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Abstract. This paper provides details on building a knowledge based automatic summariza-

tion system for mining text data. The knowledge based system mines text data on documents 

and webpages to create abstractive summaries by generalizing new concepts, deriving main 

topics, and creating new sentences. The knowledge based system makes use of the domain 

knowledge provided by Cyc development platform that consists of the world’s largest 

knowledge base and one of the most powerful inference engines. The system extracts syntactic 

structures and semantic features by employing natural language processing techniques and Cyc 

knowledge base and reasoning engine. The system creates a summary of the given documents 

in three stages: knowledge acquisition, knowledge discovery, and knowledge representation for 

human readers. The knowledge acquisition derives syntactic structure of each sentence in the 

documents and maps their words and their syntactic relationships into Cyc knowledge base. 

The knowledge discovery abstracts novel concepts and derives main topics of the documents by 

exploring the ontology of the mapped concepts and by clustering the concepts. The knowledge 

representation creates new English sentences to summarize the documents. This system has 

been implemented and integrated with Cyc knowledge based system. The implementation 

encodes a process consisting seven stages: syntactic analysis, mapping words to Cyc, concept 

propagation, concept weights and relations accumulation, topic derivation, subject identifica-

tion, and new sentence generation. The implementation has been tested on various documents 

and webpages. The test performance data suggests that such a system could benefit from run-

ning on parallel and distributed computing platforms. The test results showed that the system is 

capable of creating new sentences that include abstracted concepts not explicitly mentioned in 

the original documents and that contain information synthesized from different parts of the 

documents to compose a summary. 

Keywords: Data Mining, Text Summarization, Artificial Intelligence, Knowledge 

Extraction, Knowledge-based Systems 

1 Introduction  

In this paper, we describe the implementation details of the automatic summarization 

system reported in [1]. The system mines text data on documents and webpages and 

uses knowledge base and inference engine to produce an abstractive summary. It gen-

erates summaries by composing new sentences based on the semantics derived from 

the text. The system combines syntactic structures and semantic features to provide 

summaries that contains information synthesized from various parts of the document. 



It is built on Cyc development platform that consists of the world’s largest knowledge 

ontology and one of the most powerful inference engines that allow information com-

prehension and generalization [2]. In addition, the Cyc knowledge ontology provides 

the domain knowledge for the subject matter discussed in the documents. 

Abstractive document summarization is a task that is still considered complex for a 

human and especially for a machine. When human experts perform document summa-

rization they tend to use their domain expertise about subject matter to merge infor-

mation from various parts of the document and synthesize novel information, which 

was not explicitly mentioned in the text [3]. Our proposed system aims to follow simi-

lar approach. It generalizes new abstract concepts based on the knowledge derived 

from the text. It automatically detects main topics described in the text. Moreover, it 

composes new English sentences for some of the most significant concepts. The cre-

ated sentences form an abstractive summary, combining concepts from different parts 

of the input text. 

Our text data mining system is domain independent and unsupervised, being lim-

ited only by the common sense ontology provided by the Cyc development platform. 

The system conducts summarization process in three steps: knowledge acquisition, 

knowledge discovery, and knowledge representation.  

The knowledge acquisition step derives syntactic structure of each sentence of the 

input document and maps words and their relations into Cyc knowledge base. Next, 

the knowledge discovery step generalizes concepts upward in the Cyc ontology and 

detects main topics covered in the text. Finally, the knowledge representation step 

composes new sentences for some of the most significant concepts defined in main 

topics. The syntactic structure of the newly created sentences follows an enhanced 

subject-predicate-object model, where adjective and adverb modifiers are used to 

produce more complex and informative sentences. 

The system was implemented as a pipelined and modular data mining framework. 

Such system design allows comprehensible data flow, convenient maintenance and 

implementation of additional functionality as needed. The system was tested on vari-

ous documents and webpages. The test results show that the system is capable of 

identifying key concepts and discovering main topics comprised in the original text, 

generalizing new concept not explicitly mentioned in the text and creating new sen-

tences that contain information synthesized from various parts of the text. The newly 

created sentences have complex syntactic structures that enhance subject-predicate-

object triplets with adjective and adverb modifiers. For example, the sentence “Col-

ored grapefruit being sweet edible fruit” was automatically generated by the system 

analyzing encyclopedia articles describing grapefruits. Here, the subject concept 

“grapefruit” is modified by the adjective concept “colored” that was not explicitly 

mentioned in the text and the object concept “edible fruit” is modified by the adjec-

tive concept “sweet”. The modifiers are chosen based on the weight of the syntactic 

relation. 

