
HAL Id: hal-02271660
https://inria.hal.science/hal-02271660

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Glycos: The Basis for a Peer-to-Peer, Private Online
Social Network

Ruben de Smet, Ann Dooms, An Braeken, Jo Pierson

To cite this version:
Ruben de Smet, Ann Dooms, An Braeken, Jo Pierson. Glycos: The Basis for a Peer-to-Peer, Private
Online Social Network. Eleni Kosta; Jo Pierson; Daniel Slamanig; Simone Fischer-Hübner; Stephan
Krenn. Privacy and Identity Management. Fairness, Accountability, and Transparency in the Age
of Big Data : 13th IFIP WG 9.2, 9.6/11.7, 11.6/SIG 9.2.2 International Summer School, Vienna,
Austria, August 20-24, 2018, Revised Selected Papers, AICT-547, Springer International Publishing,
pp.123-136, 2019, IFIP Advances in Information and Communication Technology, 978-3-030-16743-1.
�10.1007/978-3-030-16744-8_9�. �hal-02271660�

https://inria.hal.science/hal-02271660
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Glycos: the basis for a peer-to-peer, private
online social network

Ruben De Smet, Ann Dooms, An Braeken, and Jo Pierson

Vrije Universiteit Brussel, Pleinlaan 2, B1050 Brussels, Belgium
{rubedesm,ann.dooms,an.braeken,jo.pierson}@vub.be

Abstract. Typical Web 2.0 applications are built on abstractions, allow-
ing developers to rapidly and securely develop new features. For decen-
tralised applications, these abstractions are often poor or non-existent.
By proposing a set of abstract but generic building blocks for the devel-
opment of peer-to-peer (decentralised), private online social networks, we
aim to ease the development of user-facing applications. Additionally, an
abstract programming system decouples the application from the data
model, allowing to alter the front-end independently from the back-end.
The proposed proof-of-concept protocol is based on existing cryptographic
building blocks, and its viability is assessed in terms of performance.

Keywords: online social network · peer-to-peer · privacy by design ·
privacy

1 Introduction

Privacy on online social media comes in two forms. Platforms generally give
plenty of privacy control to platform users, in form of social privacy : users can
control which friends can access what content. Recently, the Cambridge Analyt-
ica scandal [11] proved again the lack of institutional privacy : while users can
choose with whom of their social connections they share data, the host or in-
stitute that takes care of the platform usually has unlimited access to personal
data. Privacy enhancing tools (PETs) are developed to counter several privacy
issues by technological means.

One category of PETs are privacy-preserving databases, where the database
of a service itself takes a responsibility on the data it exchanges. This often relates
to P3P, which is a web standard that encodes a service’s privacy practices in a
machine readable way [22]. An overview of privacy-preserving databases is given
in Section 3.1.

Another often encountered paradigm in these PETs is moving data away
from a central host or institution: decentralisation of services is believed to en-
hance institutional privacy for its end-users, since the institution itself is taken
out of the picture. Several efforts have been made, both academical and com-
munity projects, to “re-decentralise” the internet, or parts thereof. In Section 3,
we enumerate some notable projects that attempt to decentralise online social
media.

2 Ruben De Smet, Ann Dooms, An Braeken, and Jo Pierson

We argue that at least one problem in this “re-decentralisation” is the lack of
abstractions for developers. Where in typical centralised systems developers have
tools like SQL (often in combination with object relational mapping (ORM)),
or cookies (often as part of an authentication system), decentralised systems
are often built “from scratch”, drafting protocols (or extensions thereof) on a
per-feature basis.

As an additional consequence, the coupling of the front-end application and
the back-end decentralised networking components make it difficult to migrate
data, or to fix a security issue in the back-end in a consistent, forward-compatible
way.

In Section 4 we propose a proof-of-concept protocol for authenticated, con-
fidential data exchange in a peer-to-peer network. This protocol should allow
a participant to share with their friends, and stay anonymous for the rest of
the network; it offers a form of cryptographically mandatory access control on
the data. Since it is based on a peer-to-peer overlay network and therefore has
no central processing infrastructure, the system should be lightweight enough
to run on constrained devices like smartphones. We evaluate the performance
characteristics in Section 5.

