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Abstract. This text is an opinion piece motivated by an invited keynote address at 
the 2018 IFIP 8.2 working conference, ‘Living with Monsters?’ (San Francisco, CA, 
11 December 2018.) It outlines some principles for understanding algorithmic systems 
and considers their implications for the increasingly algorithm-driven infrastructures 
we currently inhabit. Four principles are advanced: the principle of (i) radical complex-
ity, (ii) opacity, (iii) radical otherness, and (iv) infrastructuration or Borgian assimila-
tion. It is hoped that these principles will help us develop a more critical appreciation 
of the emergent world marked by hybrid agency, accelerating feedback loops and ever-
expanding infrastructures to which we have been all too willingly assimilated. 

 

Keywords: principles of algorithmic systems; complexity; opacity; otherness; 
infrastruture  

In 2016 I had the great good fortune to inherit a graduate seminar on “Algorithmic 
Culture” from my brilliant colleague Christian Sandvig, who had to back out of teach-
ing it at the last minute. I already knew about half of the literature he assigned from 
other contexts, but I had never quite seen the pattern of it the way he did. That syllabus 
was full of intriguing surprises, one of those gifts from a random universe that happen 
a few times in your life if you’re lucky.  

The biggest surprise awaiting me, however, arrived in the classroom. Even sophisti-
cated students with backgrounds in computer science could not, it seemed, genuinely 
grasp the complexity, opacity, partial autonomy, and radical otherness of algorithmic 
systems. Even fewer understood the stark differences between human-programmed al-
gorithms and those produced by machine learning systems. Confronted with unsavory 
outcomes such as racial bias in face recognition systems, or pornographic images re-
turned as top hits on the search “Black girls,” their first, second, and third impulses 
were to attribute these results to the conscious or unconscious biases of human pro-
grammers, even to a deliberate intent to harm.  

They are hardly alone. The most recent (and most ridiculous) expression of this im-
pulse is President Trump’s August 2018 claim that Google search results are biased 
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against him, accompanied by a thinly veiled threat of legal action against it and other 
tech firms. (Given his rampant narcissism, he might only be satisfied if 100 percent of 
all search results glorified his name.) Because people program computers, this line of 
thinking goes, the algorithms they create must reflect their biases, whether intentional 
or not. 

This opinion piece has modest goals. First, I outline some principles for understand-
ing algorithmic systems. I then consider their implications for the increasingly algo-
rithm-driven infrastructures we currently inhabit.  

The concept of an algorithm is often likened to a recipe or an assembly manual. 
Gather ingredients or parts, follow the instructions to the letter, and you end up with a 
Boston cream pie or an Ikea bookcase. In a computer, it’s a list of instructions for op-
erating on data. In computerese, algorithms are “effective procedures” that determinis-
tically transform inputs into outputs, such that if you run the same algorithm on the 
same data it will always produce the same result — or at least that’s how I learned it as 
a teenager in the 1970s, when I was programming and operating Honeywell mainframes 
for a large company in Maryland. 

Lots of everyday algorithmic systems, such as your word processor or the accounting 
systems at banks, are still coded by human programmers and still correspond closely to 
the recipe view. If you dig into the code, you find thousands of sub-algorithms, each 
comprising a list of instructions for operating on data. Each one is entirely understand-
able in terms of human logic and/or mathematics. Apart from the occasional (and inev-
itable) bug, even the whole thing is pretty easy to grasp, because the interactions among 
all the sub-algorithms are part of the system design, and actually are not all that com-
plicated. When I was learning computer science, the sub-algorithms were called “sub-
routines,” for a good reason: they automate some step-by-step routine formerly carried 
out by a person. Make this word italic, put this text in a footnote, and so on. 

