
HAL Id: hal-02269729
https://inria.hal.science/hal-02269729

Submitted on 23 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Testbed Evaluation of Optimized REACT over
Multi-hop Paths

Matthew J. Mellott, Charles J. Colbourn, Violet R. Syrotiuk, Ilenia Tinnirello

To cite this version:
Matthew J. Mellott, Charles J. Colbourn, Violet R. Syrotiuk, Ilenia Tinnirello. Testbed Evaluation
of Optimized REACT over Multi-hop Paths. International Conference on Wired/Wireless Internet
Communication (WWIC), Jun 2018, Boston, MA, United States. pp.134-145, �10.1007/978-3-030-
02931-9_11�. �hal-02269729�

https://inria.hal.science/hal-02269729
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Testbed Evaluation of Optimized REACT over
Multi-hop Paths

Matthew J. Mellott1, Charles J. Colbourn1,
Violet R. Syrotiuk1, and Ilenia Tinnirello2

1School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, P.O. Box 878809, Tempe, AZ 85287, U.S.A.

2Department of Electrical Engineering, University of Palermo,
Viale delle Scienze, Parco D’Orleans, 90128 Palermo, Italy

{mmellott,colbourn,syrotiuk}@asu.edu, ilenia.tinnirello@unipa.it

Abstract. REACT is a distributed resource allocation protocol that
computes a max-min allocation of airtime for mesh networks. The allo-
cation adapts automatically to changes in local traffic load and in local
network views. SALT, a new contention window tuning algorithm, en-
sures that each node secures the airtime allocated to it by REACT.
REACT and SALT are extended to the multi-hop flow scenario with
the introduction of a new airtime reservation algorithm. With a reser-
vation in place, multi-hop TCP flows show increased throughput when
running over SALT and REACT compared to running over 802.11 DCF.
All results are obtained from experimentation on the w-iLab.t wireless
network testbed in Belgium.

1 Introduction

Wi-Fi network performance is known to degrade dramatically when node density
is high, and when flows are sustained over multiple hops. These conditions arise
when multiple networks coexist [10, 21] and when large access infrastructure
is deployed [3, 17]. The degradation results from the starvation and unfairness
associated with carrier sense multiple access (CSMA) based protocols. This is
attributed to a mismatch in the local views of the wireless medium among the
nodes, and due to high levels of contention when the network is congested [12].

To mitigate such problems several approaches have been proposed. These
include adopting rate limiters on nodes [4, 7], using multi-hop reservations [16],
using different access priorities for data and control traffic [8], and exploiting
admission control [22].

Airtime measures the channel time in which a link is sensed busy because
of frame transmissions. Airtime measurements are position-dependent, because
channel attenuation differs for each transmitter-receiver pair. Airtime has been
applied in routing in mesh networks [7, 9], and in admission control [18].

This paper makes two contributions. First, we use a measurement driven
approach to control the airtime allocated to each node in a wireless network
computed by the REACT protocol [19]. REACT negotiates airtime allocations



among the nodes on the basis of traffic requirements and local views of the
network. In order to achieve its allocated airtime we develop SALT, a mechanism
for dynamically tuning the contention window of each node.

There has been much work on contention window tuning but with different
objectives. Among the first may be MACAW [1], replacing the binary exponen-
tial backoff with a multiplicative increase and linear decrease (MILD) of the
contention window (CW) size to improve fairness. Other work tunes the CW
to achieve a theoretical throughput limit [6]. Our goal here is different: Our
aim is to tune the contention window at each node to realize a specific airtime
allocation.

REACT and SALT are both compatible with the 802.11 standard [15] and
have been implemented on legacy devices. Extensive experimentation in the
w.i-Lab.t wireless network testbed [5] shows that the tuning approach is able
to align allocations to those negotiated.