2 Problem statement

Many protocols on the internet are federated; examples including email or XMPP.
In case of email, Mailchimp (a large email marketing company) notes in 2015
that more than 70 % of their email targets Google’s gmail.com domain. Their
statistics exclude the “foreign” domains hosted on Google’s and Microsoft’s mail
servers, which suggests an even larger market share [13]. Other online resources
suggest that both Microsoft and GMail are by far the world most popular email
service providers [18, 9]. This illustrates that federated networks may still lead to
centralisation, defeating the decentralisation and privacy-related benefits1 [17].

The case of email illustrates another drawback of federated systems: the
user has to pick a provider. A quick survey on Google, Bing and DuckDuckGo
results in mail.com and gmail.com as top two results, with Microsoft’s live.com
usually third for the keywords “create email account”.

Another prime example of an attempt at decentralising authentication is
OpenID, an open standard and authentication protocol. In practice, users employ
a large OpenID provider (often Google or Microsoft), which effectively centralises
login history with a few providers.

In the Web 2.0 paradigm, developers employ certain tools (abstractions,
SDKs, libraries) that aid the development of their applications. For example,
SQL (with optional ORM or query builder) is used to store and retrieve data.
“Asynchronous Javascript and XML (AJAX)” is used for dynamically changing

1 In case of email, it is enough that just one participant in a conversation should be
on a malicious server to compromise all communication. PETs such as PGP try to
overcome this issue.

Glycos: the basis for a peer-to-peer, private online social network 3

retrieving information. Cookies (with for example OAuth) are used for authenti-
cation and (re-)identification. Similar abstractions can be identified in the mobile
app paradigm, building applications for Android or similar.

For decentralised applications, these abstractions are often non-existent, too
domain-specific (e.g. Pandora has objects like “Person”, “City”), or too low-level:
PeerSoN [7] uses files, while RetroShare’s GXS [28] uses “groups” containing
“messages” as basic building blocks.

The remainder of this paper is concerned with the development of an ab-
stract data model and platform, meant to be at the basis of a peer-to-peer on-
line social network (OSN). It should be portable and efficient enough to run on
smartphones, and it should provide a minimum of access-control. These prop-
erties fit our interpretation of the privacy definition of Agre and Rotenberg:
“The freedom from unreasonable constraints on the construction of one’s own
identity” [2]. OSNs are important in human social communication; they should
facilitate social interaction, and their use and development should not be ob-
structed by technical difficulties.

3 Related work

Troncoso et al. have enumerated different properties of decentralised systems. A
system can be called decentralised, while in fact certain aspects are still inher-
ently or partially centralised, e.g. trackers and supernodes in BitTorrent or Tor’s
Directory Authorities [30].

3.1 Privacy-preserving databases

The field of privacy-preserving databases is concerned with storing, processing,
and releasing data while preserving data. Different database management system
(DBMS) have different properties regarding privacy preservation.

Often cited is Platform for Privacy Preferences Project (P3P), a web-based
protocol that enables websites to communicate their privacy practices to the
browser. The browser interprets and represents this information, and can auto-
matically make decisions based on user preferences [22]. Research is being carried
out to develop DBMS that are able to enforce promises encoded in languages
such as P3P [5];

Another research area is the development DBMS that allow queries over
encrypted data. These systems are typically cloud- or infrastructure-based, as
opposed to peer-to-peer. As an example, Cao et al. developed a graph database
that supports queries over its encrypted data [8].

3.2 Private online social networks

Efforts for building a decentralised online social network are almost common-
place, with for example Diaspora*, Mastodon, and SecuShare. One notable com-
munity project is RetroShare, which is a so-called friend-to-friend network2 pro-

2 Troncoso et al. refer to this as “P2P: Nodes Assist Other Nodes” [30]

4 Ruben De Smet, Ann Dooms, An Braeken, and Jo Pierson

viding file-sharing, fora and other services. In October 2017, Soler published the
Generic data eXchange System (GXS) [28], on which they ported RetroShare’s
fora and newsgroups. The goal of GXS is to make development of new features
easier, by providing an abstract layer for developers.