The rest of the paper is organized as follows. Section 2 outlines related work un-

dertaken in automatic text summarization area. Section 3 gives a brief overview of the 

summarization process steps performed by the system. Section 4 covers system im-

plementation details. Section 5 provides thorough description of the system modules. 



Section 6 presents testing results. Section 7 discusses conclusions and directions of 

future work. 

2 Related Work 

Automatic text summarization seeks to compose a concise and coherent version of the 

original text preserving the most important information. Computational community 

has studied automatic text summarization problem since late 1950s [4]. Studies in this 

area are generally divided into two main approaches – extractive and abstractive. 

Extractive text summarization aims to select the most important sentences from origi-

nal text to form a summary. Such methods vary by different intermediate representa-

tions of the candidate sentences and different sentence scoring schemes [5]. Summar-

ies created by extractive approach are highly relevant to the original text, but do not 

convey any new information. Most prominent methods in extractive text summariza-

tion use term frequency versus inverse document frequency (TF-IDF) metric [6, 7] 

and lexical chains for sentence representation [8, 9]. Statistical methods based on 

Latent Semantic Analysis (LSA), Bayesian topic modelling, Hidden Markov Model 

(HMM) and Conditional random field (CRF) derive underlying topics and use them 

as features for sentence selection [10, 11]. Despite significant advancements in the 

extractive text summarization, such approaches are not capable of semantic under-

standing and limited to the shallow knowledge contained in the text. 

In contrast, abstractive text summarization aims to incorporate the meaning of the 

words and phrases and generalize knowledge not explicitly mentioned in the original 

text to form a summary. Phrase selection and merging methods in abstractive summa-

rization aim to solve the problem of combining information from multiple sentences. 

Such methods construct clusters of phrases and then merge only informative ones to 

form summary sentences [12]. Graph transformation approaches convert original text 

into a form of sematic graph representation and then combine or reduce such repre-

sentation with an aim of creating an abstractive summary [13, 14]. Summaries con-

structed by described methods consist of sentences not used in the original text, com-

bining information from different parts, but such sentences do not convey new 

knowledge. 

Several approaches attempt to incorporate semantic knowledge base into automatic 

text summarization by using WordNet lexical database [8, 15, 16]. Major drawback of 

WordNet system is the lack of domain-specific and common sense knowledge. Unlike 

Cyc, WordNet does not have reasoning engine and natural language generation capa-

bilities. 

Recent rapid development of deep learning contributes to the automatic text sum-

marization, improving state-of-the-art performance. Deep learning methods applied to 

both extractive [17] and abstractive [18] summarization show promising results, but 

such approaches require vast amount of training data and powerful computational 

resources. 



Our system is similar to the one proposed in [19]. In this work, the structure of cre-

ated sentences has simple subject-predicate-object pattern and new sentences are only 

created for clusters of compatible sentences found in the original text. 

3 Overview of the Summarization Process 

Our system conducts summarization process in three steps: knowledge acquisition, 

knowledge discovery, and knowledge representation. Summarization process work-

flow is illustrated in Fig. 1. 

 

Fig. 1. System’s workflow diagram. 

The knowledge acquisition step consists of two parts. It first takes text documents 

as an input and derives their syntactic structures. Then it maps each word in the text to 

its corresponding Cyc concept and assigns word’s weight and derived syntactic rela-

tions to that concept. The knowledge discovery step is responsible for abstracting new 

concepts that are not explicitly mentioned in the text. During this process, system 

derives ancestor concept for each mapped Cyc concept, assigns ancestor-descendant 

relation and adds scaled descendant concept weight and descendant concept associa-

tions to the ancestor concept. In addition, the system identifies main topics comprised 

in the text by clustering mapped Cyc concepts. During the knowledge representation 

step, the system first identifies most informative subject concepts in each of the dis-

covered main topics and then composes English sentences for each identified subject. 

