
HAL Id: hal-02060037
https://inria.hal.science/hal-02060037

Submitted on 7 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Building a Knowledge Based Summarization System for
Text Data Mining

Andrey Timofeyev, Ben Choi

To cite this version:
Andrey Timofeyev, Ben Choi. Building a Knowledge Based Summarization System for Text Data
Mining. 2nd International Cross-Domain Conference for Machine Learning and Knowledge Extrac-
tion (CD-MAKE), Aug 2018, Hamburg, Germany. pp.118-133, �10.1007/978-3-319-99740-7_8�. �hal-
02060037�

https://inria.hal.science/hal-02060037
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Building a Knowledge Based Summarization System for

Text Data Mining

Andrey Timofeyev and Ben Choi

Computer Science, Louisiana Tech University, USA

andtimo@latech.edu, pro@benchoi.org

Abstract. This paper provides details on building a knowledge based automatic summariza-

tion system for mining text data. The knowledge based system mines text data on documents

and webpages to create abstractive summaries by generalizing new concepts, deriving main

topics, and creating new sentences. The knowledge based system makes use of the domain

knowledge provided by Cyc development platform that consists of the world’s largest

knowledge base and one of the most powerful inference engines. The system extracts syntactic

structures and semantic features by employing natural language processing techniques and Cyc

knowledge base and reasoning engine. The system creates a summary of the given documents

in three stages: knowledge acquisition, knowledge discovery, and knowledge representation for

human readers. The knowledge acquisition derives syntactic structure of each sentence in the

documents and maps their words and their syntactic relationships into Cyc knowledge base.

The knowledge discovery abstracts novel concepts and derives main topics of the documents by

exploring the ontology of the mapped concepts and by clustering the concepts. The knowledge

representation creates new English sentences to summarize the documents. This system has

been implemented and integrated with Cyc knowledge based system. The implementation

encodes a process consisting seven stages: syntactic analysis, mapping words to Cyc, concept

propagation, concept weights and relations accumulation, topic derivation, subject identifica-

tion, and new sentence generation. The implementation has been tested on various documents

and webpages. The test performance data suggests that such a system could benefit from run-

ning on parallel and distributed computing platforms. The test results showed that the system is

capable of creating new sentences that include abstracted concepts not explicitly mentioned in

the original documents and that contain information synthesized from different parts of the

documents to compose a summary.

Keywords: Data Mining, Text Summarization, Artificial Intelligence, Knowledge

Extraction, Knowledge-based Systems

1 Introduction

In this paper, we describe the implementation details of the automatic summarization

system reported in [1]. The system mines text data on documents and webpages and

uses knowledge base and inference engine to produce an abstractive summary. It gen-

erates summaries by composing new sentences based on the semantics derived from

the text. The system combines syntactic structures and semantic features to provide

summaries that contains information synthesized from various parts of the document.

It is built on Cyc development platform that consists of the world’s largest knowledge

ontology and one of the most powerful inference engines that allow information com-

prehension and generalization [2]. In addition, the Cyc knowledge ontology provides

the domain knowledge for the subject matter discussed in the documents.

Abstractive document summarization is a task that is still considered complex for a

human and especially for a machine. When human experts perform document summa-

rization they tend to use their domain expertise about subject matter to merge infor-

mation from various parts of the document and synthesize novel information, which

was not explicitly mentioned in the text [3]. Our proposed system aims to follow simi-

lar approach. It generalizes new abstract concepts based on the knowledge derived

from the text. It automatically detects main topics described in the text. Moreover, it

composes new English sentences for some of the most significant concepts. The cre-

ated sentences form an abstractive summary, combining concepts from different parts

of the input text.

Our text data mining system is domain independent and unsupervised, being lim-

ited only by the common sense ontology provided by the Cyc development platform.

The system conducts summarization process in three steps: knowledge acquisition,

knowledge discovery, and knowledge representation.

The knowledge acquisition step derives syntactic structure of each sentence of the

input document and maps words and their relations into Cyc knowledge base. Next,

the knowledge discovery step generalizes concepts upward in the Cyc ontology and

detects main topics covered in the text. Finally, the knowledge representation step

composes new sentences for some of the most significant concepts defined in main

topics. The syntactic structure of the newly created sentences follows an enhanced

subject-predicate-object model, where adjective and adverb modifiers are used to

produce more complex and informative sentences.

The system was implemented as a pipelined and modular data mining framework.