One academic decentralised online social network is called PeerSoN [7]. Peer-
SoN uses a distributed hash table (DHT) to localise files on a decentralised net-
work. Writing to and reading from those files is subject to mandatory access
control (MAC), implemented using cryptography.

A commercial example is MaidSAFE, who are developing a distributed filesys-
tem [12], supported by cryptographic currency [14] based on supernodes.

3.3 Cryptographic building blocks

Where centralised applications can rely on the infrastructure granting or denying
access, a peer-to-peer system has to rely on cryptography and key management.
After all, when data passes through or is stored on unknown or untrusted peers,
they should not be able to read it.

The cryptographic currency Monero takes this principle to the extreme: their
protocol attempts to hide the sender, receiver and amount of a transaction,
while still solving the double-spend problem [25]. Monero relies on a few existing
cryptographic building blocks to reach their goal, two of which are at the basis
of Glycos.

To conceal the sender, Monero uses ring signatures [24]. This allows the
real sender to hide himself among a list of potential senders. Additionally, they
anonymise the receiver by computing a related but unlinkable receiver key. We
use a variant of both schemes in Section 4.5, with similar purposes.

4 Solution design

For both centralised and decentralised applications, providing the developer with
abstractions has several benefits. Applications are faster, easier and more secure
to develop and to maintain, and the developer does not need knowledge of the
underlying systems.

We propose a building block for distributed and private data storage, the
equivalent of a DBMS in the classical paradigms, based on graph databases.

4.1 Privacy by fine-grained access control

Porting privacy definitions to a peer-to-peer setting is anything but trivial,
and requires deeper research on its own. An illustration: legislation like the
GDPR [23] is concerned with processors and controllers, which both are typically
depicted by legal entities that process or control personal data. In a peer-to-peer
setting, where the central authority and institution is taken out of the picture,
it becomes difficult to clearly point out who is processor or controller: they all
depend on the specifics of the considered peer-to-peer system.

Glycos: the basis for a peer-to-peer, private online social network 5

In an overlay network like the one presented, one could say the whole network
becomes the hosting institution. Institutional privacy thus means privacy with
respect to the network’s peers.

When we consider the institution as an eavesdropper, some of the properties
we want to achieve are:

confidentiality The overlay network should not learn the semantic meaning of
the data it stores.

control The end-user should control the data he stores on the overlay network.
unlinkability The overlay network cannot sufficiently distinguish whether two

items of interest are related or not [21].

By storing data in a granular way as edges and vertices, and anonymising
every data point, we can ensure unlinkability. We will employ well-established
cryptographic building blocks to anonymise data, encrypt data, and provide
access control.

4.2 Access controlled graph database

A graph database is a database of triplets (s, p, o); a subject s, predicate p, and
object o. A triplet (s, p, o) represents the directed edge with label p, from s to o.

We construct a query system wherein vertices and edges are efficiently search-
able and traversable for authorised users, while being encrypted, and thus un-
intelligible for unauthorised users. Data is stored on a DHT based on Kadem-
lia [19]. All vertices have an owner and an (optionally empty) access control list;
the owner of a vertex can optionally grant others the right to append additional
edges to specific vertices. In Figure 1, Alice has granted Bob the right to post
on her wall.

¡#Alice¿

¡#AlicesWall¿

g
:h

a
sW

a
ll

foaf:Person

a

“Alice”
foaf:name

¡#BobsPost¿
g:wallPost

Fig. 1. Bob writes a message on Alice’s wall. This is only possible if Alice has
granted Bob the rights to do so; otherwise, the network will not accept Bobs post
(<#BobsPost>). The definition of those access rights are contained within every vertex.

For this paper, we assume a network of trust; users have access to (correct)
key information of their peers. Trust models used in PETs include trust-on-first-
use (e.g. Signal) and offline key exchange (PGP, OTR).

6 Ruben De Smet, Ann Dooms, An Braeken, and Jo Pierson

4.3 Data model

In a conventional graph database, information does not have access rights;
we thus propose a simple3 access control model that extends an RDF-based
model [16]. By splitting up the concept of vertices and edges into two separate
objects, it is possible to alter a vertex’ content independently from the edge
list, and vice versa. It also allows us to add security-related information to both
objects.