The second contribution is an extension of REACT to reserve an allocation
along the path of a multi-hop TCP flow. This requires that neighbours of the
nodes along the forwarding path take the reservation into account as part of their
own allocations so that they do not interfere with the multi-hop flow. Multi-hop
wireless mesh networks present many challenges for TCP. In addition to the
unreliable wireless transmisson at each hop, contention from hidden and exposed
nodes in a wireless network constrain the TCP throughput achieveable over a
multi-hop path [11]. To the best of our knowledge, Gupta et al. [14] is one of the
few works conducting experimentation with TCP in a physical wireless network.
However, their emphasis is on how TCP throughput is affected by routing, user
mobility, and the number of hops in the network rather than on the impact of
the MAC protocol. While no performance advantages for TCP were found in
their results [14], we have achieved higher TCP throughput in running the flow
over REACT combined with SALT, than over 802.11.

The rest of this paper is organized as follows. In §2, we describe the REACT
protocol for negotiating channel airtime. §3 presents SALT, a new tuning algo-
rithm, its implementation in legacy commercial Wi-Fi cards, and an evaluation
of how well it achieves the airtime allocation. §4 provides an algorithm to reserve
airtime for a multi-hop flow over the REACT/SALT framework and evaluates
the algorithm using a multi-hop TCP flow. Finally, we summarize and propose
future work in §5.

2 Realizing a REACT Allocation

REACT is a distributed resource allocation protocol that uses the metaphor of
an auction [19]. When used in the context of mesh wireless networks, the resource
being allocated (or put up for “auction”) is airtime, the percentage of time a
node controls the medium over a given period. Each node runs an auctioneer and
a bidder algorithm concurrently; auctioneers offer capacity while bidders claim
capacity at adjacent auctions to satisfy their own airtime demand. Auctioneers
update their offers to satisfy all nodes bidding at their auction while also ensuring



that all nodes receive a fair allocation of the resource. Bidders update their claims
to ensure that they are not consuming any more airtime than can be offered at
any adjacent auction. Nodes participating in REACT converge to a lexicographic
max-min airtime allocation [19]. A change in the local network view or traffic
load triggers REACT to run and adapt the allocation.

Lutz et al. [19] realize the REACT allocation in a schedule-based MAC proto-
col, in which a number of transmission slots at each node are selected at random
to correspond to its allocation. A node can recompute its schedule immediately
upon receiving a new allocation from REACT, rather than waiting for the end
of a frame, making it competitive with contention-based protocols. Their initial
evaluation was conducted in simulation where synchronization is not a challenge.

Hence, Garlisi et al. [13] instead realize the REACT allocation in a contention-
based MAC protocol. Because the channel access probability depends on the
average contention window (CW) size [2], a node’s REACT allocation is realized
by tuning the CW size. A legacy Wi-Fi node i can estimate its current allocation
si as a function of the total number ni of channel accesses it makes, the total
time Fi that its backoff is frozen, and the total airtime Ai in an observation
interval C:

si =
Ai

C
=

Ai

Ai + Fi +Wi/2 · σ · ni
(1)

where Wi/2 ·σ ·ni is an approximation of the total time required for the backoff
countdown. This suggests how the contention window can be tuned.

3 REACT Implementation with SALT Tuning

Different from [13], rather than modify 802.11 packet headers, we send control
messages to implement REACT periodically. The time period must be longer
than the amount of time it takes to update bids and offers. With this method
the overhead for control traffic does not increase when the data rate increases.

Our implementation of REACT is paired with a new contention window
tuning approach, described next.

3.1 Smoothed Airtime Linear Tuning (SALT)

Smoothed Airtime Linear Tuning (SALT) is a new contention window tuning
technique. As in [13], the contention window size is fixed unless and until a new
airtime is allocated to node i by REACT. The intuition is that a node’s channel
access behaviour should depend on its allocation, not on the packet outcome.

SALT measures airtime ati at node i over observation interval t and uses it to
set W t+1

i , the contention window size for the next interval t + 1. However ati is
not passed directly to the tuning component of SALT. Its value is first smoothed,
using an exponentially weighted moving average in Equation (2) with parameter



0 ≤ β ≤ 1, to produce St
i which is then used for tuning. Smoothing is done to

reduce the effect of random background noise.