Such system design allows comprehensible data flow, convenient maintenance and

implementation of additional functionality as needed. The system was tested on vari-

ous documents and webpages. The test results show that the system is capable of

identifying key concepts and discovering main topics comprised in the original text,

generalizing new concept not explicitly mentioned in the text and creating new sen-

tences that contain information synthesized from various parts of the text. The newly

created sentences have complex syntactic structures that enhance subject-predicate-

object triplets with adjective and adverb modifiers. For example, the sentence “Col-

ored grapefruit being sweet edible fruit” was automatically generated by the system

analyzing encyclopedia articles describing grapefruits. Here, the subject concept

“grapefruit” is modified by the adjective concept “colored” that was not explicitly

mentioned in the text and the object concept “edible fruit” is modified by the adjec-

tive concept “sweet”. The modifiers are chosen based on the weight of the syntactic

relation.

The rest of the paper is organized as follows. Section 2 outlines related work un-

dertaken in automatic text summarization area. Section 3 gives a brief overview of the

summarization process steps performed by the system. Section 4 covers system im-

plementation details. Section 5 provides thorough description of the system modules.

Section 6 presents testing results. Section 7 discusses conclusions and directions of

future work.

2 Related Work

Automatic text summarization seeks to compose a concise and coherent version of the

original text preserving the most important information. Computational community

has studied automatic text summarization problem since late 1950s [4]. Studies in this

area are generally divided into two main approaches – extractive and abstractive.

Extractive text summarization aims to select the most important sentences from origi-

nal text to form a summary. Such methods vary by different intermediate representa-

tions of the candidate sentences and different sentence scoring schemes [5]. Summar-

ies created by extractive approach are highly relevant to the original text, but do not

convey any new information. Most prominent methods in extractive text summariza-

tion use term frequency versus inverse document frequency (TF-IDF) metric [6, 7]

and lexical chains for sentence representation [8, 9]. Statistical methods based on

Latent Semantic Analysis (LSA), Bayesian topic modelling, Hidden Markov Model

(HMM) and Conditional random field (CRF) derive underlying topics and use them

as features for sentence selection [10, 11]. Despite significant advancements in the

extractive text summarization, such approaches are not capable of semantic under-

standing and limited to the shallow knowledge contained in the text.

In contrast, abstractive text summarization aims to incorporate the meaning of the

words and phrases and generalize knowledge not explicitly mentioned in the original

text to form a summary. Phrase selection and merging methods in abstractive summa-

rization aim to solve the problem of combining information from multiple sentences.

Such methods construct clusters of phrases and then merge only informative ones to

form summary sentences [12]. Graph transformation approaches convert original text

into a form of sematic graph representation and then combine or reduce such repre-

sentation with an aim of creating an abstractive summary [13, 14]. Summaries con-

structed by described methods consist of sentences not used in the original text, com-

bining information from different parts, but such sentences do not convey new

knowledge.

Several approaches attempt to incorporate semantic knowledge base into automatic

text summarization by using WordNet lexical database [8, 15, 16]. Major drawback of

WordNet system is the lack of domain-specific and common sense knowledge. Unlike

Cyc, WordNet does not have reasoning engine and natural language generation capa-

bilities.

Recent rapid development of deep learning contributes to the automatic text sum-

marization, improving state-of-the-art performance. Deep learning methods applied to

both extractive [17] and abstractive [18] summarization show promising results, but

such approaches require vast amount of training data and powerful computational

resources.

Our system is similar to the one proposed in [19]. In this work, the structure of cre-

ated sentences has simple subject-predicate-object pattern and new sentences are only

created for clusters of compatible sentences found in the original text.

3 Overview of the Summarization Process

Our system conducts summarization process in three steps: knowledge acquisition,

knowledge discovery, and knowledge representation. Summarization process work-

flow is illustrated in Fig. 1.

Fig. 1. System’s workflow diagram.

The knowledge acquisition step consists of two parts. It first takes text documents

as an input and derives their syntactic structures. Then it maps each word in the text to

its corresponding Cyc concept and assigns word’s weight and derived syntactic rela-

tions to that concept. The knowledge discovery step is responsible for abstracting new

concepts that are not explicitly mentioned in the text. During this process, system

derives ancestor concept for each mapped Cyc concept, assigns ancestor-descendant

relation and adds scaled descendant concept weight and descendant concept associa-

tions to the ancestor concept. In addition, the system identifies main topics comprised

in the text by clustering mapped Cyc concepts. During the knowledge representation

step, the system first identifies most informative subject concepts in each of the dis-

covered main topics and then composes English sentences for each identified subject.