Yet from a practical perspective, the recipe view of algorithmic systems is merely 
the kindergarten version of what’s happening today. The largest modern climate mod-
els, for example, comprise over a million lines of code. Individual sub-models, con-
structed separately by domain specialists, represent the atmosphere, the oceans, sea ice, 
snow, land surfaces, and other elements of the climate system. Each model, in turn, 
contains numerous sub-models. An atmospheric model may include sub-models of (for 
example) radiation, cloud formation, aerosols, and atmospheric chemistry. Just as in 
the real climate system, all of these algorithms and sub-algorithms constantly interact, 
time-stepping forward in increments of 10 minutes until 100 simulated years have 
passed to generate a picture of how Earth’s climate will evolve as we blast it with our 
greenhouse gases.  

The complexity of climate models is reflected in complicated organizational struc-
tures required to create and maintain them. The Community Climate System Model, 
for example, holds annual meetings involving some 300 scientists and software devel-
opers, each representing larger groups responsible for different elements of the model 
[7]. Even though at least one specialist team understands each part, no one person un-
derstands the entire climate model in detail. Of course, this is the reason we need cli-
mate models in the first place: interactions in the real climate system are so many and 
so complicated that we can only understand them by simulating their behavior. 
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Let’s call this inability to grasp all the interactions in a complicated algorithmic sys-
tem the principle of radical complexity. This principle says that large, interactive al-
gorithmic systems produce emergent behavior we cannot anticipate. Even if we can 
comprehend every individual component, scaling up highly interactive systems ulti-
mately translates into cognitive opacity. It’s still a recipe, and if you are a cook you can 
understand every instruction — but only the computer can bake the cake. 

Arguably, an increasingly important category of algorithms — those produced by 
machine learning systems — no longer fits the recipe view at all. Machine learning 
comprises many techniques, but all share certain common features. “Learning” means 
building increasingly effective algorithms that can classify, or recognize, desired pat-
terns in data. These patterns can be almost anything: handwritten letters, individual 
faces, fingerprints, email spam, consumer creditworthiness, and so on. The key differ-
ence is that these classification algorithms aren’t coded by human beings.  

Instead, human programmers write a “learner” algorithm, which generates other al-
gorithms, known as models or classifiers. The learner algorithm — perhaps better un-
derstood as a “builder” — does not know in advance which models work best. (If it did, 
there would be no need for machine learning.) In some systems, the learner starts with 
a simple, approximate statistical model (aka classifier) introduced by the human pro-
grammer. It then constructs thousands of variations on the original classifier and tests 
all these variants against training data pre-sorted by the developers (e.g. spam/not spam, 
or handwritten letters identified as A, B, C, etc.). The best-performing classifiers are 
preserved, then modified to produce numerous new variants, which are tested again, 
and the cycle repeats. Once the classifier is trained, it’s tested against “wild” datasets 
to prove that it can generalize beyond the training data. If it performs well enough, the 
cycle stops; if it doesn’t, the training dataset may be expanded, and the test-modify-
test-repeat cycle begins again. Thousands or millions of classifiers may be built and 
rejected before an acceptable level of performance is reached [21; 26].1  

The nature of this process makes it all but impossible for human programmers to 
fully understand the logic that makes the winning algorithm work. “Learning” means 
finding significant features in the training data, which may include millions of exam-
ples. To discover these features, machine learning systems deploy n-dimensional ma-
trices of all features (i.e. variables or properties) that might be relevant in the data. The 
classifier’s goal is then to cross-correlate the features in all of these examples in search 
of some set or sets of features that reliably characterize the desired class. Many machine 
learning models use high-dimensional feature matrices — for example, the thousands 
of words that might indicate a message is spam — causing difficulties known as the 
“curse of dimensionality.” These matrices, like the algorithms themselves, are beyond 
human comprehension [6]. 

