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Abstract. Accumulating evidence suggests that the brain state has time-varying 
transitions, potentially implying that the brain functional networks (BFNs) have 
spatial variability and power-spectra dynamics over time. Recently, ICA-based 
BFNs tracking models, i.e., SliTICA, real-time ICA, Quasi-GICA, etc, have 
been gained wide attention. However, how to distinguish the neurobiological 
BFNs from those representing noise and artifacts is not trivial in tracking pro-
cess due to the random order of components generated by ICA. In this study, 
combining with our previous BFNs tracking model, i.e., Quasi-GICA, we pro-
posed a novel spatial-spectra dynamics-based ranking method for sorting time-
varying BFNs, called weighted BFNs ranking, which was based on the dynam-
ical properties in both spatial and spectral domains of each BFN. This proposed 
weighted BFNs ranking model mainly consisted of two steps: first, the dynamic 
spatial reproducibility (DSR) and dynamic fraction of amplitude low-frequency 
fluctuations (DFALFF) for each BFN were calculated; then a weighted coeffi-
cients-based ranking strategy for merging the DSR and DFALFF of each BFN 
was proposed, to make the meaningful dynamic BFNs rank ahead. We showed 
the effective results by this ranking model on the simulated and real data, sug-
gesting that the meaningful dynamical BFNs with both strong properties of 
DSR and DFALFF across the tracking process were ranked at the top. 

Keywords: fMRI  ICA  Dynamic Spatial Variability  Dynamic Power Spec-
trum  Ranking 

1 Introduction 

Blood oxygen level dependent (BOLD) functional magnetic resonance imaging 
(fMRI) is powerful modality to discover functional connectivity (FC) among discrete 
brain regions. Recently, a growing number of reports have suggested that the FC un-



der rest or task condition is not static but exhibits complex spatiotemporal dynamics 
[1]. For example, besides the well-known temporal variability of FC [2-4], the brain 
activation regions also show considerable spatial variability and dynamical power 
spectrum over time [5-6], which has potentials for diagnosing brain diseases [7].  

Independent component analysis (ICA), which could extract the brain functional 
networks (BFNs) from fMRI data at the single subject level or group level under rest 
or task conditions [1-3, 8-10], has turned out to be a promising tool to decode the 
brain activity. With respect to tracking the dynamic BFNs at the single subject level, 
some variants of ICA such as SliTICA, real-time ICA and Quasi-GICA, have been 
proposed to capture the spatial dynamics over time [5, 11-12]. However, after the 
BFNs identification using ICA-based tracking methods, how to distinguish the neuro-
biological and meaningful time-varying BFNs from noise and artifacts is not trivial 
due to the following reasons. To the beginning, most ICA algorithms do not automati-
cally rank BFNs, which leads to manually examine all BFNs one by one. Further, the 
BFNs at single subject level always have limited information in contrast to ones from 
multiple subjects, which leads to that sorting BFNs at single subject level is more 
challenging task. In addition, to our knowledge, most of BFNs ranking methods such 
as percent variance ranking [2], power spectrum ranking [13], support vector machine 
(SVM) based ranking [14], multiple ICA estimations based ranking [15-16] and 
MMC ranking [17], are designed for sorting static BFNs, rather than dynamic BFNs. 
Thus, in this study, a novel spatial-spectra dynamics-based ranking method was pro-
posed to sort the time-varying BFNs, taking advantage of the dynamic features in 
both spatial and spectral domains of each BFN.  