St
i =

{
a1i if t = 1
βati + (1− β)St−1

i if t > 1
(2)

SALT’s tuning component is given in Equation (3); sti is the airtime allocation
for node i from REACT, k is a constant scaling factor, and the maximum CW
size is 1024. The difference between St

i and sti is scaled by k to convert the
difference of unit-less airtime ratios into a contention window size value.

W t
i =


0 if t = 0
bSt

i − stick +W t−1
i if t > 0 and 0 ≤ bSt

i − stick +W t−1
i < 1024

1023 if t > 0 and bSt
i − stick +W t−1

i ≥ 1024
0 if t > 0 and bSt

i − stick +W t−1
i < 0

(3)

3.2 SALT Implementation

SALT is implemented as a Python program running at user level on each Linux
testbed node in an experiment. It is part of the same program that is running
REACT, and the airtime allocation is passed from the thread running REACT to
the thread running SALT. The airtime measurement interval used is one second.
SALT is invoked after each of these one second intervals and uses data collected
by the networking subsystem to determine the airtime during the last interval.

The Linux kernel is modified to expose the minimum Wmin and maximum
Wmax contention window size to user level programs. The interface allows a user
level program to set these parameters; we set Wmin = Wmax = W t

i . The wireless
subsystem is also patched to accept CW sizes that are not powers of two.

3.3 SALT Evaluation

To evaluate SALT, we use the IMEC advanced w-iLab.t testbed, located in
Zwijnaarde, Belgium [5]. It is pseudo-shielded from external interference and
is equipped with various wireless technologies, including IEEE 802.11, IEEE
802.15.4, Bluetooth dongles, Software Defined Radios (SDRs), LTE femto cells,
among others. The w-iLab.t testbed uses the cOntrol Management Framework
(OMF) for resource allocation, hardware and software configuration, and the
orchestration of experiments. Measurement data are collected and stored in a
central database over a wired control network for further processing.

Configuring wireless topologies in such an indoor controlled environment is
important for benchmarking and for the reproducibility of the results. However,
it is a non-trivial task, because the distance at which nodes are able to interfere
can be much farther than the transmission range. In order to limit the physical
visibility of the nodes, we use the 802.11a PHY, at the central frequency of 5180
MHz with a transmission power of 1 dBm.

Tests are conducted to identify “zotac” nodes among the more than 90 avail-
able to match the logical topologies in Fig. 1. Each node is programmed to send



zotacB2 zotacF3

zotacF1

zotacF4

zotacI4

(a) Star topology.

zotacB2 zotacF3 zotacI4 zotacM20

(b) Line topology.

Fig. 1. Logical testbed topologies used to evaluate SALT. Black lines correspond to
bidirectional links while blue arrows denote single-hop flows.

(a) Star topology. (b) Line topology.

Fig. 2. Logical topologies from Fig. 1 mapped onto physical nodes in w-iLab.t.

broadcast pings in a dedicated time interval when all the other nodes are silent.
Nodes that can decode the ping (ICMP Echo Request and Response) are neigh-
bours connected by a bidirectional link. At the end of these tests, we build the
network topologies in Fig. 1; see [20] for more topologies. The physical location
of the nodes in w-iLab.t is shown in Fig. 2.

In each topology, each experiment conducted uses greedy UDP flows. These
flows are set up with a target 1 Gbps UDP bandwidth, far beyond the capabilities
of the wireless link (i.e., the channel is saturated). =

Experiments to Select the Values of β and k. In order to determine values
for β and k in Equations 2 and 3, we conduct an experiment where we varied
their values over their range; we vary β from 0.1 to 1.0 in steps of 0.1 and k
from 250 to 5000 in steps of 250, making for 120 trials on each of the topologies.
Each trial lasts 15 seconds and we measure airtime for each node in the trial
over that time. The heat maps in Figure 3 show the convergence results for each
topology and each combination of β and k. The darker the square in the heat
map the faster the trial converged. We average the convergence time for each
trial on each topology for the same β and k and select the lowest average. This
results in a β = 0.6 and k = 500, for the best average convergence time of 7.44
seconds; these values of β and k are used in all subsequent experiments.



