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Abstract. In recent years, significant advancements have been made
in detecting and recognizing contents of images using Deep Neural Net-
works (DNNs). As a result, many companies offer image recognition APIs
for use in diverse applications. However, image classification algorithms
trained with DNNs can misclassify adversarial examples, posing a signif-
icant threat to critical applications. In this work, we present a novel way
to generate adversarial example images using an evolutionary genetic
algorithm (GA). Our algorithm builds adversarial images by iteratively
adding noise to the original images. Unlike DNN based adversarial ex-
ample generations by other researchers, our approach does not require
GPU resources and access to the target DNNs’ parameters. We design,
GenAttack, a simple yet powerful attack algorithm to create adversarial
examples using complex celebrity images and evaluate those with real-
world celebrity recognition APIs from Amazon and Naver. With our at-
tack, we successfully deceive Amazon’s and Naver’s APIs with a success
probability of 86.6% and 100%, respectively. Our work demonstrates the
practicability of generating adversarial examples and successfully fooling
the state-of-the-art commercial image recognition systems.

Keywords: Adversarial Example, Black-box attack, Genetic Algorithm

1 Introduction

Deep learning algorithms have been revolutionary in improving the performance
of a wide range of applications, including computer vision, speech processing,
and natural language processing. In particular, Convolutional Neural Networks
(CNNs) have been extremely successful in detecting and recognizing the content
of images [22, 20, 8]. Due to the success of deep learning, many companies includ-
ing Amazon [1] and Naver [2] have unveiled image recognition and analysis APIs
to be used for various applications. However, as Szegedy et al. [23] and Good-
fellow et al. [7] showed that an imperceptible small perturbation to an input
image can arbitrarily change the prediction of a deep learning-based classifier.
These examples are referred to as adversarial examples, which optimize pertur-
bations to maximize prediction errors. Moreover, Goodfellow et al. [7] showed
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that these adversarial examples are not difficult to generate, and are robust and
generalizable. Therefore, the robustness and stability of DNNs when facing ad-
versarial examples have recently drawn the attention of many researchers [23,
25, 6, 7]. In particular, adversarial examples can be a serious threat to image
processing applications such as airport security systems, self-driving cars, and
user identification for financial transaction systems.

In this work, unlike other DNN-based attack methods [6], we propose an al-
ternative approach to generate adversarial images using an evolutionary genetic
algorithm (GA) to deceive the DNN based state-of-the-art image recognition
APIs. We perform GenAttack, a simple yet powerful practical black-box attack
using our GA to fool commercial APIs, and show that those commercial APIs
are easily fooled with a high probability of success. Our contributions are sum-
marized below:

1. We propose GenAttack, an attack algorithm using GA to generate adver-
sarial images. We test GenAttack against larger, and more complex realistic
images ranging from 200×300 to 2,100×2,800 pixels, unlike other research
that utilizes the small image sizes. GenAttack adopts the heuristic optimiza-
tion method so that it can easily deal with large number of pixels in parallel.

2. We evaluate our attacks with state-of-the-art commercial celebrity detection
APIs from Amazon [1] and Naver [2] as representative test cases. Our ap-
proach effectively creates adversarial images and deceives Amazon and Naver
APIs with 86.6% and 100% success rate.

3. We also show transfer learning of an adversarial image. We demonstrate that
an adversarial example successfully fools one classifier (e.g. Naver) can be
used to fool another classifier (e.g. Amazon), which could not be deceived
originally. Therefore, transfer learning can be maliciously used to fool a clas-
sifier more effectively.

This paper is organized as follows. We discuss related work of adversarial
examples in Section 2. We explain our GA and GenAttack in Section 3, and
describe our experiment in Section 4. Section 5 presents the results of our eval-
uation of GenAttack. In Section 6, additional experiment for transfer learning
is presented. We provide the possible defense mechanism, discussion, and limi-
tations in Section 7. Finally, Section 8 offers conclusions.