This process ensures that the summary sentences are composed using information

synthesized from different parts of the text while preserving coherence to the main

topics.

Knowledge Based System

Input:

document(s)

Cyc KB

Output:

summary

KNOWLEDGE

DISCOVERY

Abstract new concepts.

Identify main topics.

KNOWLEDGE

ACQUISITION

Extract syntactic structure.

Map words to Cyc concepts.

KNOWLEDGE

REPRESENTATION

Abstract new concepts.

Identify main subjects.

Create new sentences.

4 Details of the System’s Implementation

We chose Python as the implementation language to develop our system because of

the advanced Natural Language Processing tools and libraries it supplies. Our system

uses Cyc knowledge base and inference engine as a backbone for the semantic analy-

sis. Cyc development platform supports communications with the knowledge base

and utilization of the inference engine through the application programming interfaces

(APIs) implemented in Java. We utilize Java-Python wrapper supported by JPype

library to allow our system using Cyc Java API packages. JPype library is essentially

an interface at a basic level of virtual machines [20]. It requires starting Java Virtual

Machine with a path to the appropriate jar files before Java methods and classes can

be accessible within Python code. Communication between our system and Cyc de-

velopment platform is illustrated in Fig. 2. To the best of our knowledge, our devel-

oped system is the first Python-based system that allows communication with Cyc

development platform.

Fig. 2. Communication between summarization system and Cyc development platform.

We have designed our system as a modular and pipelined data mining framework.

Modularity provides the ability to conveniently maintain parts of the system and to

add new functionality as needed. Pipelined design allows comprehensible data flow

between different modules.

The system consists of seven modules:

1. Syntactic analysis;

2. Mapping words to Cyc KB;

3. Concepts propagation;

Summarization
system

Cyc
development

platfrom

Python code

JPype library
Cyc Java APIs

4. Concepts’ weights and relations accumulation;

5. Topics derivation;

6. Subjects identification;

7. New sentences generation.

Modules 1 and 2 together constitute the knowledge acquisition step of the summariza-

tion process. Modules 3, 4 and 5 together make up the knowledge discovery step of

the summarization process. Modules 6 and 7 together form knowledge representation

step of the summarization process. System modules are illustrated in Fig. 3.

Fig. 3. Modular design of the system.

Knowledge acquisition

Input: Document(s).

Output: Dictionary of words.
Contains word, its parts of speech tag, weight,

syntactic dependency and its weight.

Syntactic analysis

Input: Dictionary of words.

Output: Mapped Cyc concepts.
Cyc concepts with assigned weights and

associations.

Mapping words to
Cyc KB

Knowledge discovery

Input: Updated Cyc concepts.
Cyc concepts with updated weights and

associations.

Output: Dictionary of top-n topics.
Contains top-n micro theories and their

weights.

Topics derivation

Input: Ancestor Cyc concepts.
Cyc concepts with assigned ancestor-

descendant relations

Output: Updated Cyc concepts.
Cyc concepts with updated weights and

associations.

Concepts weights and
relations accumulation

Input: Mapped Cyc concepts.
Cyc concepts with assigned weights and

associations.

Output: Ancestor Cyc concepts.
Cyc concepts with assigned ancestor-

descendant relations

Concepts propagation

Knowledge representation

Inputs: Updated Cyc concepts &
Dictionary of top-n topics.

Output: Dictionary of top-n subjects.
Contains top-n Cyc subject concepts and their

weights.

Subjects identification

Input: Dictionary of top-n subjects.
Contains top-n Cyc subject concepts and their

weights.

Output: Newly generated sentences.

Constitute summary of the input documents.

New sentences
generation

5 Description of the System’s Modules

5.1 “Syntactic Analysis” Module

The first module in the system is the “Syntactic analysis” module. The role of this

module is essentially a data preprocessing. The module takes documents as an input

and transforms them into syntactic representations. It first performs text normalization

by lemmatizing each word in each sentence. Then it derives part of speech tags, pars-

es syntactic dependencies and counts word’s weights. The syntactic dependencies are

recorded in the following format: (“word” “type” “head”), where “word” is the de-

pendent element, “type” is the type of the dependency, and “head” is the leading ele-

ment. For example, applying syntactic parser on the following sentence: “John usually

drinks strong coffee” produces the following syntactic dependencies between words:

(“John” “nsubj” “drinks”), (“coffee” “dobj” “drinks”), (“usually” “advmod”

“drinks”), (“strong” “amod” “coffee”). Syntactic dependencies of the example sen-

tence are illustrated in Fig. 4.

