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Abstract. While joining tolerances, and therefore forces, are known in the as-
sembly process, the determination of disassembly forces is not possible. This is
caused by changes in the product properties during the product operation, which
has multiple reasons such as thermal or mechanical stress on the product. Re-
garding the planning of disassembly tasks, disassembly times and tools cannot be
planned properly. They have to be determined in the process or stay undefined,
which can result in damaging of the product.

This article shows an approach to describe the necessary disassembly forces
without having to investigate the complex physical influences caused by the us-
age of the product. To do so, a Learning Method is developed, which is sustained
by a Lookup-Table for the estimation of disassembly forces based on basic input
data such as hours of operation and operating characteristics. Missing values will
be interpolated by using multiple linear regression. The concept will be illustrated
in the example of a turbine blade connection.
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1 Introduction

The disassembly properties of a product depend on the assembly connections, which
can be divided into detachable and non-detachable connections. With regard to a prod-
uct-friendly disassembly, detachable connections are preferred and fixed connections,
such as welded connections, are avoided. However, detachable connections can solidify
to a high degree so that they seem to be fixed. In contrast to an assembly process, where
joining forces are known due to defined product properties, disassembly forces are
therefore unknown.

To make the disassembly and thereby the whole regeneration cycle, plannable, cost
efficient and component-saving, it is necessary to be able to estimate the necessary
disassembly forces. Knowledge of the disassembly forces is fundamental for the plan-
ning of disassembly tools and times. This is particularly worthwhile for products with
valuable components like the engine of an airplane.

In a product’s life cycle the disassembly is arranged directly after the product oper-
ation. The defined joining tolerances are lost and the assembly joints of highly stressed
products solidify to an unknown degree. With regard to the example of turbine blades,



reasons for the solidification of their connection to the turbine disc are the high temper-
atures and operation forces, and the intrusion of foreign particles like sand and corro-
sion. During the disassembly process, this lack of knowledge about the degree of solid-
ification can cause a damage to the connecting partners, originating in the undefined
reaction forces acting inside the connections. The exact calculation of the disassembly
force is not possible, because a simulation would require exact knowledge about all the
operation conditions (composition of air, intrusion of foreign particles) at any point in
the operating phase of the engine.

An approach that seems more promising is the assignment of the disassembly forces
to the operation history of the product. To do so, a Learning Method for determining
the necessary disassembly force based on the input of different parameters by the user
is developed. The method is developed with the support of a learning Lookup-Table.
As an example of a disassembly connection, the connection of a blade and a disk of a
high-pressure turbine of an aircraft engine is considered.

2 Related Work

The disassembly of turbine blades is usually characterized by manual labor. This is due
to the unknown state of the assembly connection. In order to describe the undefined
forces with a physical model of all the several influences on the solidification state, a
big effort would be required, which remains unsuccessful in the worst case [1]. This
process of solidification can have various causes. In a turbine, hot gas corrosion and
adhesion are major wear mechanisms. Hot gas corrosion is caused by components of
the fuel and the air (e.g. sea salt) flowing through the engine and produces solidifica-
tions in the contact surfaces of a connection. Surface corrosion can increase the loos-
ening torque of a screw, for example, up to 45% [2]. Adhesion in contrast is caused by
molecular interactions on the boundary surfaces of the assembly connection. Defor-
mations of roughness peaks and the separation of material fragments can increase the
adhesion forces [3]. Besides the solidification caused by separated particles of the con-
nection itself, foreign particles like sand can cause additional blockades in the connec-
tion.

The various causes and their interaction for solidification complicate the calculation
of the necessary disassembly forces beforehand. This lack of forces requires an in-
creased flexibility in the process and the turbine blades are therefore knocked out of the
disc manually, using simple tools such as a hammer. High manual forces are difficult
to control, and thus damage can occur [4]. Especially in the regeneration of products
with a high value, it is necessary to use methods that save the components from damage.
One disk of a high-pressure turbine has around 70 blades, so that an automated disas-
sembly of these blades can be economically viable [4]. To choose the right dimension
of tools, the disassembly forces have to be estimated.

A simplified solidification model was developed, to describe the solidification and
the resulting disassembly forces of a connection. Figure 1 shows the solidification
model. It becomes clear that the disassembly force F(z) and the weight load mg of the
turbine blade have to exceed the solidifying force Rz(z). Only with a slight exceeding,



can component-saving disassembly be achieved. The disassembly force therefore fol-
lows to:

(ݖ)ܨ > ܴ௭(ݖ) − ݉ ∙ ݃ (1)

Fig. 1. Simplified solidification model

Since the weight load is in general much lower than the solidifying force, the centre
of attention is the solidifying force Rz(z). The solidifying force is determined by the
contact surfaces AKF of the joining partners, a solidification pressure ν of the compo-
nents to each other and the coefficient of static friction µ. Following the simplified
model, the solidifying force can be described as:

ܴ௭(ݖ) = ߤ ∙ (ݖ)ݒ ∙ (ݖ)௄ிܣ (2)

Nevertheless, research showed that the solidifying force is not only dependent upon
the absolute amount of the contact surface, but also upon the geometry of the connec-
tion. Figure 2 shows two types of connections that are common in the aviation industry.
Each connection geometry has its specific solidifying characteristics, so that a method
for the quantification of Rz would be helpful for the predictive determination of disas-
sembly forces.