2 Related Work

Adversarial examples [23] are examples, which machine learning models mis-
classify, where those examples are only slightly different from correctly clas-
sified examples. Applying an imperceptible perturbation to a test image can
produce an adversarial example. Adversarial examples were first discussed and
used against conventional machine learning algorithms by Barreno et al. [3] to
evade handcrafted features. In particular, Biggio et al. [4] created adversarial
examples for a linear classifier, SVM, and neural network using a gradient-based
method. Szegedy et al. [23] first introduced the adversarial examples for the deep
neural networks by adding small perturbations on the input images. They used
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the white-box L-BFGS method to generate adversarial examples using MNIST,
ImageNet, AlexNet, and QuocNet with high probability. Since L-BFGS uses an
expensive linear search, Fast Gradient Sign Method (FGSM) was proposed by
Goodfellow et al. [7], which can be computed using back-propagation. RAND-
FGSM [24] is proposed to add randomness during the gradient update. Papernot
et al. [18] presented an efficient saliency adversarial map (JSMA). Their approach
can find the input features that make the most significant change to the output
so that a small portion of features can fool DNNs. DeepFool was proposed by
Moosavi-Dezfooli et al. [15], which determines the closest distance from original
input to the decision boundary, and performs an iterative attack to approximate
the perturbation. Moreover, Carlini and Wager [6] showed that the back prop-
agation method with DNNs can generate adversarial examples more effectively,
and demonstrated that existing defense methods are not effective. Papernot et
al. [17] introduced the practical black-box attack approach. Their approach con-
sists of training a local model to substitute for the target DNN, using inputs
synthetically generated by an adversary and labeled by the target DNN. But,
their evaluation results are based on the trivial MNIST dataset. Nguyen et al. [16]
implemented the evolutionary algorithm to generate images that humans can-
not recognize but DNNs can. In addition, Vidnerov and Neruda [25] showed that
the evolutionary method can generate adversarial examples from random noise.
But they only tested classifiers to detect the trivial 0-9 digit images. Hosseini et
al. [10] showed that Google’s Cloud Vision API can be deceived by images added
with random noise. Our approach is more sophisticated than the approach by
Hosseini et al. [10] which simply adds uniform noise. In our approach, the GA
locally optimizes the noise level at each iteration. Our advantage is that we gen-
erate adversarial images more effectively. We provide the comparison between
our and random noise distribution in Section 5. Network distillation was pro-
posed by Papernot et al. [19] to reduce the size of DNNs by extracting knowledge
from DNNs to improve the robustness by 0.5% to 5% on MNIST and CIFAR10
dataset, respectively. Goodfellow et al. [7] and Huang et al. [11] introduce the
adversarial training, an approach to include adversarial examples in the train-
ing stage. They incorporated adversarial examples in training sets, and showed
it improved the robustness. Tramer et al. [24] proposed Ensemble Adversarial
Training method to train a defense model with adversarial examples generated
from multiple sources. However, they found that it is difficult to anticipate spe-
cific adversarial examples and include those during the training stage. Madry
et al. [14] proved that adversarial training with large network capacity can de-
fend the first-order adversary. Also, adversarial detection [13, 21, 5] have been
proposed by others to detect adversarial examples during testing.

3 Design of Our Approach

First, we define the adversarial example problem and the objective of our ap-
proach. Next, we present the details of the GA to generate adversarial examples,
and GenAttack to deceive commercial APIs.
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3.1 Adversarial Examples for Image Classification

Szegedy et al. [23] shows the existence of targeted adversarial examples as follows:
given a valid input image I, and a target t 6= C∗(I), it is possible to find a similar
input I′ such that C∗(I′) = t, yet I and I′ are close according to some distance
metric. In Untargeted adversarial examples, attacks only search for an input I′
so that C(I) 6= C∗(I′) and I and I′ are close. Then, finding adversarial examples
can formulated as follows similar to [23, 26]:

min
I′
||I′ − I||

s.t. C(I) 6= C∗(I′), (1)

where ||·|| is the distance between two samples, and C is a trained deep
learning image classifier. The goal is to find the input I′ minimizes the distance
between I with small perturbations. We aim to find adversarial examples for an
untargeted case, where we find an image, I′ that C misclassifies from I to I′.