250 500 750 100012501500175020002250250027503000
k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
E
TA

(a) Star topology.

250 500 750 100012501500175020002250250027503000
k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
E
TA

(b) Line topology.

Fig. 3. β versus k “heat maps” by topology. The darker the square in the heat map
the faster the trial converged.

3.4 Experiment to Compare Tuning Algorithms

We conduct an experiment to compare SALT and the original tuning algorithm
[13], running along with REACT; 802.11 DCF is included as a control. The flows
in this experiment are greedy UDP flows set up as described in §3.3.

We present the results for the star topology in Figs. 4 and 5 because they
are representative; see [20] for more detail. Fig. 4 plots airtime as a function of
time. As expected, the airtime of nodes running 802.11 is unequal and highly
variable for each node. In this topology, the allocation computed by REACT for
each node is 20%. The original tuning algorithm converges more quickly than
SALT but not as tightly. Moreover, each node running SALT oscillates around
the allocated airtime whereas in the original tuning algorithm some nodes are
unable to reach their allocated airtime of 20%.

Figure 5 plots per-node throughput, jitter, drop rate, and aggregate through-
put for the star topology. The high variability in airtime for 802.11 is reflected in
the per-node results: The throughput, jitter, and drop rates from node to node
are also highly variable. The tighter convergence of SALT leads to the higher
throughput and lower jitter than the original tuning algorithm. Both tuning al-
gorithms have a near zero drop rate while 802.11’s drop rate is extremely high,
well above 90% for three of the four nodes. Despite the high drop rate for 802.11,
it still leads in aggregate throughput of 67.96 MiB; one node (zotacF4), which
obtains around 60% of the airtime, is almost solely responsible for the higher
aggregate throughput achieved. SALT has throughput of 55.57 MiB with the
original tuning algorithm achieving 49.72 MiB.

We now examine a more challenging multi-hop scenario.

4 Multi-hop REACT and Multi-hop Reservations

Until now, nodes running REACT have only taken into account their own traffic
needs. In the auction a node’s bid secures airtime for itself, but if there are
multi-hop flows in a network this is insufficient because it does not take into
account the fact that a node might need to forward traffic ultimately destined to



0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
A

ir
ti

m
e
 (

%
)

zotacF3 zotacF4
zotacF1 zotacI4

zotacB2

(a) 802.11.

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

zotacF3

zotacF4

zotacF1

zotacI4

zotacB2

(b) Original tuning [13].

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

zotacF3

zotacF4

zotacF1

zotacI4

zotacB2

(c) SALT.

Fig. 4. Airtime versus time for the star topology for 802.11, the original tuning algo-
rithm, and SALT.

other nodes. We present a multi-hop airtime reservation protocol that addresses
this issue.

Without a reservation algorithm a node could try to predict how much air-
time to reserve for multi-hop flows passing through it. Nodes store each of their
neighbour’s claims and could speculate how their demand should reflect the pos-
sibility of multi-hop flows. Unfortunately claims provide no information on the
directionality of flows, multi-hop or not. A claim is sent to every node within
broadcast range and only informs the receiver that the sender is currently expect-
ing to utilize the amount of airtime claimed. Claims also do not tell a node any-
thing about the demands of nodes beyond their one-hop neighbourhood, where
the multi-hop flow could be originating. Multi-hop reservations allow the origina-
tors of multi-hop flows to inform nodes of the additional traffic they are expected
to forward. Nodes along the reservation path can also inform the originator of
resource saturation. The REACT auction itself is a convenient mechanism that
can be used for the purpose of making these reservations.



zotacB2 zotacF1 zotacF4 zotacI4
Node

0

500

1000

1500

2000

2500

3000

T
h
ro

u
g
h

p
u

t 
(k

b
p

s)

802.11

Garlisi et al.