This process ensures that the summary sentences are composed using information 

synthesized from different parts of the text while preserving coherence to the main 

topics. 
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4 Details of the System’s Implementation 

We chose Python as the implementation language to develop our system because of 

the advanced Natural Language Processing tools and libraries it supplies. Our system 

uses Cyc knowledge base and inference engine as a backbone for the semantic analy-

sis. Cyc development platform supports communications with the knowledge base 

and utilization of the inference engine through the application programming interfaces 

(APIs) implemented in Java. We utilize Java-Python wrapper supported by JPype 

library to allow our system using Cyc Java API packages. JPype library is essentially 

an interface at a basic level of virtual machines [20]. It requires starting Java Virtual 

Machine with a path to the appropriate jar files before Java methods and classes can 

be accessible within Python code. Communication between our system and Cyc de-

velopment platform is illustrated in Fig. 2. To the best of our knowledge, our devel-

oped system is the first Python-based system that allows communication with Cyc 

development platform. 

 

Fig. 2. Communication between summarization system and Cyc development platform. 

We have designed our system as a modular and pipelined data mining framework. 

Modularity provides the ability to conveniently maintain parts of the system and to 

add new functionality as needed. Pipelined design allows comprehensible data flow 

between different modules. 

The system consists of seven modules: 

1. Syntactic analysis; 

2. Mapping words to Cyc KB; 

3. Concepts propagation; 
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Cyc 
development 

platfrom

Python code
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4. Concepts’ weights and relations accumulation; 

5. Topics derivation; 

6. Subjects identification; 

7. New sentences generation. 

Modules 1 and 2 together constitute the knowledge acquisition step of the summariza-

tion process. Modules 3, 4 and 5 together make up the knowledge discovery step of 

the summarization process. Modules 6 and 7 together form knowledge representation 

step of the summarization process. System modules are illustrated in Fig. 3. 

 

Fig. 3. Modular design of the system. 
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5 Description of the System’s Modules 

5.1 “Syntactic Analysis” Module 

The first module in the system is the “Syntactic analysis” module. The role of this 

module is essentially a data preprocessing. The module takes documents as an input 

and transforms them into syntactic representations. It first performs text normalization 

by lemmatizing each word in each sentence. Then it derives part of speech tags, pars-

es syntactic dependencies and counts word’s weights. The syntactic dependencies are 

recorded in the following format: (“word” “type” “head”), where “word” is the de-

pendent element, “type” is the type of the dependency, and “head” is the leading ele-

ment. For example, applying syntactic parser on the following sentence: “John usually 

drinks strong coffee” produces the following syntactic dependencies between words: 

(“John” “nsubj” “drinks”), (“coffee” “dobj” “drinks”), (“usually” “advmod” 

“drinks”), (“strong” “amod” “coffee”). Syntactic dependencies of the example sen-

tence are illustrated in Fig. 4. 

 

Fig. 4. Illustration of the syntactic dependencies of a sample sentence. 

The “Syntactic analysis” module is implemented using SpaCy – Python library for 

advanced natural language processing. SpaCy library is the fastest in the world with 

the accuracy within one percent of the current state of the art systems for part of 

speech tagging and syntactic dependencies analysis [21]. The “Syntactic analysis” 

module operates outside of the Cyc development platform. The output of the module 

is a dictionary that contains words, their part of speech tags, weights and syntactic 

dependencies. This dictionary serves as an input for “Mapping words to Cyc KB” 

module. 

5.2 “Mapping Words to Cyc KB” Module 

The “Mapping words to Cyc KB” module takes dictionary of words, derived by the 

“Syntactic analysis” module, as an input. This module finds an appropriate Cyc con-

cept for each word in the dictionary, and assigns word’s weight and syntactic depend-

ency associations to Cyc concept. It starts by mapping each word to the corresponding 

Cyc concept (1). Next, it assigns word’s weight to Cyc concept (2). Then it maps the 

syntactic dependency head to the appropriate Cyc concept. Finally, it assigns the syn-

tactic dependency association and its weight to the Cyc concept (3). Table 1 provides 

the description of Cyc commands used to implement each step.  