3.2 Creating Adversarial Examples using Genetic Algorithm (GA)

In order to perform a black-box attack, we develop GA to effectively generate
adversarial images against commercial APIs without access to any of their DNN
model parameters, and do not require any GPU resources. The goal of our GA is
to inject a small amount of optimum noise to an original image so that commer-
cial APIs misclassify the original image, while humans can still easily recognize
the original celebrity as shown in Fig. 1. We formulate our GA as follows:

Fig. 1: Amazon API misclassifies the noise-added Audrey Hepburn image I′ to Jack Kamen, while
it correctly classifies the original image I to Audrey Hepburn

Population and Individuals: A population is a set of individuals, and they
are defined as uniform noise matrices, where their size is the same as the original
input celebrity image. To produce the noise-added adversarial images from the
noise matrices, we use the modified method based on Carlini and Wagner [6], as
follows:

X = tanh(tanh−1(
I

Imax
− 0.5) + α× N) (2)

I′ =
(X−min(X))

(max(X)−min(X))
× Imax (3)

In Eq. 2, we transform an original (target) image I to tanh−1 space, and map
it from -0.5 to 0.5 range by dividing by Imax and subtracting 0.5, where Imax is
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the maximum RGB pixel value. Next, we add I with a noise matrix N multiplied
by the coefficient α. Then, we re-transform the noise added image back to the
original space to obtain the adversarial example I′ in Eq. 3. As shown in Fig. 1,
α adjusts a noise level in generating an adversarial image, and α is searched from
multiplying by 2 or subtracting 0.05 in [0.0, 0.9] interval. Generally, a higher α
increases the success rate of our attack, however, it will produce a very noisy
image. Hence, minimize the noise amount, α, using the following fitness function.

Fitness function: We use the following L1 loss as a distance measure be-
tween the original image I, and the adversarial image I′:

L1 =
1

n

∑
|(I− I′)|, (4)

where n is the number of pixels in the image I. Then, we define the fitness
function f as follows in Eq. 5:

f = Po − Pd + γ × L1, (5)

where Po is the predicted probability for the original label and Pd is the predicted
probability for any other wrong labels. We can obtain either one of Po or Pd and
set the other to zero, because the commercial APIs only return the highest
probability of one of Po or Pd. Next, we formulate our GA as a minimization
problem with the value of the fitness function in Eq. 5. to produce the best
individual which has high Pd, and the low Po, and L1 values. In Eq. 5, γ is
another coefficient to balance the noise amount to deceive APIs by guiding a
GA to find adversarial images with the least amount of noise, where γ can be
chosen from 0.01 to 0.1 in this work. Also, we automatically choose γ, which is
inversely proportional to α, because Po and Pd always have the values between 0
to 1. In a default setting, we run 5 epochs to generate an adversarial example for
a target image after fixing α, where α requires from several ten to three hundred
steps. The number of steps in one epoch – children generated by crossover and
then accepted to inherit to the next generation – is the same to the number of
populations. The number of API calls per each step in the algorithm will be
affected by the chance how much mutation will be called.

Selection: We implement a tournament selection, where we set the tour-
nament size to four. Then, two of four individuals in one tournament will be
selected. In our design, the more fit has 80% chance to win, and the less fit
has 20% chance to maintain a good variety in the population and explore wider
search areas to find a global optimum. After selection, two chosen parents move
to the next crossover stage.

Crossover and Inheritance: Crossover permutes two selected parents. We
design a simple crossover for 2D matrix as shown in Fig. 2. First, we obtain a
random point (x, y) in the noise matrices of two selected individuals. We use
this point as an origin point to start. Next, we throw a tetrahedron die. If we
get N , between 1 to 4, the quadrant N of the noise matrices will be exchanged
between two individuals.

Then, the newly generated children are chosen to inherit to the next gen-
eration, if they have a better fitness than their parents. To conserve the best
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fit individuals and not to lose them, we also added the following inheritance
heuristics: if the best individual in the current generation is better than any
individuals in the next generation, we copy the best individual in the current
generation to the next generation.

Mutation: Mutation aims to reduce the noise level of adversarial images.
We design two mutation methods based on the class labels of the newly produced
individuals. The first mutation method is used, when the noise added image is
still classified into the original class. Then, we add a small amount of random
noise to individuals to produce more variations. We use the second mutation
method, when a noise injected image is classified into another class. In this case,
we try to reduce the noise slightly by using the following local optimization
technique: We randomly choose 2% of the pixels in the noise matrix, and reduce
their magnitude by 30%. If successful, we repeat the same process for up to 5
more times. In this local optimization step, we only accept mutated individuals
with improved fitness values.