2 Theory and Methods 

2.1 Brief Review of Quasi-GICA 

 It is well-known that the BFNs identification has always been modulated as a 
blind source separation (BSS) problem, assuming that there exists functional integra-
tion of activity in multiple macroscopic loci [2-3, 8-10, 18]. This BSS problem aims 
at retrieving the underlying sources, namely BFNs, denoted in vector notation as S  
having Q  rows of underlying sources 

is  with size of Q M× , from the observed mix-
ture X  having P  time points with size of P M× , which can be written as: 

=X AS ,                                                     (1) 
where each column of A  is called time course (TC) with the size P Q× , the row vec-
tor 

is  and 
ix  are with the same size 1 M× .  Founding on formula (1),  the dynamical 

BFNs identification in Quasi-GICA [5] has the following four steps: firstly, the slid-
ing window technique [12] is applied to generate the sliding window subset i , namely 

( )1
ˆ = , , , ,

TT T T
i i i l i L+ + −X x x x 

, where the window length is equal to L , and 

[ ]1,2, , 1i P L∈ − +

; secondly, the data compression for each sliding window subset ˆ
iX  

is formulated as 1 ˆ
i i i

−=Y F X , where 
iY  is the reduced data matrix with size of N M× , 

1
i
−F  is the N-by-L reducing matrix (determined by PCA), and N is the size of the re-
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tained time dimension. Considering the data compression on each ˆ
iX ,

[ ]1,2, , 1i P L∈ − +

, the compressed data of X̂  can be formulated as 

( )1, , , ,
TT T T

P L− += 1 iY Y Y Y 

; thirdly, ICA estimation is implemented on Y  to obtain 

BFNs, and formulated as follows: 
ˆ=Y MS ,                                                     (2) 

ˆ ( )pinv= ∗S A Y ,                                         (3) 
where ()pinv  denotes the pseudo-inverse operation, M is a ( )1 *P L L− + -by- N  matrix, 

and Ŝ  is a N-by-M matrix with each row representing a BFN. To obtain the TCs (i.e.,
Â ), the multivariate linear regression is applied to the mixture X , depending on the 
separated Ŝ , i.e., 

ˆ ˆ( )pinv= ∗A X S .                                         (4) 
Finally, to obtain the dynamical BFNs and dynamical TCs from each sliding window 
subset (i.e., ˆ

iX ), the dual regression is applied, and sequentially expressed as: 
ˆ ˆˆ ( )i i pinv= ∗A X S ,                                       (5) 
ˆ ˆ ˆ( )i i ipinv= ∗S A X .                                     (6) 

2.2 Weighted BFNs Ranking Model 

The random order of BFNs generated by ICA has negative effect on seeking bio-
logically meaningful BFNs, which brings extra burden for manual selection of BFNs. 
To our knowledge, the meaningful BFNs firstly should have relatively high spatial 
reproducibility across different sessions and/or subsampled datasets [17, 19]. Also, 
the TCs corresponding to meaningful BFNs exhibit strong low-frequency fluctuations 
within the frequency band [0.01Hz, 0.1Hz] [6, 8, 20]. Thus, by assuming that the 
BFNs and TCs have different properties of dynamic spatial reproducibility (DSR) and 
dynamic fraction of amplitude low-frequency fluctuations (DFALFF), respectively, a 
novel weighted BFNs ranking model is proposed, where the dynamical BFNs with 
both high values of DSR and DFALFF will be ranked in front of those who have rela-
tively low values. The DSR for the spatial map as to each BFN can be defined as 
follows: 

[ ]1

ˆ ˆ2 ( , )
, , 1, 2, , 1 ,

( 1)( )

k k
i jk corrcoef

DSR i j P L i j
P L P L

∗
= ∀ ∈ − + <

− + −
∑ S S



     (7) 

[ ]2

ˆ ˆ( , )
, 1, 2, , 1

( 1)

k k
ik corrcoef

DSR i P L
P L

= ∈ − +
− +

∑ S S


 ,            (8) 

where ˆ k
iS , ˆ k

jS  and ˆ kS  denote the spatial maps of the kth BFNs from the sliding window 
subset ˆ

iX , ˆ
jX  and X , respectively. The 

1
kDSR  in equation (7) emphasizes the mutual-

ly spatial reproducibility among the dynamical BFNs from the different sliding-
windows, while 