John usually drinks strong coffee.

 nsubj  dobj 

 advmod  amod 



Table 1. Description of Cyc commands used by “Mapping words to Cyc KB” module.  

Step Cyc command Description 

1 

(#$and (#$denotation ?Word 

?POS ?Num ?Concept) 

(#$wordForms ?Word ?Word-

Form “word”) (#$genls ?POS 

?POSTag)) 

Command uses built-in “#$denotation” Cyc 

predicate to relate a “word”, its part of 

speech tag (?POS), and a sense number 

(?Num) to concept (?Concept). It also uses 

“#$wordForms” and “#$genls” predicates to 

accommodate for all variations of word’s 

lexical forms.     

2 

(#$conceptWeight ?Concept 

?Weight) 

Command uses user-defined “#$concept-

Weight” Cyc predicate that assigns the 

weight (?Weight) to the concept (?Concept) 

3 

(#$conceptAssociation ?Con-

cept ?Type ?HeadConcept 

?Weight) 

Command uses user-defined “#$conceptAs-

sociation” Cyc predicate that assigns a spe-

cific type (?Type) of a syntactic dependency 

association, the leading element (?Head-

Concept) and the weight (?Weight) to the 

concept (?Concept). 

This module communicates with Cyc development platform and updates weight and 

syntactic dependency relations of Cyc concepts. The output of the module are mapped 

Cyc concepts with assigned weights and syntactic dependency relations. The mapped 

Cyc concepts serve as an input for “Concepts propagation” module. “Syntactic analy-

sis” and “Mapping words to Cyc KB” modules together constitute the knowledge 

acquisition step of the summarization process. 

5.3 “Concepts Propagation” Module 

The “Concepts propagation” module takes Cyc concepts, mapped by “Mapping words 

to Cyc KB” module, as an input and finds their closest ancestor concepts. This mod-

ule performs generalization and abstraction of new concepts that have not been men-

tioned in the text explicitly. It starts by querying Cyc knowledge base for all the con-

cepts that have assigned weight (1). Then it finds an ancestor concept for each con-

cept derived by the query (2). Next, it records the number of ancestor’s descendant 

concepts and their weight (3). Finally, it assigns ancestor-descendant relation between 

ancestor and descendant concepts (4). Table 2 provides the description of Cyc com-

mands used to implement each step. 

Table 2. Description of Cyc commands used by “Concepts propagation” module. 

Step Cyc command Description 

1 

(#$conceptWeight ?Con-

cept ?Weight) 

Command uses user-defined “#$concept-

Weight” Cyc predicate to retrieve concepts 

(?Concept) that have assigned weights 

(?Weight). 

2 (#$min-genls ?Concept) Command uses built-in “min-genls” Cyc predi-



cate to retrieve the closest ancestor concept for 

the given concept (?Concept). 

3 

(#$conceptDescendants 

?Concept ?Weight ?Count) 

Command uses user-defined “#$con-

ceptDescendants” Cyc predicate to record the 

number of descendants (?Count) and their 

weight (?Weight) to the ancestor concept 

(?Concept). 

4 

(#$conceptAncestorOf 

?Concept ?Descendant) 

Command uses user-defined “#$conceptAnces-

torOf” predicate to assign ancestor-descendant 

relation between the ancestor concept (?Con-

cept) and the descendant concept (?Descendant). 

This module communicates with Cyc development platform to derive all mapped Cyc 

concepts, find closest ancestor concepts and update ancestor concepts’ relations. The 

output of the module are ancestor Cyc concepts with assigned descendant concepts’ 

weights and counts and ancestor-descendant relations. The ancestor Cyc concepts are 

used by “Concepts’ weights and relations accumulation” module. 

5.4 “Concepts’ Weights and Relations Accumulation” Module 

The “Concepts’ weights and relations accumulation” module takes ancestor Cyc con-

cepts as an input and adds descendants’ accumulated weight and relations to ancestor 

concepts if the calculated descendant-ratio is higher than the threshold. The descend-

ant-ratio is the number of mapped descendant concepts divided by the number of all 

descendant concepts of an ancestor concept. This module starts by querying Cyc 

knowledge base for all ancestor concepts (1). Then it calculates the descendant ratio 

for each ancestor concept (2.1, 2.2). Next, it adds propagated descendants’ weight (3) 

and descendants’ associations with their propagated weights (4) to ancestor concepts 

if the descendant-ratio is higher than the defined threshold. Table 3 provides the de-

scription of Cyc commands used to implement each step. 