Fig. 2: Description of the Crossover Process

3.3 Genetic Algorithm-based Attack (GenAttack)

We propose the GA-based attack, GenAttack, against commercial APIs, and
present the details of our attack procedures. First, we test the commercial API
with an original image, and check whether the API correctly recognizes the
celebrity image from the returned initial output label, I.Label, and its confidence
value. If it is correctly recognized, it becomes our target celebrity image to create
an adversarial example. If not, we discard this image, since the API is wrong in
the first place. Next, we initiate GenAttack and start querying each commercial
API with the noise-added image. If the returned result produces an incorrect
output label (i.e., some other celebrity), that means our attack is successful,
and we successfully create an adversarial image. We label this output class as
an adversarial label, A.Label. If it consistently returns the correct I.Label, we
slightly increase and adjust α, and compute the fitness function, searching for
the optimum noise combinations according to our GA. We iteratively repeat
this process for several epochs. until we successfully force the API to produce an
incorrect output (A.Label). Finally, if we can deceive an API, so that the API
returns a different name from the I.Label, we declare the attack is successful.
If we cannot deceive, or the API returns ‘Unrecognized’ (UNKR), the attack is
not successful, and we fail to create an adversarial image. Our attack criteria is
much stronger than prior research [9, 10], which includes UNKR as a success.
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4 Experiment

The goal of our experiment is to evaluate generated adversarial examples, and
further test the robustness of commercial APIs using GenAttack. We used Ama-
zon Rekognizer [1], and Naver Clover Service [2] to provide a side-by-side attack
success, and robustness comparison between these providers. In particular, we
used the celebrity recognition APIs, which are offered from both providers, and
celebrity images are relatively easy to find. Also, they are complex and realistic.
Although Cloud Vision API by Google also provides the face image analysis
information, and returns the top 20 relevant entities from the Internet, their
returned labels are based on web search results, not images themselves. Hence,
a side-by-side comparison to Amazon and Naver is difficult, therefore, we do not
evaluate Google’s API in this paper.

4.1 Dataset

We chose 119 famous celebrities (72 men and 47 women) as a dataset. Although
we try to select celebrities that are both popular in America and Asia, we
hypothesize that the Naver API based in Asia would be more optimized for
Asian celebrities over American and European celebrities. Hence, we include
several Asian celebrities to test, even though they may not be so well known in
America or Europe. We use the practical image sizes ranging from 200×300 to
2,100×2,800 pixels. These are much larger than the small benchmark datasets
such as MNIST (28×28), CIFAR-10 (32×32), and ImageNet (227×227) which
have been used in prior research[6, 16]. Some sample celebrity images and names
are shown in Fig. 3 and Table 1.

4.2 Experimental Setup

We run 5 epochs to get an adversarial example for all 119 target images, starting
with α= 0.1. Then we automatically adjust α from 0.05 to 0.9 based on the attack
success and confidence value returned from the API. We run 5 more epochs to
generate an adversarial example for a target image after obtaining α from the
GA. If we consecutively fail to produce an adversarial image in the next 10 steps,
we increase α and repeat the process again. If we find an adversarial images in
10 consecutive steps, we decrease α to reduce the noise.

5 Results

In this section, we report the attack success rate and analyze generated noise in
adversarial examples from GenAttack.

5.1 Attack Success Rate

Table 1. summarizes our attack results for several celebrity images. Due to space
limitations, we only present celebrities whose original image was correctly rec-
ognized by both APIs. In Table 1, the fist column is the correct celebrity name
for each image followed by its initial I.Label and I.Pr., where those indicate the
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Fig. 3: Original vs. Generated Adversarial Images for 65 celebrities

original input label and its confidence probability returned by each API. And
A.Label and A.Pr. are the output label and its confidence probability for adver-
sarial images we generate with our GenAttack. ‘UNKR’ means that the original
image is successfully recognized, while the noise-added image is unrecognized.
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Table 1: Examples of attack result against Amazon and Naver APIs with each celebrity

Amazon Naver
Celeb

I.Label I.Pr. A.Label A.Pr. I.Label I.Pr. A.Label A.Pr.