Neural networks, another type of machine learning system, don’t generate statistical 
models of feature correlation. Instead, they build algorithms “from scratch” by 
weighting the connections between simple artificial “neurons.” When a given threshold 
of input values is reached, the neuron sends a signal to its neighbors. “Weights” or 

                                                        
1 An excellent video explaining this process, ideal for classroom teaching, is available at 

https://www.youtube.com/watch?v=R9OHn5ZF4Uo. 
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multipliers (positive, negative, and/or fractional) on incoming connections determine 
whether each neuron fires; each outgoing connection is weighted as well. At every test 
of the network, threshold values and connection weights are automatically readjusted, 
and the system is tested again until it performs as desired. Such a system can comprise 
tens of thousands of neurons, arranged into multiple “layers,” with millions of connec-
tions among them. Yet even a small network of a few hundred neurons can be capable 
of sophisticated pattern recognition. As in other machine learning techniques, a training 
data set includes human-classified examples of what the net is supposed to recognize; 
as it gets better, it more reliably distinguishes the positive examples from the negative 
ones. 

Together, the weights, connections, thresholds, and layers in a neural net certainly 
comprise an algorithm — at least in the abstract sense of a list of instructions operating 
on data to produce a definite result. At the level of individual instructions, neural nets 
are incredibly simple, mostly reducing to simple addition and multiplication. Yet this 
list of instructions is meaningless to a human being. In other words, we don’t really 
know exactly what they do, or how they do it. Following Jenna Burrell’s lucid explica-
tion, let’s call this the principle of opacity [4]. It’s not only that machine learning al-
gorithms are radically complex (though they are); it’s that they cannot be understood 
as recipes at all. 

In pursuit of some kind of grip on what neural nets are doing, some Google engineers 
realized in 2015 that they could reverse a neural network’s pattern-recognition pro-
cesses to make them generate images. Instead of asking a net to identify images of 
bananas (for example), they made it create its own image of a banana starting from 
white noise. The resulting images, often eerily beautiful and always strange, reveal just 
how differently a neural network “thinks.” For example, one network generated images 
of dumbbells that always contained part of a human arm attached to the dumbbell (no 
doubt because most of its training images included people lifting weights).2  

This kind of thing is commonplace in the world of machine learning. One neural net, 
trained to recognize sheep, did fairly well with this task most of the time, but also clas-
sified empty green fields as sheep. As one blogger put it, neural nets 

…only see sheep where they expect to see them. They can find sheep easily in 
fields and mountainsides, but as soon as sheep start showing up in weird 
places, it becomes obvious how much the algorithms rely on guessing and 
probabilities. Bring sheep indoors, and they’re labeled as cats. Pick up a sheep 
(or a goat) in your arms, and they’re labeled as dogs. The thing is, neural 
networks match patterns. They see patches of furlike texture, a bunch of green, 
and conclude that there are sheep. If they see fur and kitchen shapes, they may 
conclude instead that there are cats. If life plays by the rules, image recogni-
tion works well. But as soon as people — or sheep — do something unexpected, 
the algorithms show their weaknesses.3 

                                                        
2 https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html 
3 http://aiweirdness.com/post/171451900302/do-neural-nets-dream-of-electric-sheep 
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A fascinating collection of bizarre logic from the closely related fields of evolution-
ary computation and artificial life includes the example of a program that was supposed 
to learn to sort lists. Instead, it deleted the list — which was then (from its point of 
view) no longer unsorted. Another program built simulated robots tasked with learning 
to travel quickly; one such robot assembled itself into a tall tower, then simply fell over 
to “travel” a long way. Another algorithm “was supposed to figure out how to apply a 
minimum force to a plane landing on an aircraft carrier. Instead, it discovered that if it 
applied a huge force, it would overflow the program’s memory and would register in-
stead as a very small force. The pilot would die but, hey, perfect score.”4 Machine-built 
systems use machine logic, not human logic. Let’s call this the principle of radical 
otherness.  