Table 3. Description of Cyc commands used by “Concepts’ weights and relations accumula-

tion” module. 

Step Cyc command Description 

1 

(#$conceptDescendants 

?Concept ?Weight ?Count) 

Command uses user-defined “#$con-

ceptDescendants” Cyc predicate to retrieve all 

concepts (?Concept) that have descendants. 

2.1 

(#$conceptAncestorOf ?An-

cConcept ?MappedDesc) 

Command uses user-defined “#$conceptAnces-

torOf” predicate to retrieve mapped descendant 

concepts (?MappedDesc) of the given ancestor 

concept (?AncConcept). 

2.2 

(#$genls ?AncConcept 

?DescConcept) 

Command uses built-in “#$genls” Cyc predi-

cate to retrieve all descendant concepts 

(?DescConcept) of the given ancestor concept 

(?AncConcept). 



3 

(#$conceptWeight ?An-

cConcept ?DescWeight) 

Command uses user-defined “#$concept-

Weight” Cyc predicate to assigns the descend-

ant concepts’ propagated weight 

(?DescWeight) to the ancestor concept. 

4 

(and (#$conceptAncestorOf 

?AncConcept ?Desc-

Concept) 

(#$conceptAssociation 

?DescConcept ?Type 

?HeadConcept ?Weight)) 

Command uses user-defined “#$conceptAnces-

torOf” and “#$conceptAssociation” Cyc predi-

cates to assign descendant’s association 

(?DescConcept) and its propagated weight 

(?Weight) to the ancestor concept (?An-

cConcept). 

This module communicates with Cyc development platform to derive all ancestor Cyc 

concepts, find the number of ancestor’s mapped descendants, find the number of all 

ancestor’s descendants and update ancestor’s weight and relations. The output of the 

module are the Cyc concepts with updated weights and syntactic dependency associa-

tions. Updated Cyc concepts are used by the “Topics derivation” and the “Subjects 

identification” modules. 

5.5 “Topics Derivation” Module 

The “Topics derivation” module takes updated Cyc concepts as an input and derives 

defining micro theory for each concept. Micro theories with the highest weights rep-

resent the main topics of the document. This module first derives defining micro theo-

ry for each Cyc concept that have assigned weight (1). Then it counts the weights of 

derived micro theories based on their frequencies and picks up top-n with the highest 

weights. Table 4 provides the description of Cyc command used to implement defin-

ing micro theory derivation. 

Table 4. Description of Cyc command used by “Topics derivation” module 

Step Cyc command Description 

1 

(#$and (#$concept-

Weight ?Concept 

?Weight) (#$definingMt 

?Concept ?MicroTheo-

ry)) 

Command uses user-defined “#$conceptWeight” 

Cyc predicate and built-in “definingMt” Cyc pred-

icate to derive defining micro theory (?MicroThe-

ory) for each concept (?Concept) that have as-

signed weight (?Weight). 

This module communicates with Cyc development platform to derive defining micro 

theory for each mapped Cyc concept. Calculation of the derived micro theories’ 

weights is handled outside of the Cyc development platform. The output of the mod-

ule is the micro theories dictionary that contains top-n micro theories with highest 

weights. This dictionary serves as an input for the “Subjects identification” module. 

The “Concepts propagation”, the “Concepts’ weights and relations accumulation” and 

the “Topics derivation” modules together constitute knowledge discovery step of the 

summarization process. 



5.6 “Subjects Identification” Module 

The “Subjects identification” module uses updated Cyc concepts and the dictionary of 

top-n micro theories as an input to derive most informative subject concepts based on 

a subjectivity rank. Subjectivity ranks is the product of the concept’s weight and the 

concept’s subjectivity ratio. Subjectivity ratio is the number of concept’s syntactic 

dependency associations labelled as “subject” relations divided by the total number of 

concept’s syntactic dependency associations. Subjectivity rank allows identifying 

concepts with the strongest subject roles in the documents. The module start by que-

rying Cyc knowledge base for all mapped Cyc concepts for each micro theory in top-

n micro theories dictionary (1). Then it calculates subjectivity ratio and subjectivity 

rank for each derived Cyc concept (2.1, 2.2). Finally, it picks top-n subject concepts 

with the highest subjectivity rank. Table 5 provides the description of Cyc commands 

used to implement each step. 