Fig. 4. Illustration of the syntactic dependencies of a sample sentence.

The “Syntactic analysis” module is implemented using SpaCy – Python library for

advanced natural language processing. SpaCy library is the fastest in the world with

the accuracy within one percent of the current state of the art systems for part of

speech tagging and syntactic dependencies analysis [21]. The “Syntactic analysis”

module operates outside of the Cyc development platform. The output of the module

is a dictionary that contains words, their part of speech tags, weights and syntactic

dependencies. This dictionary serves as an input for “Mapping words to Cyc KB”

module.

5.2 “Mapping Words to Cyc KB” Module

The “Mapping words to Cyc KB” module takes dictionary of words, derived by the

“Syntactic analysis” module, as an input. This module finds an appropriate Cyc con-

cept for each word in the dictionary, and assigns word’s weight and syntactic depend-

ency associations to Cyc concept. It starts by mapping each word to the corresponding

Cyc concept (1). Next, it assigns word’s weight to Cyc concept (2). Then it maps the

syntactic dependency head to the appropriate Cyc concept. Finally, it assigns the syn-

tactic dependency association and its weight to the Cyc concept (3). Table 1 provides

the description of Cyc commands used to implement each step.

John usually drinks strong coffee.

 nsubj dobj

 advmod amod

Table 1. Description of Cyc commands used by “Mapping words to Cyc KB” module.

Step Cyc command Description

1

(#$and (#$denotation ?Word

?POS ?Num ?Concept)

(#$wordForms ?Word ?Word-

Form “word”) (#$genls ?POS

?POSTag))

Command uses built-in “#$denotation” Cyc

predicate to relate a “word”, its part of

speech tag (?POS), and a sense number

(?Num) to concept (?Concept). It also uses

“#$wordForms” and “#$genls” predicates to

accommodate for all variations of word’s

lexical forms.

2

(#$conceptWeight ?Concept

?Weight)

Command uses user-defined “#$concept-

Weight” Cyc predicate that assigns the

weight (?Weight) to the concept (?Concept)

3

(#$conceptAssociation ?Con-

cept ?Type ?HeadConcept

?Weight)

Command uses user-defined “#$conceptAs-

sociation” Cyc predicate that assigns a spe-

cific type (?Type) of a syntactic dependency

association, the leading element (?Head-

Concept) and the weight (?Weight) to the

concept (?Concept).

This module communicates with Cyc development platform and updates weight and

syntactic dependency relations of Cyc concepts. The output of the module are mapped

Cyc concepts with assigned weights and syntactic dependency relations. The mapped

Cyc concepts serve as an input for “Concepts propagation” module. “Syntactic analy-

sis” and “Mapping words to Cyc KB” modules together constitute the knowledge

acquisition step of the summarization process.

5.3 “Concepts Propagation” Module

The “Concepts propagation” module takes Cyc concepts, mapped by “Mapping words

to Cyc KB” module, as an input and finds their closest ancestor concepts. This mod-

ule performs generalization and abstraction of new concepts that have not been men-

tioned in the text explicitly. It starts by querying Cyc knowledge base for all the con-

cepts that have assigned weight (1). Then it finds an ancestor concept for each con-

cept derived by the query (2). Next, it records the number of ancestor’s descendant

concepts and their weight (3). Finally, it assigns ancestor-descendant relation between

ancestor and descendant concepts (4). Table 2 provides the description of Cyc com-

mands used to implement each step.

Table 2. Description of Cyc commands used by “Concepts propagation” module.

Step Cyc command Description

1

(#$conceptWeight ?Con-

cept ?Weight)

Command uses user-defined “#$concept-

Weight” Cyc predicate to retrieve concepts

(?Concept) that have assigned weights

(?Weight).

2 (#$min-genls ?Concept) Command uses built-in “min-genls” Cyc predi-

cate to retrieve the closest ancestor concept for

the given concept (?Concept).

3

(#$conceptDescendants

?Concept ?Weight ?Count)

Command uses user-defined “#$con-

ceptDescendants” Cyc predicate to record the

number of descendants (?Count) and their

weight (?Weight) to the ancestor concept

(?Concept).

4

(#$conceptAncestorOf

?Concept ?Descendant)

Command uses user-defined “#$conceptAnces-

torOf” predicate to assign ancestor-descendant

relation between the ancestor concept (?Con-

cept) and the descendant concept (?Descendant).

