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ABSTRACT. A model of autopilot decision algorithm based on 

multidimensional depth space-time network was studied in this paper. The 

forward images of vehicle driving was taken by the camera mounted on the 

vehicle. The images and the steering wheel angle and speed were collected as the 

model training input data. The multi frame vehicle image was pre-processed, the 

underlying feature image and the original image were used as the input of the 

multi-dimensional space-time decision network. The multi-dimensional space-

time decision network was set up. The multiple three-dimensional convolution 

paths were used to extract and fuse the high level spatiotemporal features of the 

original and the underlying features, and the fusion features were used. In the 

decision of autopilot. The multidimensional spatiotemporal network was trained 

by using the driver's driving data, and the multidimensional spatiotemporal 

decision-making model was obtained. The decision model of the autopilot makes 

use of multidimensional space-time information to directly output the decision 

information of autopilot. The model can effectively output the driver's decision 

data. 
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1 Introduction 

Generally, The Automatic driving system consists of three modules: the environment 

perception module, the planning decision module and the vehicle control module. The 

environment perception module is used to obtain road and traffic environment 

information. The planning decision module calculates the driving track of vehicle on 

the road and the driving direction and speed of the vehicle on the each point of the road. 

The main task of the vehicle control module is to realize the control message of the 

decision module. The control instructions are sent to the executing agency according to 

the current vehicle status. Control module, and finally realize the automatic driving 

task. 

Planning decision module is the most important and most challenging task in an auto 

driving system. With the rise of artificial intelligence technology, more and more 



companies and researchers have applied artificial intelligence technology such as deep 

learning and reinforcement learning to the planning and decision of automatic driving 

system, and achieved remarkable results. Comma.AI uses a mobile phone to realize the 

initial attempt of auto driving system. The system obtains road and traffic information 

mainly through the mobile camera, and then outputs the decision information by 

running the depth network program to complete the auto driving task in the mobile 

phone. Mobileye’s planning decision module includes two parts, the non-learning part 

and the learning part. The non-learning part uses a rule-based decision algorithm to 

realize vehicle trajectory planning and decision. The decision algorithm of learning part 

is trained by a deep reinforcement learning network. The algorithm is trained by a large 

number of driving data. The combination of the two decision algorithms constitutes the 

control strategy of Mobileye planning decision module. 

Current decision algorithms about deep learning networks mostly only take into 

account the spatial information of the current time, and do not consider the time 

information contained in the dynamic process of vehicle driving. In this paper, the 

vehicle image shouted by the camera installed on vehicle, and the steering angle and 

speed of the steering wheel were collected as the training data of the deep learning 

network. The image is pre-processed to construct the multi-dimensional deep space-

time network together with running dates of the vehicle. The trained network was used 

to make decisions for the automatic vehicle. 

2 Data collection and data processing 

In this paper, the automatic driving decision algorithm needs to use the vehicle 

driving image as input. Vehicle driving image was collected to train the multi-

dimensional space-time decision network，and also used to test the decision algorithm. 

A camera mounted on the vehicle was used to take photos of the front view of the 

vehicle. 

One million and 200 thousand usable pictures were collected. We need to convert 

the original data into a format that is easy to read in the deep learning model. The ‘h5py’ 

format with high access efficiency was used to save the original data. Pictures and 

steering tag dates are saved in two ‘h5py’ files for easy reading. In order to speed up 

the model training, the original pictures were reduce to (640*320) and then saved. 

D riving decisions dates of skilled driver (such as steering wheel angle and speed) 

were recorded to train multi-dimensional deep space-time network. Sampling 

frequency of pictures is less than the sampling frequency of driving decision dates. So 

the sampling frequency of driver decision dates were took equal to the frequency of 

pictures. In another way, the time stamps of the image and driving decision data is 

added. The driving decision data corresponding to the nearest picture is taken as the 

driving decision data. Driving decision data such as steering wheel angle and speed etc. 

are acquired by vehicle CAN bus or external sensors. 



3  Feature extraction of dates 

In order to get the information in the multi frame vehicle image better, we need to pre-

process the image and obtain the low layer feature image. There were two kinds of low-

level feature images in this study: gradient and optical flow. The gradient image was 

obtained by using the edge gradient operator, while the optical flow image was obtained 

by dense optical flow algorithm. Considering the image of each direction was different 

because of the image perspective deformation, the gradient image and the optical flow 

image were divided into two directions of X and y, and a total of 4 low layer features 

were obtained. Each frame of light flow needs two frames of original image to obtain, 

so if the vehicle driving image for each decision was T frame, the X and Y direction of 

the optical flow image was T-1 frame respectively, and the gradient image of X and Y 

direction was T frame respectively. 

The multi-dimensional spatiotemporal decision network takes the original image and 

the low-level feature image as input, and extracts the spatiotemporal characteristics to 

make decision. Its structure was shown in Figure 1. The network uses multiple access 

networks to acquire high-level features, fuse these high-level features, and make 

decisions. For each input feature, a single path is used to extract high-level features. 

Each path has the same network structure, stacked by four three-dimensional 

convolution modules, as shown in Figure 2. The three dimensional convolution module 

was composed of three dimensional volume layer, batch normalization layer and 

activation layer, as shown in Figure 3. 
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Fig. 1. Structure of decision network 
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Fig. 2. Multiple access networks 
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Fig. 3. Three dimensional volume layer  

The three dimensional convolution layer in 3D convolution module is the extension of 

the commonly used image convolution in time dimension. The calculation formula is 

as follows: 
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Convolution with a convolution core of P x Q x R, so that not only convolution in 

space, but also convolution at the same time, thus the time and space information 

contained in the multi frame vehicle image can be obtained at the same time. By setting 

the corresponding step size, the dimensions of each dimension can be changed to reduce 

the computational complexity. Although the three-dimensional convolution in the 

lower layer of the network can only obtain more local spatiotemporal information, the 

global spatiotemporal information can be gradually acquired through the stacking of 

multiple three dimensional coiling layers. 