2
kDSR  in equation (8) emphasizes the spatial reproducibility between 

the dynamical BFNs and the corresponding BFNs from the whole sliding-windows.  
 To calculate DFALFF values, the TCs are first extracted from Â  and ˆ

iA  
( [ ]1,2, , 1i P L∈ − +

), and then manipulated by Fourier transformation according to 

equation (9) to obtain the power spectra F̂  and ˆ
iF , respectively. 
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For a continuous frequency band [a, b], the energy at the specific interval is calcu-
lated as 

[ , ] ( )
b

a b a
Energy F dωω = ∫ . The corresponding discrete formation of the 

energy is denoted as 
0 0

[ , ] ( )n

n
Energy Fω

ωω  ωω
ω

=
=∑ , where 

0 1[ , , , ]nωωωω   ∈ 

. 

According to the low-frequency fluctuations within band [0.01Hz, 0.1Hz] of BFNs [6, 
8, 20], the dynamic FALFF values as to the power spectra F̂  and ˆ

iF  for the kth BFN 
can be formulated as follows: 
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The 
1
kDPR  in equation (10) emphasizes the DFALFF property of BFNs from the dif-

ferent sliding-windows, while 
2
kDPR  in equation (11) emphasizes FALFF property of 

BFNs from the whole sliding-windows.  
 For sorting the kth BFN, the dynamic spatial reproducibility, i.e., 

1
kDSR  and 

2
kDSR , 

and the DFALFF, i.e., 
1
kDPS  and 

2
kDPS , are first calculated, and then the weighted 

ranking coefficient (WRC) is expressed as 
1 1 2 2 3 1 4 2

k k k k
kWRC a DSR a DSR a DPS a DPS= × + × + × + ×  ,          (12) 

where 4
1 1, ,0 1i i i ia a a= = ∀ < <∑ . In this equation, each 

ia  is empirically set to 1
4

, em-

phasizing the equal contribution to the time-varying properties of DSR and DFALFF. 
It is worth noting that the larger WRC implies that the corresponding BFN has 
stronger properties of the dynamic spatial reproducibility and dynamic low-frequency 
fluctuations.  

3  Experimental Tests 

3.1 Experimental Datasets 

(1) Simulation Dataset 
 One subject dataset was generated by SimTB toolbox, with V = 148×148 voxels, 

12 spatial sources and 120 time points at time of repetition (TR) = 2s. Two sources 
shared the task-related block modulation in addition to having unique fluctuations. 
Activation for the other ten sources was simulated based on solely unique hemody-
namic fluctuations with no task-related variation. Additive noise was also included to 
reach a specified contrast-to-noise ratio of 1.0. This dataset was also used in the stud-
ies [5, 9-10].  
(2) Visual Task Dataset  

 Three healthy subjects took part in a visual task. The visual stimulus paradigm 
was (OFF-ON) ×3-OFF in 20-second blocks. The visual stimulus was a radial 
blue/yellow checkerboard, reversing at 7 Hz, corresponding to the “ON” state. At the 
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“OFF” state, the participants were required to focus on the cross at the center of the 
screen. The BOLD fMRI dataset was acquired on a Philips 3.0 Tesla scanner with a 
single-shot SENSE gradient echo EPI with TR of 2.0s. There were 40 slices providing 
the whole-brain coverage, with a SENSE acceleration factor of 3.0 and scan resolu-
tion of 80×80. The in-plane resolution was 3mm×3mm. The slice thickness and 
slice gap were 3 mm and 1 mm, respectively.  
3.2 Data Processing 

 For the simulated data, no preprocessing step was involved; as to the real data, 
the standard preprocessing procedure was performed in SPM8, including slice-timing, 
motion correction, spatial normalization and spatial smoothing with FWHM kernel 
equal to 8mm. The MRIcroN software was used to display BFNs.  