Sohee Sohee 1.00 Park Soo-jin 0.60 Ahn Sohee 1.00 Ahn Sohee 1.00

Alicia Keys Alicia Keys 1.00 Cindy Bruna 0.79 Alicia 1.00 Alicia 0.28

Kim Yuna Kim Yuna 0.99 UNKR 0.00 Yuna Kim 1.00 Choi Ja-hye 0.24

Kim Soo-hyun Kim Soo-hyun 0.97 Kim Kiri 0.84 Kim Soo-hyun 1.00 Choi Yonggeun 0.74

Kate Mara Kate Mara 1.00 UNKR 0.00 Kate Mara 1.00 G. Atkinson 0.59

Megan Fox Megan Fox 1.00 Maimie McCoy 0.61 Megan Fox 1.00 G. Atkinson 1.00

Jun Ji-hyun Jun Ji-hyun 1.00 Yang Lan 0.70 Jun Ji-hyun 0.24 Gong Hyeon-ju 0.25

Song Hye-kyo Song Hye-kyo 0.99 Juri Ueno 0.77 Song Hye-kyo 0.87 Hirano Yuta 0.45

Park Ji-sung Park Ji-sung 0.74 Park Chuyoung 0.86 Park Ji-sung 1.00 Hwang In-hoo 0.27

Im Yoon-ah Im Yoon-ah 1.00 UNKR 0.00 Im Yoon-ah 1.00 Im Seong-eon 0.68

ShinSoo Choo ShinSoo Choo 0.99 Y. Tsutsugo 0.59 ShinSoo Choo 0.58 J. Hyeonseok 0.21

Song Joong-ki Song Joong-ki 1.00 Steven Ma 0.84 Song Joong-ki 1.00 Ji Jin-hee 0.16

Seohyun Seohyun 1.00 J-Min 0.89 Seohyun 1.00 Jo Yoon-hee 0.50

Eric Mun Eric Mun 1.00 Tao Lin 0.99 Eric Mun 1.00 Joo Sang-wook 0.34

Lee Min-ho Lee Min-ho 1.00 Lee Joon-gi 0.72 Lee Min-ho 1.00 K. Min-hyeok 0.99

Hyun-jin Ryu Hyun-jin Ryu 1.00 UNKR 0.00 Hyun-jin Ryu 1.00 Kim Dong-ju 0.46

Yoo Jae Suk Yoo Jae Suk 0.92 Marshall Allen 0.92 Yoo Jae-suk 1.00 Kim Dong-yeon 1.00

Lee Seung-gi Lee Seung-gi 1.00 Keisuke Koide 0.55 Lee Seung-gi 0.76 Kim Min-sang 0.73

Ok Taecyeon Ok Taecyeon 0.95 Huang Jingyu 0.86 Ok Taecyeon 1.00 Kim Min-soo 0.44

Son Yeon-jae Son Yeon-jae 1.00 Park So-youn 0.88 Son Yeon-jae 0.96 Kim Tae-ri 0.67

Kang Ho-dong Kang Ho-dong 1.00 Tommy Chang 0.80 Kang Ho-dong 1.00 Kim Yeongseok 0.49

Kwon Yuri Kwon Yuri 0.99 UNKR 0.00 Yuri 1.00 Lee Eun-jeong 0.21

Lionel Messi Lionel Messi 0.98 Paul Anderson 0.72 Messi 1.00 Lee Il-woong 0.33

IU IU 0.99 H. Jungeum 0.92 IU 0.97 Lee Ji-eun 0.76

Lee Byung-hun Lee Byung-hun 1.00 Kim Byung-man 0.89 Lee Byung-hun 1.00 Lee Sang-woo 0.27

Matt Damon Matt Damon 1.00 F. Marques 0.84 Matt Damon 1.00 Matt Damon 0.59

Mark Wahlberg Mark Wahlberg 1.00 Shawn Hatosy 0.75 Mark Wahlberg 1.00 Oh Ji-myeong 0.32

Uli Stielike Uli Stielike 1.00 D. Pleasence 0.99 Stielike 1.00 Oh Ji-myeong 0.24

Lily Collins Lily Collins 1.00 S. Carpenter 0.84 Lily Collins 1.00 Oh Seo-woon 0.45

Tom Cruise Tom Cruise 1.00 B. Daugherty 0.89 Tom Cruise 1.00 Olivier 0.61

Jessica Jung Jessica Jung 1.00 Shin Bora 0.89 Jessica Jung 1.00 Park High 1.00

Lee Chungyong Lee Chungyong 1.00 DongHyun Kim 0.69 Lee Chungyong 0.95 Park Se-jun 0.75

Tang Wei Tang Wei 0.99 Soyou 0.61 Tang Wei 0.63 Ryeowon Jung 0.28

Shin Se-kyung Shin Se-kyung 1.00 Akiko Suwanai 0.60 Shin Se-kyung 0.74 Sa Hee 0.23