As in the cases above, sometimes error analysis can give us clues to how that logic 
may work. All too often, however, significant errors only become apparent after an 
algorithm created by machine learning is deployed operationally. One example is the 
well-known case, reported in 2015, of the Google Photos system labeling images of 
African-Americans as gorillas. Google apologized and said it would “fix” the algo-
rithm. But in early 2018, nearly three years later, tesing by Wired magazine revealed 
that Google had simply blocked its image recognition system from labeling any photo 
as a gorilla or chimpanzee. (It will recognize other primates, but not those.)5 The radical 
otherness of the recognition system’s logic makes it impossible for engineers to tweak 
it directly, or to know exactly why it cannot distinguish between an African-American 
face and a gorilla — a difference that is immediately obvious to people. (Of course, we 
must admit that we don’t know how people manage this feat either.) It’s possible that 
Google is just being lazy and hasn’t even tried to fix the algorithm. But another possible 
explanation is that even if a re-trained algorithm is much less likely to make this mis-
take, the social costs of repeating it even once are too great for the company to unblock 
the “gorilla” tag. This is just one of many examples of how machine learning can go 
awry. 

The last principle I want to articulate here is hard to name succinctly. It stems from 
the fact that we now live in a world governed not by algorithmic systems per se, but 
rather by interacting ecologies of algorithmic systems, human individuals, social 
groups, cultures, and organizations. Natural ecosystems are characterized by extensive 
interactions and feedbacks among species. Changes in one species (caused by disease, 
parasites, etc.) or in the physical environment (higher temperatures, less water) affect 
all the others to varying degrees, driving some to extinction while creating openings for 
new species to enter the mix. In the long run, all species evolve in response to changing 
conditions, including the simultaneous evolution of other species.   

Similarly, in today’s information ecosystems, everything interacts with almost eve-
rything else, constantly evolving and adapting to changing conditions. People and or-
ganizations are always part of byzantine algorithmic feedback loops. Your “waste” data 
of searches and clicks becomes input to Google, Amazon, and Facebook, which feed it 
back to you as targeted advertising and personalized search. Bots spread both true and 

                                                        
4 http://aiweirdness.com/post/172894792687/when-algorithms-surprise-us 
5 https://www.wired.com/story/when-it-comes-to-gorillas-google-photos-remains-blind/ 
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fake news on Twitter, but humans retweet the fake news more often [2; 25]. New forms 
of “networked discrimination” — much more fine-grained than the traditional broad 
categories of race, class, and gender — become possible when individuals’ online so-
cial networks can be viewed by prospective employers and used to determine “cultural 
fit” [3]. The essential materials of culture itself, such as music, movies, books, TV, 
games, and informal social interaction, are exchanged, “curated,” recommended, and 
sometimes even produced by algorithmic systems, a phenomenon Galloway and 
Striphas have called “algorithmic culture” [10; 11; 15; 24].  

Online recruiting makes it possible to hire employees, or enlist terrorists, without 
ever meeting them in person, challenging the traditional concept of an “organization.” 
People develop folk theories of how algorithmic systems work, leading to quasi-super-
stitious practices that may in turn influence algorithmic behavior [5; 9; 20]. Algorithmic 
systems designed by the so-called “gaming” industry very effectively reinforce and 
“optimize” gambling addictions [22]. Meanwhile, YouTube, Facebook, Instagram, and 
hundreds of other so-called “platforms” promote other addictions, including the “out-
rage cycle” currently driving American politics. Some of this becomes embedded in 
culture as norms and expectations, reinforcing and legitimizing both addictive behavior 
and awful politics. I’m sure you could easily name a hundred other ways in which al-
gorithmic systems, culture, individuals, social groups, and organizations interact.  

This is true not only at the level of societies, but even within the larger platform 
systems. It’s popular to talk about “the Google search algorithm,” for example. That 
phrase makes many of us immediately think of PageRank, the innovation that first made 
Google famous — but this just shows how out of touch we are. PageRank is now just 
one of dozens of algorithms that Google uses to process search queries. Updates to the 
overall search system have been christened with a series of names, including Caffeine 
(2009), Hummingbird (2013), and Medic (2018). Since 2015, an AI learning system 
known as RankBrain has played a significant role. Its secrets are closely guarded intel-
lectual property, so we don’t know exactly how RankBrain works — but for all the 
reasons just discussed, it’s quite likely that Google engineers don’t know either. Fur-
thermore, Google’s near-monopoly on search makes Google rankings so important to 
the visibility and sales of other firms that a whole industry of “search engine optimiza-
tion” (SEO) has arisen to analyze how the algorithm evaluates search queries; they then 
advise firms on how to tweak their websites to raise their pages’ search rankings. Large 
parts of the web are thus constantly evolving in response to the recommendations of 
these SEO firms, creating a continuous feedback cycle with Google’s search algo-
rithms. Similar feedback loops mark YouTube, Twitter, Facebook, and all other major 
platforms.  