SALT

zotacB2 zotacF1 zotacF4 zotacI4
Node

0

100

200

300

400

500

600

Jit
te

r 
(m

s)

802.11

Garlisi et al.

SALT

zotacB2 zotacF1 zotacF4 zotacI4
Node

0

20

40

60

80

100

D
ro

p
 R

a
te

 (
%

)

802.11
Garlisi et al.
SALT

802.11 Garlisi et al. SALT
0

10

20

30

40

50

60

70

A
g

g
re

g
a
te

 T
h
ro

u
g

h
p
u

t 
(M

iB
)

Fig. 5. Per-node throughput, jitter, and drop rate for each of 802.11 (in blue), the
original tuning algorithm (in green), and SALT (in red), in addition to aggregate
throughput, for the star topology.

Each auction in the REACT protocol allocates the channel capacity. In our
multi-hop reservation algorithm, a reservation is made by reducing this capacity
by the reservation amount at nodes along the path and at their neighbours. Once
the reservation is placed nodes along the reservation path they each increase their
allocation by the reservation amount. This secures airtime for the flows that
will be passing through the node while still maintaining the standard REACT
auction for allocating airtime in the neighbourhood. §4.1 provides a more precise
description of this process and §4.2 presents our evaluation of it.

4.1 Multi-hop Reservation Algorithm

The Reserve algorithm is recursive, with parameters s, r and d, where s and d
are the source and destination of the multi-hop flow, requiring a reservation of r.
First, the source reserves r for the multi-hop flow. If it is unable, the reservation
fails. If it is successful, then it requests each of its one-hop neighbours, except
the next-hop along the multi-hop path, to reserve r for the multi-hop flow. If any
neighbour cannot reserve r it returns failure, causing the reservation to fail and
recursively release the reserved resources. However, if all neighbours succeed in



Algorithm 1 Reserve(s, r, d)

1: if (capacitys − r) ≤ 0 then
2: return false
3: end if
4: capacitys ← capacitys − r
5: if (s == d) then
6: return true
7: else
8: status← true
9: for each n ∈ (Neighbours(s) \Next Hop(s)) do

10: status← status and Neighbour has Capacity(n, r)
11: end for
12: if (status == true) then
13: return Reserve(Next Hop(s), r, d)
14: else
15: tear down any completed reservations made by neighbours of s and s itself

for this multi-hop flow
16: end if
17: end if

making a reservation, then Reserve is called recursively with the source equal
to the next-hop node along the multi-hop path. If the next hop is the destination,
then the reservation has succeeded at each node along the path, and the success
propagates back to the source of the multi-hop flow. The pseudocode for the
Reserve algorithm is provided in Algorithm 1.

4.2 Multi-hop Reservation Evaluation

To evaluate the reservation process, experiments were conducted on the line
topology with a multi-hop TCP flow. Fig. 6 shows the line topology used with the
multi-hop flow indicated in green. In the trials that used REACT, the TCP flow
is started only after successful reservation along the path. In our experiments,
we auction 80% of the channel, not 100%, leaving 20% for the control traffic;
this is the same data/control traffic split used in [13]. The interior nodes of the
line (e.g., zotacF4), must split 80% of the channel among three nodes (itself,
and its previous and its next hop along the line). The reservation is placed for
80
3 ≈ 26.6% airtime, which is close to the maximum amount of airtime that can

be reserved in this scenario, assuming no other traffic flows. The TCP flow lasts
for 120 seconds in both the REACT and 802.11 trials. Multi-hop routing is static
with each node having neighbour information before the flow starts.