Fig. 2. Connection geometries of turbine blades



3 Learning Method for Disassembly Processes

The major requirement for a Learning Method is a known history of the product. This
narrows the number of products where the Learning Method can be of use. Most of the
consumer products that are fed into the regeneration cycle have an unknown usage his-
tory. Nevertheless, there are products or components of high value and/or high safety-
relevance, which need a recording of the product’s history - for example the recording
of the hours of operation, which determine the maintenance intervals. For the engine of
an airplane, a lot of information are available about the product’s history: The hours of
operation are recorded anyway and since an airplane is navigating using GPS, data
about the characteristics of operation (flight over sea or desert) are also known. In the
following a Learning Method is described, which implements a product’s usage history
into the disassembly planning.

Fig. 3. Schematic layout of the Learning Method

Figure 3 shows the schematic layout of the Learning Method. In a first step, the
relevant characteristics regarding the product history such as hours of operation or
workload are collected. In the disassembly planning, already acquired data and the char-
acteristics of the product are used to estimate the parameters of the disassembly process.
During the disassembly process, data that are useful for future reference are collected
and stored into the database.

The database has the structure of a multidimensional Lookup-Table, which grows
bigger and more accurate with each disassembly process. In the following, the input of
product characteristics, the structure of the Lookup-Table and the multiple linear re-
gression used in the disassembly planning are explained in detail.



3.1 Product Characteristics

The first step is the input of the necessary data. In the case being considered here (tur-
bine blades), the necessary data are the hours of operation of the turbine, the character-
istics of the flight routes (e.g. over desert or sea) and the geometry of the blade. The
hours of operation are of great interest, because of an enormous impact on the degree
of solidification.

Frequent flights over desert and sea can increase hot gas corrosion and solidification
in general, as described in Chapter 2. While the hours of operation are put in unpro-
cessed, the characteristics of the flight have to be converted into a number. The number
has to represent the impact on the solidification done by the different flight routines. It
is taken into account that short flights are particularly demanding due to the lower flight
altitude and a higher number of take-offs. The best case is only long-distance flights
over land, which will then be represented by the characteristic factor “1”. The worst
case would be the short-distance flight over desert and sea, which would be represented
by the factor “5”. Depending on the actual history, which will always be somewhere
between those extreme cases, a rational number between one and five will be calcu-
lated.

The geometry of the blade also has an influence on the disassembly force. In contrast
to the characteristics of flight, there are no intermediate values that can be calculated,
because there are no fluent transitions between different geometries. This has an impact
on the structure of the Lookup-Table, which will be explained in the next section.

By determining the disassembly forces of various combinations of input data, the
Lookup-Table grows bigger and more detailed. Given the event that the user puts in a
combination of input data that has never been disassembled, an approximated disas-
sembly force has to be interpolated by multiple linear regression. The regression is sup-
ported by all disassembly forces that have been recorded at that time. After the actual
disassembly took place, the recorded disassembly force is stored in the Lookup-Table
for future reference and for improving the regression.

3.2 Lookup-Table

The structure of the exemplary Lookup-Table is very simple. Since there are three input
variables, a three-dimensional matrix is needed to store the discrete values for the dis-
assembly force depending on the input data. A closer look at the input variables shows
that the geometry of the blade only has a limited number of discrete values, while the
hours and characteristics of operation, theoretically, can have an infinite number of
values. Dividing the three-dimensional matrix into layers, each represents one geome-
try. Without fluent transitions between different geometries, there is no need to inter-
polate values between those layers. This reduces the multiple linear regression by one
dimension, which leaves a two-dimensional linear regression. The disadvantage of this
method is that every new geometry has to be taught from scratch. The advantage is the
simplicity of the calculation, which is possible without a big effort during the disassem-
bly. For every geometry, there is an independent two-dimensional matrix, within which
the regression is calculated.



3.3 Multiple Linear Regression

The multiple linear regression is the key to the success of the Lookup-Table. Using
regression, it is not necessary to calculate or simulate the disassembly force based in
physical models, but instead the disassembly force can be approximated using interpo-
lation from already disassembled data. In the following, a short introduction of multiple
linear regression is given, followed by an example, to show how the regression works.

Multiple linear regression can deliver an output which is dependent on multiple input
variables [5]. In the case of turbine blade disassembly, there are three inputs (hours of
operation, characteristics of operation, geometry) of which only the hours and the char-
acteristics of operation are considered for the multiple linear regression, because for the
geometry no intermediate values exist that could be interpolated. The equation for the
regression thereby follows to:

௜ܻ= ଵܺ௜,ଵߚ + ଶܺ௜,ଶߚ + ଷܺ௜,ଷߚ + ,݁���݅= 1, … ,݊ (3)

In this equation, Yi is the output of the observation i, while Xi,1, Xi,2 and Xi,3 are the
input data. The input Xi,1 is usually set to 1 to introduce a constant into the regression
model. Furthermore, n is the number of observations and β1, β2 and β3 are the parame-
ters of the regression. The output Y shows a natural diversification, so that the calculated
regression will not intersect with all output values [5]. Therefore, a residuum e is added
to the equation.