This module communicates with Cyc development platform to derive all mapped Cyc

concepts, find closest ancestor concepts and update ancestor concepts’ relations. The

output of the module are ancestor Cyc concepts with assigned descendant concepts’

weights and counts and ancestor-descendant relations. The ancestor Cyc concepts are

used by “Concepts’ weights and relations accumulation” module.

5.4 “Concepts’ Weights and Relations Accumulation” Module

The “Concepts’ weights and relations accumulation” module takes ancestor Cyc con-

cepts as an input and adds descendants’ accumulated weight and relations to ancestor

concepts if the calculated descendant-ratio is higher than the threshold. The descend-

ant-ratio is the number of mapped descendant concepts divided by the number of all

descendant concepts of an ancestor concept. This module starts by querying Cyc

knowledge base for all ancestor concepts (1). Then it calculates the descendant ratio

for each ancestor concept (2.1, 2.2). Next, it adds propagated descendants’ weight (3)

and descendants’ associations with their propagated weights (4) to ancestor concepts

if the descendant-ratio is higher than the defined threshold. Table 3 provides the de-

scription of Cyc commands used to implement each step.

Table 3. Description of Cyc commands used by “Concepts’ weights and relations accumula-

tion” module.

Step Cyc command Description

1

(#$conceptDescendants

?Concept ?Weight ?Count)

Command uses user-defined “#$con-

ceptDescendants” Cyc predicate to retrieve all

concepts (?Concept) that have descendants.

2.1

(#$conceptAncestorOf ?An-

cConcept ?MappedDesc)

Command uses user-defined “#$conceptAnces-

torOf” predicate to retrieve mapped descendant

concepts (?MappedDesc) of the given ancestor

concept (?AncConcept).

2.2

(#$genls ?AncConcept

?DescConcept)

Command uses built-in “#$genls” Cyc predi-

cate to retrieve all descendant concepts

(?DescConcept) of the given ancestor concept

(?AncConcept).

3

(#$conceptWeight ?An-

cConcept ?DescWeight)

Command uses user-defined “#$concept-

Weight” Cyc predicate to assigns the descend-

ant concepts’ propagated weight

(?DescWeight) to the ancestor concept.

4

(and (#$conceptAncestorOf

?AncConcept ?Desc-

Concept)

(#$conceptAssociation

?DescConcept ?Type

?HeadConcept ?Weight))

Command uses user-defined “#$conceptAnces-

torOf” and “#$conceptAssociation” Cyc predi-

cates to assign descendant’s association

(?DescConcept) and its propagated weight

(?Weight) to the ancestor concept (?An-

cConcept).

This module communicates with Cyc development platform to derive all ancestor Cyc

concepts, find the number of ancestor’s mapped descendants, find the number of all

ancestor’s descendants and update ancestor’s weight and relations. The output of the

module are the Cyc concepts with updated weights and syntactic dependency associa-

tions. Updated Cyc concepts are used by the “Topics derivation” and the “Subjects

identification” modules.

5.5 “Topics Derivation” Module

The “Topics derivation” module takes updated Cyc concepts as an input and derives

defining micro theory for each concept. Micro theories with the highest weights rep-

resent the main topics of the document. This module first derives defining micro theo-

ry for each Cyc concept that have assigned weight (1). Then it counts the weights of

derived micro theories based on their frequencies and picks up top-n with the highest

weights. Table 4 provides the description of Cyc command used to implement defin-

ing micro theory derivation.

Table 4. Description of Cyc command used by “Topics derivation” module

Step Cyc command Description

1

(#$and (#$concept-

Weight ?Concept

?Weight) (#$definingMt

?Concept ?MicroTheo-

ry))

Command uses user-defined “#$conceptWeight”

Cyc predicate and built-in “definingMt” Cyc pred-

icate to derive defining micro theory (?MicroThe-

ory) for each concept (?Concept) that have as-

signed weight (?Weight).

This module communicates with Cyc development platform to derive defining micro

theory for each mapped Cyc concept. Calculation of the derived micro theories’

weights is handled outside of the Cyc development platform. The output of the mod-

ule is the micro theories dictionary that contains top-n micro theories with highest

weights. This dictionary serves as an input for the “Subjects identification” module.

The “Concepts propagation”, the “Concepts’ weights and relations accumulation” and

the “Topics derivation” modules together constitute knowledge discovery step of the

summarization process.