The volume normalization layer in 3D volume layer can speed up training, improve 

training stability, reduce over fitting, and improve the network effect to a certain extent. 

In training, the data for each batch of training are normalized. The formula is: 
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In the formula,  𝜇𝐵  ,  𝜎𝐵
2 are the mean and variance of the batch training data for the 

batch normalization layer, respectively. When using a trained network to make 

decisions, because the data is not batch input, the mean and variance are as follows: 
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That is to say, the mean value of all batches of training is the mean value at this time, 

and the unbiased estimate of variance of all batches during training is the variance at 

this time. 

The parameter correction linear element was used in the activation layer, and its 

formula is: 

𝜎𝑝𝑟𝑒𝑙𝑢(𝑥) = {
𝑥, 𝑥 > 0
𝑎𝑥, 𝑒𝑡𝑐.

 

Such an activation layer avoids gradient disappearance and makes the network easier 

to converge and train. 

When each channel is extracted to the high level feature respectively, these different 

high-level features need to be fused into a fusion spatiotemporal feature. The system 

and methods are fused with the full connection. The fusion formula is as follows: 
5
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fusionf is the feature after fusion. if and iW are the ith kind high level eigenvalue and their 

corresponding weight matrices respectively. Finally, the full connection is used to 

transform features into decision parameters such as steering wheel angle and speed. 
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In the formula, ny is the value of decision, outW  is the weight matrix of the output layer. 

4 Driver decision-making model training 

Using the driving image as input, the driver's driving decision dates and the images 

corresponding to the dates were trained by the constructed multi-dimensional deep 

space-time network. The training framework is shown in Figure 4. The training uses 

the batch gradient descent algorithm. Each batch was input N samples, each input 

sample is multi frame vehicle driving image, and each input sample contains a frame 

number of T, and these samples and the corresponding pre-processed low layer feature 

images were sent into the multi-dimensional deep space-time decision network. The 

labelling of each sample was driver's driving decision data corresponding to the T frame 

image in the sample. The error between the value of the decision data of the network 

output and the value of the corresponding skilled driver decision was calculated, and 

the gradient back propagation was carried out through error, and the network 

parameters were updated until the network converges. The common error function is 

the mean square error: 

  

In the form,   was the decision value of the network output  was the decision value 

used by the corresponding skilled driver. 

When making a decision, a buffer queue with a size of T was established. The 

number of frames used to train the network is the same. The collected images of the 

vehicle were sent to the queue. After the queue was full, the T frame images stored in 



the queue were used for decision making. Update the cache queue when a new image 

was generated. The first image of the team moved out of the queue and the new image 

was put in the end, as shown in Figure 5. The image in the caching queue used for 

decision making was pre-processed. The original image and the pre-processed low layer 

feature image were input into the multi-channel space-time decision network which 

was loaded with the training parameters, and the decision results can be obtained. 

The imaging interval of the micro focus X-ray CT scanner was as follows: (1) an 

initial state (PV = 0.0) saturated with ion exchange water(IEW); (2) the CT scan 

imaging and seepage water sampling were conducted for PV = 0.5, 1, 2, 3, 4, and 5. 

The CT scan image and the sampling were executed for a total of seven times.  
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Fig. 4. The training framework 
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Fig. 5. The cache queue update 

5 Model test 

First, the network structure and weight of the trained model were loaded to obtain the 

image frames collected by the camera, and then the steering angle was predicted using 

the loaded model. In order to ensure the safety of the test, the difference between the 

two predicted values was not greater than 45 degrees. The stability of the output was 

guaranteed by Kalman filter, and an optimal value was estimated when the output value 

was obviously unreasonable. Therefore, the Kalman filtering was used to filter the 

output of the model. The experimental results show that the output results were more 

stable with the Kalman filtering, the vehicle runs more smoothly, and the comfort of 

the ride was higher. 

The convergence of training data is shown in Figure 6. From the Tensor Flow loss 

diagram, we can see the convergence of loss and the convergence of 18 epoch (1280 

samples). 



 

Fig. 6. Loss Changes 

Steering angle prediction: 

 

Fig. 7. Comparison between the predicted value of steering angle and the original value 

As shown in Figure 7, the blue line shows the model prediction of the steering angle, 

red for the skilled driver steering wheel angle. System error is 7.053, failed to fit the 

skilled driver behaviors. 



 

Fig. 8. The result map after the training graph intercepts 

Figure 8 is the result of training data after trimming. A part of the training picture 

(mostly sky) be cut off and key information left. The system model error after 

processing is reduced to 5.4. 

 

Fig. 9. Training picture interception + normalization result 

Figure 9 is the result of training data interception and normalizing the pixel value of 

training data to 0~1. At this time the error of the system model is reduced to 2.9. The 

model data approximated the behavior of the driver. 



6 Conclusions 

A model of autopilot decision based on multidimensional depth space-time network 

was studied. The multi-dimensional space-time decision network was set up. The 

multiple three-dimensional convolution paths were used to extract and fuse the high 

level spatiotemporal features of the original and the underlying features, and the fusion 

features were used. In the decision of autopilot. The multidimensional spatiotemporal 

network was trained by using the driver's driving data, and the multidimensional 

spatiotemporal decision-making model was obtained. The decision model of the 

autopilot makes use of multidimensional space-time information to directly output the 

decision information of autopilot. The model can effectively output the driver's decision 

data. 
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