3.4 Example of Use

Table 1 shows a Lookup-Table for a fictional geometry. In this case, 50 turbine blades
with different operation histories have already been disassembled.

Table 1. Disassembly Forces [N] of turbine blades with different operation histories

Geometry A
Hours of Operation [1000h]

1 2 3 4 5 6 7 8 9 10

Characteristics of Opera-
tion

1 100 220 317 430 525 610 700 821 903 1043

2 230 380 421 490 620 712 860 980 1110 1200

3 250 432 576 632 778 890 910 1000 1150 1200

4 370 570 600 790 800 870 1119 1150 1200 1300

5 570 600 703 845 930 1120 1180 1200 1350 1470

Figure 4 shows the disassembly forces of table 1 as a function of the input data. It
also illustrates the multiple linear regression of the disassembly forces. In this example
the values are evenly distributed, which, of course, will not be the case in reality. Still,
the example illustrates how the Lookup-Table works after 50 blades with different op-
eration history have been disassembled.



Fig. 4. Multiple linear regression of the disassembly forces of a turbine blade

The multiple linear regression shown in Figure 4 has the parameters:

ଵߚ ൌ െͻͳǤͷ͹͵ ͵Ǣߚ�ଶ ൌ ͲǤͳͲʹ ͺ Ǣߚ�ଷ = 103.6400.

Using these parameters, every combination of operation hours and characteristic of
operation can be determined. For example the disassembly of a turbine blade with 6,400
operation hours and a characteristic factor of 2.7 would have an estimated disassembly
force of 846.175 N calculated using the interpolation shown in equation 4.

ܻ ൌ െͻͳǤͷ͹͵ ͵൅ ͲǤͳͲʹ ͺ ή͸ͶͲͲ൅ ͳͲ͵ Ǥ͸ͶͲͲή Ǥʹ͹ൌ ͺ Ͷ͸ͳ͹ͷ (4)

Figure 5 shows the corresponding dot (red) in the regression known from Figure 4. The
value interpolated using the regression is an estimation of the actual disassembly force
and is used to choose the right tools and as an initial value for the control system. During
the disassembly, the actual disassembly force is measured and afterwards stored in the
Lookup-Table. The matrix has grown by one entry and the regression is calculated
again, to make it more reliable for future estimations.



Fig. 5. Calculated disassembly force for 6.400 hours of operation and a characteristic factor of
2.7

3.5 Mean value

Variances in the process are taken into account by calculating the mean value from two
identical products with an identical history. In this case a disassembly force for a turbine
blade with the history and geometry is already stored in the Lookup-Table, and thus a
mean value is generated. The disassembly forces of turbine blades even from the same
engine vary to a certain degree, so that a mean value is the best way to counteract these
variations. However, the generated value is not an arithmetic mean, but is created using
Equation 5:

ℎ௜ǡ௝ǡ௞ǡ௡௘௪ =
௛೔ǡೕǡೖǡ೚೗೏ή௛೔ǡೕǡೖǡ೙ೠ೘ ್೐ೝାி೏೔ೞೌ ೞೞ೐್೗೤

௛೔ǡೕǡೖǡ೙ೠ೘ ್೐ೝାଵ
(5)

In this equation, hi,j,k,new represents the new value of the Lookup-Table, while hi,j,k,old

represents the old value of the Lookup-Table in dependence to the three input variables.
hi,j,k,number is a scalar entry in a counter matrix that contains how often a combination of
the three input variables has been selected from the Lookup-Table. Fdisassembly is the
measured disassembly force which is needed to carry out the disassembly task. After
the mean value is generated, the corresponding counter hi,j,k,number is increased by one.
This way the forces measured at each disassembly are all brought into the mean value
equally and outliers do not have a critical impact on the mean value stored in the



Lookup-Table. Thus, the existing entries are improved and, on the other hand, are con-
tinuously expanded, so that the learning process would be usable in a real repeatable
disassembly task.

4 Conclusion and Outlook

At this time, all the input data and the corresponding disassembly forces are fictional
for showing the Learning Method for disassembly tasks. Nevertheless, it was shown
that the multiple linear regression is suitable for the requirements of the disassembly
process. The storage of disassembly forces of products with a known history benefits
the planning of the regeneration process. Using a force sensor in the disassembly tool
and a software environment for storing the forces, the implementation of the Learning
Method would be very simple.

In future work, the aim is to feed the process with data from real disassembly pro-
cesses, to see if the concept of a Learning Method also works in a real environment.
After filling the matrixes with a set of values from past disassembly processes, the mul-
tiple linear regression has to deliver disassembly forces for future disassembly pro-
cesses, to examine the reliability of the process.

When the Learning Method has proven its reliability it will be implemented in a test
stand, where solidified connections are disassembled in an automated process, and the
disassembly forces can be measured and regulated.
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