5.6 “Subjects Identification” Module

The “Subjects identification” module uses updated Cyc concepts and the dictionary of

top-n micro theories as an input to derive most informative subject concepts based on

a subjectivity rank. Subjectivity ranks is the product of the concept’s weight and the

concept’s subjectivity ratio. Subjectivity ratio is the number of concept’s syntactic

dependency associations labelled as “subject” relations divided by the total number of

concept’s syntactic dependency associations. Subjectivity rank allows identifying

concepts with the strongest subject roles in the documents. The module start by que-

rying Cyc knowledge base for all mapped Cyc concepts for each micro theory in top-

n micro theories dictionary (1). Then it calculates subjectivity ratio and subjectivity

rank for each derived Cyc concept (2.1, 2.2). Finally, it picks top-n subject concepts

with the highest subjectivity rank. Table 5 provides the description of Cyc commands

used to implement each step.

Table 5. Description of Cyc commands used by “Subjects identification” module.

Step Cyc command Description

1

(#$and

(#$definingMt ?Concept

?MicroTheory)

(#$conceptWeight ?Con-

cept ?Weight))

Command uses built-in “#$definingMt” Cyc pred-

icate and user-defined “conceptWeight” Cyc pred-

icate to derive concepts (?Concept) that have as-

signed weight (?Weight) for each micro theory

(?MicroTheory) in micro theories dictionary.

2.1

(#$conceptAssociation

?Concept "nsubj"

?HeadConcept ?Weight)

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with “nsubj” parameter to

derive the concept’s (?Concept) syntactic depend-

ency associations labelled as “subject” relations.

2.2

(#$conceptAssociation

?Concept ?Type ?Head-

Concept ?Weight)

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with no parameter specified

(?Type) to derive all concept’s (?Concept) syntac-

tic dependency associations.

This module communicates with Cyc development platform to derive mapped Cyc

concepts for each defining micro theory in the input dictionary and to find the number

of the concept’s syntactic dependency associations labelled as “subject” relation and

the number of all syntactic dependency associations of the concept. Calculations of

the subjectivity ratio and the subjectivity rank are handled outside of the Cyc devel-

opment platform. The output of the module is the dictionary that contains top-n sub-

jects with the highest subjectivity rank. This dictionary serves as an input for the

“New sentence generation” module.

5.7 “New Sentences Generation” Module

The “New sentences generation” module takes the dictionary of top-n most informa-

tive subjects as an input and produces new sentences for each of the subject to form a

summary of the input documents. The module starts by deriving a natural language

representation of each subject Cyc concept in the dictionary (1). Then it picks the

adjective Cyc concept modifier with the highest subject-adjective syntactic dependen-

cy association weight (2) and derives its natural language representation. Next, it

picks top-n predicate Cyc concepts with the highest subject-predicate syntactic de-

pendency association weights (3) and derives their natural language representations.

Then it picks the adverb Cyc concept modifier with the highest predicate-adverb syn-

tactic dependency association weight (4) and derives its natural language representa-

tion. Next, it picks top-n object Cyc concepts with the highest product of subject-

object and predicate-object syntactic dependency association weights (5.1, 5.2) and

derives their natural language representations. Then, it picks the adjective Cyc con-

cept modifier with the highest object-adjective syntactic dependency association

weight and derives its natural language representation. Finally, it composes the new

sentence using subject, subject-adjective, predicate, predicate-adverb, object and ob-

ject-adjective natural language representations. Table 6 provides the description of

Cyc commands used to implement each step.

Table 6. Description of Cyc commands used by “New sentence generation” module.

Step Cyc command Description

1

(#$generate-phrase

?Concept)

Command uses built-in “#$generate-phrase” Cyc

predicate to retrieve corresponding natural lan-

guage representation for a Cyc concept (?Con-

cept).

2

(#$conceptAssociation

?Concept "amod"

?HeadConcept ?Weight)

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with “amod” parameter to

derive Cyc concept (?Concept) associations la-

belled as adjective modifier syntactic dependency

relation.

3

(#$conceptAssociation

?Concept "pred" ?Head-

Concept ?Weight)

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with “pred” parameter to de-

rive Cyc concept (?Concept) associations labelled

as predicate syntactic dependency relation.

4

(#$conceptAssociation

?Concept "advmod"

?HeadConcept ?Weight)

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with “advmod” parameter to

derive Cyc concept (?Concept) associations la-

belled as adverb modifier syntactic dependency

relation.

5.1

(#$conceptAssociation

?Concept "obj" ?Head-

Concept ?Weight)

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with “obj” parameter to derive

Cyc concept (?Concept) associations labelled as

object syntactic dependency relation.