Figure 7 plots the airtime graphs for both REACT and 802.11 in the multi-
hop scenario. The reservation of 26.6% airtime was placed after 0.9063 seconds
and REACT converged after 9.041 seconds. Line topologies suffer both hidden
and exposed node problems, with the airtime of 802.11 being highly unstable;
in a multi-hop flow, the relatively high airtime of zotacF3 cannot help the
throughput of the multi-hop flow. The more consistent airtime and lower jitter



zotacB2

zotacF3

zotacM20

zotacI4

Fig. 6. A three-hop line topology used in the multi-hop reservation experiment.

for REACT leads to higher TCP throughput over REACT than over standard
802.11. Specifically, 802.11 achieved throughput of 0.86 Mbps, while multi-hop
REACT achieved 0.91 Mbps.

5 Summary and Future Work

A new tuning algorithm, SALT, converges more tightly to REACT’s airtime
allocations, and tighter convergence leads to reductions in unfairness and jitter
compared to 802.11 DCF. A new multi-hop reservation algorithm that lever-
ages the airtime allocation and realization capabilities of this combination was
proposed. With a reservation in place we have shown that REACT and SALT
achieve higher throughput in a multi-hop TCP flow than in one that runs over
802.11 DCF.

There are several avenues of future work. To date, no real-world implementa-
tion of REACT handles nodes leaving an auction. This could occur if a node goes
offline unexpectedly, or moves out of the range of the auctioneer. In simulation,
Lutz et al. [19] used neighbour timeouts to determine when to evict nodes from
the auction.

At present, SALT converges slowly. Perhaps combining SALT with the orig-
inal tuning algorithm to leverage the lower jitter and faster convergence of each
could be explored.

The reservation algorithm must be adapted to work with a dynamic routing
protocol. This would likely require communication between REACT and the
routing software.

All of these directions would contribute to the promising results of REACT
with SALT to enabling fair, scalable mesh networks.

Acknowledgements

This work is supported in part by the U.S. National Science Foundation under
Grant No. 1421058.

References

1. Bharghavan, V., Demers, A., Shenker, S., Zhang, L.: MACAW: A media access
protocol for wireless LANs. In: ACM SIGCOMM (1994)



0 20 40 60 80 100 120
Time

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

zotacF3

zotacI4

zotacM20

zotacB2

(a) 802.11

0 20 40 60 80 100 120
Time

0.0

0.2

0.4

0.6

0.8

1.0

A
ir

ti
m

e
 (

%
)

zotacF3

zotacI4

zotacM20

zotacB2

(b) REACT with reservation.

802.11      SALT+REACT
0.0

0.2

0.4

0.6

0.8

T
h
ro

u
g
h

p
u
t 

(M
b
p

s)

(c) Multi-hop TCP throughput comparison.

Fig. 7. Multi-hop TCP results: The airtime of 802.11 and of REACT with reservation
over the life of the multi-hop flow, and the multi-hop TCP throughput.

2. Bianchi, G., Tinnirello, I.: Remarks on IEEE 802.11 DCF performance analysis.
IEEE Communications Letters 9(8), 765–767 (2005)

3. Bicket, J., Aguayo, D., Biswas, S., Morris, R.: Architecture and evaluation of an
unplanned 802.11b mesh network. In: Proceedings of the 11th Annual ACM Mo-
bicom. pp. 31–42 (2005), http://doi.acm.org/10.1145/1080829.1080833

4. Blefari-Melazzi, N., Detti, A., Habib, I., Ordine, A., Salsano, S.: TCP fairness issues
in IEEE 802.11 networks: Problem analysis and solutions based on rate control.
IEEE Transactions on Wireless Communications 6(4), 1346–1355 (April 2007)

5. Bouckaert, S., Vandenberghe, W., Jooris, B., Moerman, I., Demeester, P.: The
w-iLab.t testbed. In: Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S. (eds.)
Testbeds and Research Infrastructures. Development of Networks and Communi-
ties, pp. 145–154. Springer Berlin Heidelberg (2011)