 The Laplace approximation [21] was used to estimate the component number in 
Quasi-GICA [5]. The sliding window length L  was empirically set to 70 and 40 time 
points for the simulation data and visual task data, respectively. For the visualization 
of BFNs from the real data, the z-score normalization was performed, and then the 
threshed maps was obtained with thresh value set to 2.0.  

4 Results and Analysis 

4.1 Results of Dynamic Low-frequency Fluctuations 

Fig. 1A showed the different mean FALFF values for the twelve components es-
timated by Quasi-GICA across the sliding windows on the simulated data, implying 
that different BFNs had variable properties of the dynamic low-frequency fluctua-
tions; also, the non-zero standard deviation (std) FALFF value for each BFN showed 
variant properties of the dynamic low-frequency fluctuations across different sliding 
windows. Fig. 1B and 1C demonstrated the power spectra of the estimated BFNs with 
lowest (Comp7) and largest (Comp5) mean FALFF values, where the power spectra 
were estimated from the first sliding window and the last sliding window, respective-
ly. Based on the results in Fig. 1A-C, we could draw a conclusion that the simulated 
BFNs had different properties of the dynamic low-frequency fluctuations; also, the 
block-task modulated BFNs, e.g., Comp 5 and Comp 3, had more consistently dynam-
ic low-frequency fluctuations across all the sliding windows than those without task 
modulation.  

Fig. 1D depicted the different mean FALFF values for the estimated BFNs by 
Quasi-GICA across the sliding windows on the visual task data of Subject 1. Fig. 1E 
and 1F displayed the power spectra of the estimated BFNs with lowest (Comp12) and 
largest (Comp5) mean FALFF values, where the power spectra were estimated from 
the first sliding window data and the last sliding window data, respectively. Accord-
ing to the results in Fig. 1D-F, it can be concluded that the estimated BFNs had dif-
ferent properties of the dynamic low-frequency fluctuations, and the visual network 
modulated by visual stimulus, i.e., Comp5, was more consistent on dynamic low-
frequency fluctuations across all the sliding windows than the others. Meanwhile, the 



results of the dynamic low-frequency fluctuations for Subject 2 and 3 also showed the 
similar phenomenon, which were not depicted for saving space.  

 

 
Fig. 1. (A)-(C) Dynamic properties of the low-frequency fluctuations regarding BFNs estimat-
ed from the simulated data; (D)-(F) Dynamic properties of the low-frequency fluctuations re-

garding BFNs estimated from the visual task data of Subject 1. 
 

 
Fig. 2. (A)-(C) Dynamic properties of the spatial reproducibility regarding BFNs from the 

simulated data; (D)-(F) Dynamic properties of the spatial reproducibility regarding BFNs from 
the visual task data of Subject 1. 

 
4.2 Results of Dynamic Spatial Reproducibility 

Fig. 2A showed the mean and std values of DSR as to BFNs across the sliding 
windows on the simulated data, and Fig. 2B and 2C orderly displayed the normalized 
spatial maps of BFNs with lowest and highest DSR values, which were estimated 
from the first, middle and last sliding window data, respectively. According to the 
results in Fig. 2A-C, twelve estimated BFNs from simulation data showed different 
properties of dynamic spatial reproducibility, while the task-modulated BFN, i.e., 
Comp5, had the least spatial variance as the time went by, and Comp8 had the largest 
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spatial variance across the sliding windows. This finding implied that the designed 
stimulus could strongly modulate the consistent patterns of brain activity in spatial 
domain.  