A vertex s is identified by its owner, and contains an access control list
enumerating users that can create edges with s as subject. This allows for typical
OSN features like a personal “wall”, where Alice’s friends can leave posts to be
read for her and her friends. Those posts in turn can then contain a comments
section, to allow for more interaction.

4.4 Notational conventions

Since we will be using a few cryptographic concepts, it is necessary to define some
notation. The public key system used throughout the design is Curve25519 [4].
Public keys are points on an elliptic curve, and their discrete logarithms are the
respective private keys. When ` is the size of the underlying field, r ← [0, `− 1]
picks a field element uniformly at random. We will assume a known long term
public key pkiLT with corresponding private key skiLT for every participant i.
Identification can happen in a face-to-face meeting: we assume that two persons
that want to use the network together have access to correct key information of
each other.
H is a cryptographically secure hash function (the Keccak-based [6] SHA 3-

256 function), and Hs is a hash function onto the underlying field of the elliptic
curve.

4.5 Implementation

We will store every vertex s of the graph database as an object in a Kademlia-
based [19] DHT, storing vertices that have s as subject alongside s for easy
graph traversal. The DHT thus understands two kinds of put operations; one
for vertices and one for edges, while the get operation returns both the vertex
and the associated edges.

Note that since vertices are identified by their owner, we cannot use the long
term pkiLT public key. Instead, inspired on ByteCoin’s “Stealth Addresses” [31,
29] and Monero’s “one-time addresses” [25], we derive a random key from the
long term key pkiLT:

Algorithm 1 (Generate an ephemeral public key). Given the public key A =
aG = pkaliceLT of Alice, Bob generates an ephemeral (one-t ime) public key for
Alice as follows:
3 This model is “simple” in the sense that more complex models are possible, and may

be interesting for future research: co-ownership, write-only, or read-only rights can
all have useful applications.

Glycos: the basis for a peer-to-peer, private online social network 7

r ←[0, `− 1]

R←rG,
pkaliceOT ←Hs(rA)G+A,

skaliceOT ←Hs(aR) + a.

This key clearly belongs to Alice: only Alice knows the integer a required
to construct her secret key. She can recognise that this key belongs to her by
checking whether A′ equals pkaliceOT in

A′ = Hs(aR)G+A.

Due to this property, we will call R the “recogniser”. Note that the serialisation
of the ephemeral public key together with the recogniser only takes the size
of two points (R and pkaliceOT), which is 64 bytes when using Curve25519 [4].
Since r is only used in the key derivation, it is a temporary variable. Note that
Hs(rA) = Hs(aR) is an elliptic-curve Diffie-Hellman key agreement [10, 20] with
a random key R = rG.

The ephemeral public key pkaliceOT is indistinguishable from random. Formally,
the probability distributions of (R = rG,A = aG, pkaliceOT) and (R = rG,A =
aG,C = cG) are computationally indistinguishable for r, a, c chosen randomly
and uniformly from [0, `− 1].

Proof. Assume we can distinguish (R = rG,A = aG, pkaliceOT) and (R = rG,A =
aG,C = cG) using some distinguisher A. This means we can solve the decisional
Diffie-Hellman problem: to distinguish (R,A,K = rA = aR) and (R,A,C), it
suffices to run A on (R,A,Hs(K)G+A) and (R,A,C). ut

We can now define a vertex.

Definition 1 (vertex). A vertex V is a 7-tuple (O,R,ACL,RACL, v, c, S).

The key O is an ephemeral, unique public key derived from the private key held
by the owner of this vertex, the owner key. The point R is the recogniser used to
generate keyO. The listACL is the access control list, listing all ephemeral public
keys that are allowed to link other vertices from this vertex using edges. The
point RACL is the recogniser used to generate all ephemeral public keys in ACL.
Optionally, v is the encrypted associated value or content of the vertex. The clock
c is a positive integer to keep track of the vertex version. The Schnorr signature
S is a BNN − IBS signature [27, 26, 3] of (R,ACL,RACL, v, c) generated using
O.

