assumptions and applica-
tions. In: Security and Cryptography for Networks. LNCS, vol. 9841, pp. 271–290.
Springer International Publishing (2010)


	Bringing kleptography to real-world TLS