The many scandals surrounding the 2016 US presidential election, including “fake 
news,” Russian disinformation, resurgent white supremacism, and the Cambridge An-
alytica episode, have forced major platforms to police their content more closely. The 
nature of these responses shows the limits of algorithmic agency. In 2017, Google hired 
some 10,000 “quality raters” to identify “upsetting or offensive” content such as Holo-
caust-denial and white-supremacist websites. Engineers then adjust Google’s search 
algorithms so as to lower the ranking of those results — or perhaps, as in the “gorilla” 
case, block them altogether [14]. Facebook and Twitter have also hired large numbers 
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of people to review and remove false and offensive content. Faced with a relentless 
onslaught of clever bots, as well as credulous and/or malevolent human users, the suc-
cess of these strategies has been partial at best.  

As I said earlier, it’s hard to find a soundbite phrase to capture all this. Maybe it’s a 
principle of framing feedbacks: that comprehending algorithmic systems requires 
backing out from a narrow focus on algorithms and data per se to a broader frame that 
encompasses some of the feedback loops I’ve described, or at the very least takes seri-
ously the anthropology of human software developers [23]. Maybe it’s a principle of 
infrastructure [19]: as my colleagues and I have articulated elsewhere, many modern 
infrastructures are not systems at all, but rather complex clusters of interacting elements 
best captured by organic or ecological metaphors [8]. Or it might be called the principle 
of hybrid agency, focusing on the constant interplay of individual choice, social 
norming, organizational change, and algorithmic action.  

To capture all three of these notions at once, we could call it a principle of infra-
structuration, my bad intellectual pun on Giddens’ structuration theory [12; 13]. 
(Sorry about that.) To paraphrase Giddens, infrastructure shapes, limits, and enables 
agency. Meanwhile, agents (now including algorithmic agents) constantly perform in-
frastructure, constantly regenerating it but also transforming it over time. The most ap-
propriate moniker of all might be the principle of Borgian assimilation. As the hive-
mind cyborg aliens from Star Trek put it, "Lower your shields and surrender your ships. 
We will add your biological and technological distinctiveness to our own. Your culture 
will adapt to service us. Resistance is futile."6  

We still lack adequate intellectual tools to engage this fast-changing, globally active 
Borgian world. Notions such as sociomateriality, hybrid agency, monsters, and cyborgs 
take us in the right direction, but seem too simple and impoverished to capture the rich 
complexity of these interactions. Methods such as algorithm audits can help us under-
stand how algorithmic systems may create or reinforce undesirable biases, but draw the 
frame too narrowly. Statisticians and practitioners can help us understand how biased 
and undesirable outcomes can occur even when designers do everything possible to 
eliminate them, and even in the presence of much more and much better data about 
human populations than we have ever had before [1; 16]. Behavioral economics and 
cognitive psychology remind us how little we really know our own minds [17; 18], how 
much we overestimate our rationality and the quality of our perception, and how em-
barrassingly susceptible we all are to subtle influences that can now be amplified and 
disseminated widely by algorithmic systems.7  

We have been assimilated, all too willingly, and there is probably no going back.  

                                                        
6 As articulated by the Borg in Star Trek: First Contact (1996). 
7 One of the best discussions of these susceptibilities and how algorithmic systems can manipu-

late them is an astonishingly direct 2016 presentation by Alexander Nix of Cambridge Ana-
lytics, “The Power of Big Data and Psychographics,” available at 
www.youtube.com/watch?v=n8Dd5aVXLCc. 
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