Table 5. Description of Cyc commands used by “Subjects identification” module. 

Step Cyc command Description 

1 

(#$and  

(#$definingMt ?Concept 

?MicroTheory)  

(#$conceptWeight ?Con-

cept ?Weight)) 

Command uses built-in “#$definingMt” Cyc pred-

icate and user-defined “conceptWeight” Cyc pred-

icate to derive concepts (?Concept) that have as-

signed weight (?Weight) for each micro theory 

(?MicroTheory) in micro theories dictionary.   

2.1 

(#$conceptAssociation 

?Concept "nsubj" 

?HeadConcept ?Weight) 

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with “nsubj” parameter to 

derive the concept’s (?Concept) syntactic depend-

ency associations labelled as “subject” relations. 

2.2 

(#$conceptAssociation 

?Concept ?Type ?Head-

Concept ?Weight) 

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with no parameter specified 

(?Type) to derive all concept’s (?Concept) syntac-

tic dependency associations. 

This module communicates with Cyc development platform to derive mapped Cyc 

concepts for each defining micro theory in the input dictionary and to find the number 

of the concept’s syntactic dependency associations labelled as “subject” relation and 

the number of all syntactic dependency associations of the concept. Calculations of 

the subjectivity ratio and the subjectivity rank are handled outside of the Cyc devel-

opment platform. The output of the module is the dictionary that contains top-n sub-

jects with the highest subjectivity rank. This dictionary serves as an input for the 

“New sentence generation” module. 

5.7 “New Sentences Generation” Module 

The “New sentences generation” module takes the dictionary of top-n most informa-

tive subjects as an input and produces new sentences for each of the subject to form a 

summary of the input documents. The module starts by deriving a natural language 



representation of each subject Cyc concept in the dictionary (1). Then it picks the 

adjective Cyc concept modifier with the highest subject-adjective syntactic dependen-

cy association weight (2) and derives its natural language representation. Next, it 

picks top-n predicate Cyc concepts with the highest subject-predicate syntactic de-

pendency association weights (3) and derives their natural language representations. 

Then it picks the adverb Cyc concept modifier with the highest predicate-adverb syn-

tactic dependency association weight (4) and derives its natural language representa-

tion. Next, it picks top-n object Cyc concepts with the highest product of subject-

object and predicate-object syntactic dependency association weights (5.1, 5.2) and 

derives their natural language representations. Then, it picks the adjective Cyc con-

cept modifier with the highest object-adjective syntactic dependency association 

weight and derives its natural language representation. Finally, it composes the new 

sentence using subject, subject-adjective, predicate, predicate-adverb, object and ob-

ject-adjective natural language representations. Table 6 provides the description of 

Cyc commands used to implement each step. 

Table 6. Description of Cyc commands used by “New sentence generation” module. 

Step Cyc command Description 

1 

(#$generate-phrase 

?Concept) 

Command uses built-in “#$generate-phrase” Cyc 

predicate to retrieve corresponding natural lan-

guage representation for a Cyc concept (?Con-

cept). 

2 

(#$conceptAssociation 

?Concept "amod" 

?HeadConcept ?Weight) 

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with “amod” parameter to 

derive Cyc concept (?Concept) associations la-

belled as adjective modifier syntactic dependency 

relation. 

3 

(#$conceptAssociation 

?Concept "pred" ?Head-

Concept ?Weight) 

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with “pred” parameter to de-

rive Cyc concept (?Concept) associations labelled 

as predicate syntactic dependency relation. 

4 

(#$conceptAssociation 

?Concept "advmod" 

?HeadConcept ?Weight) 

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with “advmod” parameter to 

derive Cyc concept (?Concept) associations la-

belled as adverb modifier syntactic dependency 

relation. 

5.1 

(#$conceptAssociation 

?Concept "obj" ?Head-

Concept ?Weight) 

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with “obj” parameter to derive 

Cyc concept (?Concept) associations labelled as 

object syntactic dependency relation. 