In this definition, the access control list ACL contains ephemeral public keys
generated with a common r, thus having the common recogniser RACL = rG.
This operation effectively anonymises vertex appends, while the assigned users
can still recognise (using RACL) their eligibility to create edges.

By using Algorithm 1 to generate O and the keys in ACL, these public keys
are indistinguishable from random and thus unlinkable to their owners.

8 Ruben De Smet, Ann Dooms, An Braeken, and Jo Pierson

There is still one problem to overcome: imagine we use the above (Schnorr)
signature to sign an edge. The signer is always identifiable, and Eve — the
eavesdropper — could distinguish edges based on their associated signer. Eve
should only learn about the validity of the edge. In “How to leak a secret” [24]
Rivest, Shamir, and Tauman describe an elegant concept and method to over-
come this issue. They propose a so-called “ring-signature”, a signature which
proves knowledge of one secret key of a set, without revealing which.

A ring-signature scheme based on elliptic curves is documented by Abe,
Ohkubo, and Suzuki [1, Appendix A].

Algorithm 2 (Generate ring signature). A signer with secret key xk signs mes-
sage m with public-key list Rs = Y0, Y1, . . . , Yn−1

1. Select α, ci ← [0, ` − 1] for i = 0, . . . , n − 1, i 6= k, and compute z = αG +∑n−1
i=0,i6=k ciYi

2. Compute

c = Hs(Rs||m||z)

ck = c−
n−1∑

i=0,i6=k

ci mod q

s = α− ckxk mod q

3. Return σ = (s, c0, . . . , cn−1)

Algorithm 3 (Verify ring signature). A verifier verifies signature σ. (L,m, σ) by
checking whether

n−1∑
i=0

ci ∼= Hs

(
Rs||m||

(
sG+

n−1∑
i=0

ciYi

))
mod q

An edge can now be defined as an object with an encrypted value, pointing
from a subject to an object, with the value and identifier of the object being
encrypted:

Definition 2 (edge). An edge E between two vertices Vs = (Os, Rs, ACLs, RACL,s, vs, cs, Ss)
(the subject) and Vo = (Oo, Ro, ACLo, RACL,o, vo, co, So) (the object) is a 5-tuple

E = (Os, ACLE ,KACL, Ek(l, Oo),Rs, S).

The ring Rs = {O1, O2, . . . , Oi = Os, . . . , On} is a set of public keys containing
all n public keys in ACLs. For every key in ACLs, ACLE contains the encrypted
key k. It is encrypted n times using a standard hybrid encryption, based on
a Diffie-Hellman exchange with the random point KACL using the symmetric
cipher E . l is the label of the edge. S is a ring signature [1, Appendix A] over
the ring Rs of (Os, ACLE , Ek(l||Os)). The label and object are encrypted using
the same symmetric cipher E with key k.

Glycos: the basis for a peer-to-peer, private online social network 9

CryptoGraph APIKademlia routerInternet Application
store

retrieve

search query

ciphertext plaintext

Fig. 2. The two main components implemented are the middleware for the crypto-
graphic graph, and the custom Kademlia router. The Kademlia router is responsible
for connection with other peers, storing and retrieving encrypted graph data on the net-
work. The graph API implements the encryption and decryption of the graph, feeding
it from and back to the application.

CryptoGraph Primitive Graph

Vertex:
• owner O
• recogniser R
• ACL
• value v
• clock c
• signature S

Edge:
• ACLE

• KACL

• Ek(`, o)
• signature

Vertex:
• owner
• value
• clock

Edge:
• subject
• predicate
• object

Network Application

decrypt

encrypt

decrypt

encrypt

Fig. 3. The graph API. Clear text operations are clearly separated from cipher text do-
main operations, and conversion between the two domains happens through an explicit
encrypt or decrypt method.

10 Ruben De Smet, Ann Dooms, An Braeken, and Jo Pierson

final Profile p = new Profile();

p.setName("Alice Cryptographer");

// Save `p' on network `connection' with owner `privateKey'

ID profile_id = connection.pushProfile(p, privateKey);

connection.findProfile(profile_id, privateKey,

new FetchEventListener<Profile>() {

@Override

public void onComplete(Profile profile) {

// Do something with the found and decrypted profile

}

});

Listing 1. The Android-compatible Java library is used in this example to create a
Profile object, assign a name, store it on the network and then asynchronously fetch
it from the network.