6. Cali, F., Conti, M., Gregori, E.: Dynamic tuning of the IEEE 802.11 protocol to
achieve a theoretical throughput limit. IEEE/ACM Transactions on Networking
8(6), 785–799 (December 2000)



7. Camp, J., Robinson, J., Steger, C., Knightly, E.: Measurement driven deployment
of a two-tier urban mesh access network. In: Proceedings of the 4th ACM Mobisys.
pp. 96–109 (2006)

8. Carlson, E., Prehofer, C., Bettstetter, C., Karl, H., Wolisz, A.: A distributed end-
to-end reservation protocol for IEEE 802.11-based wireless mesh networks. IEEE
Journal on Selected Areas in Communications 24(11), 2018–2027 (November 2006)

9. Carrano, R., Magalhaes, L., Saade, D., Albuquerque, C.: IEEE 802.11s multihop
MAC: A tutorial. IEEE Communications Surveys & Tutorials 13(1), 52–67 (Jan-
uary 2011)

10. Ergin, M.A., Ramachandran, K., Gruteser, M.: An experimental study of inter-cell
interference effects on system performance in unplanned wireless LAN deploy-
ments. Computer Networks 52(14), 2728–2744 (October 2008)

11. Fu, Z., Zerfos, P., Luo, H., Lu, S., Zhang, L., Gerla, M.: The impact of multi-hop
wireless channel on TCP throughput and loss. In: Proceedings of IEEE INFOCOM
(April 2003)

12. Garetto, M., Salonidis, T., Knightly, E.: Modeling per-flow throughput and cap-
turing starvation in CSMA multi-hop wireless networks. IEEE/ACM Transactions
on Networking 16(4), 864–877 (August 2008)

13. Garlisi, D., Giuliano, F., Lo Valvo, A., Lutz, J., Syrotiuk, V.R., Tinnirello, I.:
Making Wi-Fi work in multi-hop topologies: Automatic negotiation and allocation
of airtime. In: Proceedings of IEEE CNERT. pp. 48–55 (2015)

14. Gupta, A., Wormsbecker, I., Williamson, C.: Experimental evaluation of TCP per-
formance in multi-hop wireless ad hoc networks. In: Proceedings of the 12th Annual
IEEE International Symposium on MASCOTS. pp. 3–11 (2004)

15. IEEE standard 802.11: W-LAN medium access control & physical layer specifica-
tions (December 1999)

16. Imboden, T., Akkaya, K., Moore, Z.: Performance evaluation of wireless mesh
networks using IEEE 802.11s and IEEE 802.11n. In: Proceedings of the IEEE
ICC. pp. 5675–5679 (June 2012)

17. Jardosh, A.P., Mittal, K., Ramachandran, K.N., Belding, E.M., Almeroth, K.C.:
IQU: Practical queue-based user association management for WLANs. In: Pro-
ceedings of the 12th ACM Mobicom. pp. 158–169 (2006)

18. Kosek-Szott, K., Natkaniec, M., Szott, S., Krasilov, A., Lyakhov, A., Safonov, A.,
Tinnirello, I.: What’s new for QoS in IEEE 802.11? IEEE Network 27(6), 95–104
(November 2013)

19. Lutz, J., Colbourn, C.J., Syrotiuk, V.R.: ATLAS: adaptive topology-and load-
aware scheduling. IEEE Transactions on Mobile Computing 13(10), 2255–2268
(2014)

20. Mellott, M.J.: Smoothed Airtime Linear Tuning and Optimized REACT with
Multi-hop Extensions. Master’s thesis, Arizona State University (2018)

21. Papagiannaki, K., Yarvis, M., Conner, W.: Experimental characterization of home
wireless networks and design implications. In: Proceedings of the 25th IEEE IN-
FOCOM. pp. 1–13 (April 2006)

22. Shen, Q., Fang, X., Li, P., Fang, Y.: Admission control based on available band-
width estimation for wireless mesh networks. IEEE Transactions on Vehicular Tech-
nology 58(5), 2519–2528 (June 2009)