5.2 

(#$conceptAssociation 

?Concept "subj-obj" 

?HeadConcept ?Weight) 

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with “subj-obj” parameter to 

derive Cyc concept (?Concept) associations la-

belled as subject-object syntactic dependency 

relation. 



This module communicates with Cyc development platform to derive appropriate Cyc 

concepts for each sentence element based on the weights of their syntactic dependen-

cy associations and derive their natural language representation. New sentences are 

composed outside of the Cyc development platform and serve as an output for the 

module and the whole summarization system. The “Subjects identification” and the 

“New sentences generation” modules together constitute the knowledge representa-

tion step of the summarization process. 

6 Testing and Results 

We have tested our system on various encyclopedia articles describing concepts from 

different domain. First, we conducted an experiment using multiple articles about 

grapefruits. In this experiment, we increased the number of analyzed articles on each 

run of the system, starting with a single article. Fig. 5 illustrates new sentences creat-

ed by the system. These results show the progression of sentence structure from sim-

ple subject-predicate-object triplet to more complex structure enhanced by the adjec-

tive and adverb modifiers when more articles were processed by the system. 

 

Fig. 5. Test results of new sentences created for multiple articles about grapefruit; (a) – single 

article, (b) – two articles, (c) – three articles. 

Next, we applied our system on five encyclopedia articles describing different types 

of felines, including cats, tigers, cougars, jaguars and lions. Fig. 6 shows main topics 

and concepts extracted from the text and newly created sentences. 

 

Fig. 6. Test results of new sentences, concepts and main topics for encyclopedia articles about 

felines. 

 “Grapefruit being fruit.” (a)  

“Grapefruit being colored edible fruit.” (b)  

“Colored grapefruit being sweet edible fruit.” (c) 

Sentences:  

“Cat usually being native animal.”  

“Big felis usually being natural predatory animal.” 

”Big felis usually being exotic animal.”  

“Big felis often using killing method.”  

“Big felis often using marking.”  

“Male feline often killing prey.”  

“Male feline living historical mountain range.” 

Topics (micro theories):  

 #$BiologyMt  

 #$BiologyVocabularyMt  

 #$HumanSocialLifeMt  

Concepts:  

 #$Cat  

 #$DomesticCat  

 #$FelisGenus  

 #$FelidaeFamily  

 #$Animal  



These results show that the system is able to abstract new concepts and create new 

sentences that contain information synthesized from different parts of the documents. 

Concepts like “canis”, “mammal meat” and “felis” were derived by the generalization 

process and were not explicitly mentioned in the original documents. Our system 

yields better results compared to the reported in [19]. New sentences created by the 

system have structure that is more complex and contain information fused from vari-

ous parts of the text. More testing results are reported in [1]. 

7 Conclusions and Future Work 

In this paper, we described an implementation of the knowledge based automatic 

summarization system that creates an abstractive summary of the text. This task is 

still challenging for machines, because in order to create such summary, the infor-

mation from the input text has to be aggregated and synthesized, drawing knowledge 

that is more general. This is not feasible without using the semantics and having do-

main knowledge. To have such capabilities, our implemented system uses Cyc 

knowledge base and its reasoning engine. Utilizing semantic features and syntactic 

structure of the text shows great potential in creating abstractive summaries. We have 

implemented and tested our proposed system. The results show that the system is able 

to abstract new concepts not mentioned in the text, identify main topics and create 

new sentences using information from different parts of the text. 

We outline several directions for the future improvements of the system. The first 

direction is to improve the domain knowledge representation, since the semantic 

knowledge and reasoning are only limited by Cyc knowledge base. Ideally, the sys-

tem would be able to use the whole World Wide Web as a domain knowledge, but 

this possesses challenges like information inconsistency and sense disambiguation. 

The second direction is to improve the structure of the created sentences. We use 

subject-predicate-object triplets extended by adjective and adverb modifiers. Such 

structure can be improved by using more advanced syntactic representation of the 

sentence, e.g. graph representation. Finally, some of the created sentences are not 

conceptually connected to each other. Analyzing the relations between concepts on 

the document level will help in creating sentences that will be linked to each other 

conceptually. 
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