5.2

(#$conceptAssociation

?Concept "subj-obj"

?HeadConcept ?Weight)

Command uses user-defined “#$conceptAssocia-

tion” Cyc predicate with “subj-obj” parameter to

derive Cyc concept (?Concept) associations la-

belled as subject-object syntactic dependency

relation.

This module communicates with Cyc development platform to derive appropriate Cyc

concepts for each sentence element based on the weights of their syntactic dependen-

cy associations and derive their natural language representation. New sentences are

composed outside of the Cyc development platform and serve as an output for the

module and the whole summarization system. The “Subjects identification” and the

“New sentences generation” modules together constitute the knowledge representa-

tion step of the summarization process.

6 Testing and Results

We have tested our system on various encyclopedia articles describing concepts from

different domain. First, we conducted an experiment using multiple articles about

grapefruits. In this experiment, we increased the number of analyzed articles on each

run of the system, starting with a single article. Fig. 5 illustrates new sentences creat-

ed by the system. These results show the progression of sentence structure from sim-

ple subject-predicate-object triplet to more complex structure enhanced by the adjec-

tive and adverb modifiers when more articles were processed by the system.

Fig. 5. Test results of new sentences created for multiple articles about grapefruit; (a) – single

article, (b) – two articles, (c) – three articles.

Next, we applied our system on five encyclopedia articles describing different types

of felines, including cats, tigers, cougars, jaguars and lions. Fig. 6 shows main topics

and concepts extracted from the text and newly created sentences.

Fig. 6. Test results of new sentences, concepts and main topics for encyclopedia articles about

felines.

 “Grapefruit being fruit.” (a)

“Grapefruit being colored edible fruit.” (b)

“Colored grapefruit being sweet edible fruit.” (c)

Sentences:

“Cat usually being native animal.”

“Big felis usually being natural predatory animal.”

”Big felis usually being exotic animal.”

“Big felis often using killing method.”

“Big felis often using marking.”

“Male feline often killing prey.”

“Male feline living historical mountain range.”

Topics (micro theories):

 #$BiologyMt

 #$BiologyVocabularyMt

 #$HumanSocialLifeMt

Concepts:

 #$Cat

 #$DomesticCat

 #$FelisGenus

 #$FelidaeFamily

 #$Animal

These results show that the system is able to abstract new concepts and create new

sentences that contain information synthesized from different parts of the documents.

Concepts like “canis”, “mammal meat” and “felis” were derived by the generalization

process and were not explicitly mentioned in the original documents. Our system

yields better results compared to the reported in [19]. New sentences created by the

system have structure that is more complex and contain information fused from vari-

ous parts of the text. More testing results are reported in [1].

7 Conclusions and Future Work

In this paper, we described an implementation of the knowledge based automatic

summarization system that creates an abstractive summary of the text. This task is

still challenging for machines, because in order to create such summary, the infor-

mation from the input text has to be aggregated and synthesized, drawing knowledge

that is more general. This is not feasible without using the semantics and having do-

main knowledge. To have such capabilities, our implemented system uses Cyc

knowledge base and its reasoning engine. Utilizing semantic features and syntactic

structure of the text shows great potential in creating abstractive summaries. We have

implemented and tested our proposed system. The results show that the system is able

to abstract new concepts not mentioned in the text, identify main topics and create

new sentences using information from different parts of the text.

We outline several directions for the future improvements of the system. The first

direction is to improve the domain knowledge representation, since the semantic

knowledge and reasoning are only limited by Cyc knowledge base. Ideally, the sys-

tem would be able to use the whole World Wide Web as a domain knowledge, but

this possesses challenges like information inconsistency and sense disambiguation.

The second direction is to improve the structure of the created sentences. We use

subject-predicate-object triplets extended by adjective and adverb modifiers. Such

structure can be improved by using more advanced syntactic representation of the

sentence, e.g. graph representation. Finally, some of the created sentences are not

conceptually connected to each other. Analyzing the relations between concepts on

the document level will help in creating sentences that will be linked to each other

conceptually.

References

1. Timofeyev, A., Choi, B.: Knowledge based Automatic Summarization. In: Pro-

ceedings of the 9th International Joint Conference on Knowledge Discovery,

Knowledge Engineering and Knowledge Management (IC3K 2017). pp. 350-356.