Fig. 2D depicted the mean and std values of DSR as to BFNs across the sliding 
windows on the visual task data of subject 1, and Fig. 2E and 2F orderly displayed the 
spatial maps of BFNs with lowest and largest DSR values, which were estimated from 
the first and last sliding window data, respectively. Similarly, the visual stimulus 
modulated BFN, i.e., Comp5, had the strongest spatial reproducibility across the slid-
ing windows, while Comp10 had the largest spatial variance as the time went by. This 
phenomenon implied that each BFN had different degrees of the time-varying spatial 
variance, and the task-modulated BFNs had strong spatial reproducibility across the 
sliding windows in contrast to the ones without modulation. Meanwhile, the similar 
performance in dynamic spatial reproducibility for Subject 2 and 3 was also found, 
whose results were not displayed for saving space.  

 

 
Fig. 3. The sorted order of the BFNs estimated from the simulated data. 

 
4.3 Results of Weighted BFNs Ranking 

 Fig. 3 depicted the sorted results of the estimated BFNs from simulation data, 
where two estimated BFNs sharing the same task stimulus (Comp5 and Comp3) were 
ranked in the top, with the largest WRC values, while Comp7 ranked at the bottom 
with least WRC value, mainly due to its DFALFF value. Fig. 4 showed the sorted 
results of the estimated BFNs from visual task data of Subject 1, where the estimated 
BFNs corresponding to the visual stimulus (Comp5) ranked at the top, with the largest 
WRC value, while Comp12 ranked at the bottom with least WRC value, mainly due 
to its lowest DFALFF value (see Fig. 2D). Based on the results from the simulated 
and real data, we could draw a conclusion that the proposed BFNs weighted ranking 
method could effectively sort the meaningful dynamical BFNs at the top. 



 
Fig. 4. The sorted order of the BFNs estimated from the visual task data of Subject 1. 

5 Discussion 

At beginning, taking the results of dynamic low-frequency fluctuations (Fig.1) 
and dynamic spatial reproducibility (Fig.2) of the estimated BFNs together, we could 
find that the BFNs were not always with consistently dynamic properties of spatial 
reproducibility and low-frequency fluctuations. For example, based on the results of 
the visual task data of Subject 1, Comp12 was with the lowest FALFF value, while 
Comp10 had the lowest DSR value. On one hand, this phenomenon demonstrated the 
complexity of dynamical BFNs in spatial and spectral domain. On the other hand, the 
good ranking results depicted in Figs. 3 and 4 showed the effectiveness of the 
weighted BFNs ranking model based on the dynamic properties of power spectrum 
and spatial variance, while most of ranking methods focused on the static BFNs rank-
ing only, e.g., power spectrum ranking, SVM-based ranking, MMC ranking, etc. 
Moreover, in contrast to power spectrum ranking [13], the weighted BFNs ranking is 
not subject to task-related BFNs ranking, and is also useful for the resting-state data. 
Compared with SVM-based ranking [14], the weighted BFNs ranking is simpler, 
having no prerequisite training process. Compared to the multiple ICA-estimation-
based ranking [15-16], the only one-time ICA estimation is needed in Quasi-GICA. 
With respect to MMC ranking [17], the weighted BFNs ranking takes advantage of 
dynamical properties of spatial variance and power spectrum from the sliding win-
dows, while MMC ranking uses the spatiotemporal reproducibility from the odd and 
even sampled dataset and needs at least two independent runs of ICA on sub-sampled 
dataset, which also suffers from some deficiencies, i.e., inaccurate estimation of order 
number on sub-sampled data, etc.  
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6 Conclusion 

In this study, based on the dynamical BFNs tracking model, i.e., Quasi-GICA, a 
novel weighted BFNs ranking method was proposed, founding on the dynamic prop-
erties of spatial reproducibility in spatial domain and low-frequency fluctuations in 
spectral domain, aiming at determining the effective sorting orders of dynamical 
BFNs. Our results depicted and verified that different BFNs indeed had distinct dy-
namics in spatial variance and power spectrum in time-varying process, and the sorted 
results also demonstrated the effectiveness of this proposed model, which could sort 
BFNs with strongly dynamic spatial reproducibility and dynamic low-frequency fluc-
tuations at the top.  
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