5 Performance evaluation

To validate the technical viability, we have built a demonstrator implementation
in Rust4. We call this demonstrator Glycos, and serves as a middleware providing
an interface for traversing the graph with an asynchronous API. It contains the
necessary networking and cryptographic components to query the network for,
and to create and store vertices and edges. For a graphical overview, refer to
Figures 2 and 3.

Additionally, it contains an object relational mapping (ORM) interface that
maps objects to vertices and edges and vice versa. This allows a developer to
think in terms of objects and their relations, like is common when working with
relational databases. The ORM-interface contains generated bindings to Java, to
demonstrate the viability on the Android platform. Listing 1 contains example
code verified testing on both a virtual and a physical Android device.

Since practicality and performance are key in the design, a thorough analysis
of both aspects is mandatory. Note that a vertex can be serialised in 156 + |v|+
32|ACL| bytes when taking a 64-bit integer for the clock value. We saved 32
bytes by using the BNN − IBS Schnorr signature [3] scheme, which allows us
to omit the owner key from the serialisation.

When an edge E is transmitted together with its accompanying vertex, we
can omit the subject Os and the ring Rs from Es serialisation. This allows a
serialisation in 112 + |l|+ 80|Rs| bytes.

The maximum transmission unit (MTU) for Ethernet is about 1500 bytes,
so for a small (< 15) amount of participants both a vertex or an edge could fit a
single Ethernet frame. At 1500 bytes, one megabyte can store around 700 vertices

4 “Rust is a systems programming language that runs blazingly fast, prevents segfaults,
and guarantees thread safety.” https://www.rust-lang.org/

Glycos: the basis for a peer-to-peer, private online social network 11

or edges, one gigabyte around 700 000. Since modern smartphones and computers
come with plenty of storage, often exceeding 8 GB, this is ought to be compact
enough.

Table 1. Specifications of the devices used for benchmarks. All benchmarks were ran
on the notebook, except where otherwise noted.

Notebook Smartphone

Brand Lenovo Thinkpad X250 Lenovo Moto Z Play
CPU Intel Core i5-5200U (Broadwell) ARM Cortex A53 (MSM8953)
Core count 2 cores, 4 threads 8 cores
Clock frequency 2.20 GHz 2.0 GHz
RAM 16 GB DDR 3 at 1600 MT/s 3 GB DDR 3
Operating system Arch Linux SailfishOS 2.1.3.7 armv7hl
Rust compiler 1.29.0-nightly (874dec25e 2018-07-21)

We ran a few benchmarks to measure how fast vertices and edges can be
generated and decrypted. Timings correspond to a at least few hundreds of en-
cryptions and decryptions per second. Note that at the time of writing, the ARM
based smartphone platform takes no advantage of the available NEON instruc-
tion set5 nor from the 64 bit instructions. In other words, the ARM build has
still room for optimisation. All notable benchmarks are represented in Table 2.

Table 2. Notable benchmarks. Ring size is taken to be |Rs| = 2 where applicable. A
“seal” operation consists of encrypting and signing the vertex or edge (cfr. Figure 3). An
“open” operation is the inverse operation: computing the correct keys and decrypting
the vertex or edge. Mean times as reported by the criterion library.

Notebook Smartphone

verify vertex signature 136.51 µs 2.8427 ms
verify edge signature 157.58 µs 3.0733 ms
“seal” vertex 948.97 µs 13.458 ms
“seal” edge 438.15 µs 8.4213 ms
“open” vertex 391.11 µs 7.6648 ms
“open” edge 129.53 µs 2.5662 ms

6 Conclusion

Decentralisation of a service is believed to lead to more privacy. We noted that
today’s decentralised online social networks (OSNs) come in two forms: at one

5 NEON support is on the roadmap for curve25519-dalek; cfr. https://github.com/
dalek-cryptography/curve25519-dalek/issues/147

12 Ruben De Smet, Ann Dooms, An Braeken, and Jo Pierson

hand there are federated OSNs, and at the other there are peer-to-peer OSNs.
Federated networks have as disadvantage that the end-user has to choose a
provider or “pod”, which in the case of e-mail has lead to re-centralisation of
users’ data.