SCITEPRESS (2017). doi: 10.5220/0006580303500356

2. Cycorp – Cycorp Making Solutions Better. http://www.cyc.com.

3. Cheung, J., Penn, G.: Towards Robust Abstractive Multi-Document Summariza-

tion: A Caseframe Analysis of Centrality and Domain. In: Proceedings of the

51st Annual Meeting of the Association for Computational Linguistics. pp. 1233-

1242. Association for Computational Linguistics (2013).

4. Luhn, H.: The Automatic Creation of Literature Abstracts. IBM Journal of Re-

search and Development. 2, 159-165 (1958). doi: 10.1147/rd.22.0159

5. Nenkova, A., McKeown, K.: A survey of text summarization techniques. In:

Charu, A. and Zhai, C. (ed.) Mining Text Data. pp. 43-76. Springer (2012). doi:

10.1007/978-1-4614-3223-4_3

6. Hovy, E., Chin-Yew, L.: Automated text summarization and the SUMMARIST

system. In: Proceedings of a workshop held at Baltimore, Maryland: October 13-

15, 1998. pp. 197-214. Association for Computational Linguistics (1998). doi:

10.3115/1119089.1119121

7. Radev, D., Jing, H., Styś, M., Tam, D.: Centroid-based summarization of multi-

ple documents. Information Processing & Management. 40, 919-938 (2004). doi:

10.3115/1117575.1117578

8. Barzilay, R., Elhadad, M.: Using lexical chains for text summarization. Advances

in automatic text summarization. 111-121 (1999). doi: 10.7916/D85B09VZ

9. Ye, S., Chua, T., Kan, M., Qiu, L.: Document concept lattice for text understand-

ing and summarization. Information Processing & Management. 43, 1643-1662

(2007). doi: 10.1016/j.ipm.2007.03.010

10. Gong, Y., Liu, X.: Generic text summarization using relevance measure and la-

tent semantic analysis. In: Proceedings of the 24th annual international ACM

SIGIR conference on Research and development in information retrieval. pp. 19-

25. ACM (2001). doi: 10.1145/383952.383955

11. Shen, D., Sun, J., Li, H., Yang, Q., Chen, Z.: Document Summarization Using

Conditional Random Fields. In: Proceedings of International Joint Conference on

Artificial Intelligence. pp. 2862-2867. IJCAI (2007).

12. Bing, L., Li, P., Liao, Y., Lam, W., Guo, W., Passonneau, R.: Abstractive multi-

document summarization via phrase selection and merging. In: Proceedings of

the ACL-IJCNLP. pp. 1587-1597. Association for Computational Linguistics

(2015).

13. Ganesan, K., Zhai, C., Han, J.: Opinosis: a graph-based approach to abstractive

summarization of highly redundant opinions. In: Proceedings of the 23rd interna-

tional conference on computational linguistics. pp. 340-348. Association for

Computational Linguistics (2010).

14. Moawad, I., Aref, M.: Semantic graph reduction approach for abstractive Text

Summarization. In: Computer Engineering & Systems (ICCES), 2012 Seventh

International Conference. pp. 132-138. IEEE (2012). doi:

10.1109/ICCES.2012.6408498

15. Bellare, K., Das Sharma, A., Loiwal, N., Mehta, V., Ramakrishnan, G.,

Bhattacharyya, P.: Generic text summarization using WordNet. In: Language Re-

sources and Evaluation Conference. pp. 691-694. LREC (2004).

16. Pal, A., Saha, D.: An approach to automatic text summarization using WordNet.

In: Advance Computing Conference (IACC), 2014 IEEE International. pp. 1169-

1173. IEEE (2014). doi: 10.1109/IAdCC.2014.6779492

17. Nallapati, R., Zhai, F., Zhou, B.: SummaRuNNer: A recurrent neural network

based sequence model for extractive summarization of documents. In: Proceed-

ings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17).

pp. 3075-3081. AAAI (2017).

18. Rush, A. M., Chopra, S., Wetson, J.: A neural attention model for abstractive

sentence summarization. In: Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing. pp. 379-389. EMNLP (2015). doi:

10.18653/v1/D15-1044

19. Choi, B., Huang, X.: Creating New Sentences to Summarize Documents. In: The

10th IASTED International Conference on Artificial Intelligence and Application

(AIA 2010). pp. 458-463. IASTED (2010).

20. JPype - Java to Python integration. http://jpype.sourceforge.net.

21. Honnibal, M., Johnson, M.: An Improved Non-monotonic Transition System for

Dependency Parsing. In: Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing. pp. 1373-1378. EMNLP (2015). doi:

10.18653/v1/D15-1162