Most peer-to-peer networks reinvent the wheel: often on a per-feature basis,
these systems mainly design a private and secure protocol. This is in contrast
with centralised services, where developers employ abstractions like SQL, ORM,
and cookies to build applications, often without having to consider cryptography.

An abstract data model can help to overcome this unbalance. While exist-
ing data models such as GXS [28] have also observed this unbalance, proposed
solutions are often still application specific. We propose a simple graph database-
like service built upon Kademlia, on which application developers can store and
query arbitrary data. This data model is encrypted and authenticated and thus
only readable and writeable by users with the necessary permissions. Moreover,
it has been made relatively easy to use through the ORM layer, and shown to
be efficient enough to run on mobile devices.

7 Future work

In the current model, efficient update and delete operations are still lacking, due
to the risk of replay attacks. By introducing a notion of time, or more precisely
the notion of happened-before [15], these attacks can be countered, and efficient
deletion could be implemented. These are important considerations, since these
features would increase the user’s control over their data.

As touched upon in Section 4.1, privacy properties and definitions are not
well studied in a peer-to-peer context. Formally identifying adversaries and their
capabilities in a peer-to-peer OSN, and making provable definitions about them
can increase confidence in these applications.

Looking at Glycos as a middleware, future research should further enhance
the platform in itself, making it more practical to build actual applications and
to make peer-to-peer overlay systems simpler to develop.

References

[1] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. “1-out-of-n signa-
tures from a variety of keys”. In: Advances in Cryptology—Asiacrypt 2002
(2002), pp. 639–645.

[2] Philip E Agre and Marc Rotenberg. Technology and privacy: The new
landscape. Mit Press, 1998.

[3] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. “Security
proofs for identity-based identification and signature schemes”. In: Journal
of Cryptology 22.1 (2009), pp. 1–61.

Glycos: the basis for a peer-to-peer, private online social network 13

[4] Daniel J Bernstein. “Curve25519: new Diffie-Hellman speed records”. In:
International Workshop on Public Key Cryptography. Ed. by Moti Yung
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 207–228.
isbn: 978-3-540-33852-9.

[5] Elisa Bertino, Ji-Won Byun, and Ninghui Li. “Privacy-Preserving Database
Systems”. In: Foundations of security analysis and design III: FOSAD
2004/2005 tutorial lectures. Springer-Verlag Berlin Heidelberg, 2005, pp. 178–
206.

[6] Guido Bertoni et al. “Keccak sponge function family main document”. In:
Submission to NIST (Round 2) 3 (2009), p. 30.

[7] Sonja Buchegger et al. “PeerSoN: P2P Social Networking - Early Expe-
riences and Insights”. In: Proceedings of the Second ACM Workshop on
Social Network Systems Social Network Systems 2009, co-located with Eu-
rosys 2009. Nürnberg, Germany, Mar. 2009, pp. 46–52.

[8] Ning Cao et al. “Privacy-preserving query over encrypted graph-structured
data in cloud computing”. In: Distributed Computing Systems (ICDCS),
2011 31st International Conference on. IEEE. 2011, pp. 393–402.

[9] Datanyze. Email Hosting Market Share Report. Datanyze, June 12, 2018.
url: https://www.datanyze.com/market-share/email-hosting (vis-
ited on 06/14/2018).

[10] Whitfield Diffie and Martin Hellman. “New directions in cryptography”.
In: IEEE Transactions on Information Theory 22.6 (Nov. 1976), pp. 644–
654. issn: 0018-9448.

[11] Emma Graham-Harrison and Carole Cadwalladr. “Revealed: 50 million
Facebook profiles harvested for Cambridge Analytica in major data breach”.
In: The Guardian (Mar. 2018). url: https://www.theguardian.com/
news/2018/mar/17/cambridge-analytica-facebook-influence-us-

election.
[12] David Irvine. MaidSafe Distributed File System. Tech. rep. 2010.
[13] Omair Khan. Major Email Provider Trends in 2015: Gmail’s Lead In-

creases. Mailchimp, July 15, 2015. url: https://blog.mailchimp.com/
major-email-provider-trends-in-2015-gmail-takes-a-really-

big-lead/.
[14] Nick Lambert, Qi Ma, and David Irvine. Safecoin: The Decentralised Net-

work Token. Tech. rep. MaidSafe, Tech. Rep, 2015.
[15] Leslie Lamport. “Time, Clocks and the Ordering of Events in a Distributed

System”. In: Communications of the ACM 21.7 (July 1978), pp. 558–565.
[16] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF):

Model and Syntax. W3C Recommendation. W3C, 1997. url: https://
www.w3.org/TR/WD-rdf-syntax-971002/ (visited on 10/20/2017).

[17] Sarah Jamie Lewis. On Emergent Centralization. 2018. url: https://

fieldnotes.resistant.tech/defensive-decentralization/ (visited
on 10/31/2018).

[18] Kayla Lewkowicz. Here’s What We Learned After Tracking 17 Billion
Email Opens [Infographic]. Mar. 21, 2017. url: https://litmus.com/

14 Ruben De Smet, Ann Dooms, An Braeken, and Jo Pierson

blog / 2016 - email - client - market - share - infographic (visited on
06/14/2018).

[19] P Maymounkov and D Mazieres. “Kademlia: A peer-to-peer information
system based on the XOR metric”. English. In: Peer-to-Peer Systems. Ed.
by P Druschel, F Kaashoek, and A Rowstron. Vol. 2429. Lecture notes
in Computer Science. 1st International Workshop on Peer-to-Peer Sys-
tems, Cambridge, Massachusetts, Mar 07-08, 2002. Microsoft Res. Heidel-
berger Platz 3, D-14197 Berlin, Germany: Springer-Verlag Berlin Heidel-
berg, 2002, pp. 53–65. isbn: 3-540-44179-4.

[20] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In: Advances
in Cryptology — CRYPTO ’85 Proceedings. Ed. by Hugh C. Williams.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1986, pp. 417–426. isbn:
978-3-540-39799-1.

[21] Andreas Pfitzmann and Marit Hansen. “A terminology for talking about
privacy by data minimization: Anonymity, unlinkability, undetectability,
unobservability, pseudonymity, and identity management”. In: (2010).

[22] Platform for Privacy Preferences (P3P) Project. W3C Recommendation.
W3C, Feb. 2014. url: https://www.w3.org/P3P/ (visited on 10/31/2018).

[23] Regulation (EU) 2016/679 of the European Parliament and of the Coun-
cil of 27 April 2016 on the protection of natural persons with regard to
the processing of personal data and on the free movement of such data,
and repealing Directive 95/46/EC (General Data Protection Regulation).
Apr. 27, 2016.

[24] Ronald Rivest, Adi Shamir, and Yael Tauman. “How to leak a secret”. In:
Advances in Cryptology—ASIACRYPT 2001 (2001), pp. 552–565.

[25] Nicolas van Saberhagen. Cryptonote v2.0. 2013.
[26] Claus-Peter Schnorr. “Efficient signature generation by smart cards”. In:

Journal of cryptology 4.3 (1991), pp. 161–174.
[27] Claus-Peter Schnorr. “Method for identifying subscribers and for generat-

ing and verifying electronic signatures in a data exchange system”. U.S.
pat. 4995082. Feb. 1991.

[28] Cyril Soler. A Generic Data Exchange System for Friend-to-Friend Net-
works. Tech. rep. INRIA Grenoble-Rhone-Alpes, 2017.

[29] Peter Todd. [bitcoin-development] Stealth addresses. 2014. url: https:

//www.mail-archive.com/bitcoin-development@lists.sourceforge.

net/msg03613.html (visited on 12/02/2017).
[30] Carmela Troncoso et al. “Systematizing Decentralization and Privacy:

Lessons from 15 years of research and deployments”. In: Proceedings on
Privacy Enhancing Technologies 2017.4 (2017), pp. 404–426.

[31] user ‘bytecoin’. Untraceable transactions which can contain a secure mes-
sage are inevitable. 2011. url: https://bitcointalk.org/index.php?
topic=5965.0 (visited on 12/02/2017).