Kim Tae-hee Kim Tae-hee 0.96 Kang So-ra 0.73 Kim Tae-hee 1.00 Seo Yeong-hee 0.74

Taeyeon Taeyeon 0.67 UNKR 0.00 Kim Taeyeon 1.00 Shihono Ryo 0.51

Sooyoung Sooyoung 0.99 UNKR 0.00 Sooyoung 1.00 Sol Ji 0.83

Park Tae-hwan Park Tae-hwan 1.00 UNKR 0.00 Park Tae-hwan 1.00 S. Changhwan 0.74

Fedor Emelianenko Danny Wuerffel 0.60 UNKR 0.00 Fedor 1.00 Song Jae-ho 0.35

José Mourinho José Mourinho 0.99 Nicolás Lúcar 0.78 Mourinho 1.00 Song Yongtae 0.33

Claudia Kim Claudia Kim 1.00 Krystal Jung 0.92 Claudia Kim 1.00 Tae-im Lee 0.67

Olivier Martinez Olivier Martinez 0.92 Álvaro Medrán 0.79 Olivier 0.55 Yu Oh-seong 0.45

Bae Suzy Bae Suzy 0.99 Chae Soo-bin 0.91 Suzy 1.00 Yuu 0.33

Amazon API correctly recognizes 112 images from the 119 input images.
Our algorithm attacked those 112 images, and achieved the overall 86.61% suc-
cess rate, successfully creating 97 adversarial examples. We find that GenAttack
effectively adds and improves noise from a predicted label with a low initial
confidence value returned for its initial adversarial example generation attempt.
From Table 1, we can observe that GenAttack guides noise to find a path from
one output celebrity class to another celebrity class with fairly high confidence
values (A.Pr.) in many cases shown in the 5th column in Table 1.

On the other hand, the Naver API correctly recognizes only 45 out of the 119
original images, misclassifying many original celebrity images from America and
Europe. Hence, we validate Naver is more localized to Asian faces. Among those
correctly recognized 49 images, GenAttack successfully creates the adversarial
images for all 49 images, yielding 100.00% success rate. Naver seems to generate
different output labels for many Asian celebrities even with a small amount of
added perturbations, and Naver is much easier to fool. However, their A.Pr. are
generally lower than Amazon, which means Naver outputs the new label with
smaller confidence value. With the Naver API, we observed that Tom Cruise
was the most difficult one to find an adversarial example for. We hypothesize
that Naver might not have many faces that are similar to Tom Cruises or have
faces that are clearly distinctive. Therefore, Naver locks on to the features of
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Tom Cruise and we think GenAttack could not easy to find other similar classes.
In Fig. 3, we present 65 original celebrity images (left) and adversarial images
(right) generated from GenAttack side-by-side for a comparison. As we can ex-
amine, the generated adversarial images are very close to the original images,
and humans can trivially recognize the generated adversarial examples.

5.2 Noise and Image Analysis

We carefully analyze the noise patterns of the adversarial images, where we add
random noise in tanh space. Also, we compare our noise with uniform noise in
tanh space to characterize differences.

(a) Original im-

age: Jack Ma

(b) Noise by GA (c) Random noise (d) Zoom in on a

face area of (b)

(e) Zoom in on a

face area of (c)

(f) Original

image: Jennifer

Lawrence

(g) Noise by GA (h) Random

noise

(i) Zoom in on a

face area of (g)

(j) Zoom in on a

face area of (h)

Fig. 4: Comparison of noise distribution (GenAttack vs. Uniform Noise)

Figures 4.(a) and (f) are the adversarial examples we produced for Jack Ma
and Jennifer Lawrence. In Fig. 4, brighter yellow represents a higher pixel value,
and dark blue indicates a lower pixel value. Figures 4.(b) and (g) only show
the generated L2 noise, and Figs. (c) and (h) are the uniformly generated noise
for the same images. As we compare these two sets of images, we can clearly
observe that our GA tends to better capture face features of the input and
injects noise, while random noise spreads over all pixels. In order to analyze
the differences more clearly, we zoom in the face areas. As we can observe from
Figs. 4.(d) and (e), and (i) and (j), we find noise generated from the GA more
closely changes the face features so that the CNNs based classifier can more
easily make a mistake and steer towards another celebrity. On the other hand,
random noise is distributed uniformly over all pixels. Hence, we clearly observe
the differing noise distribution, and our generated noise appears to better learn
the face features with the GA to optimize noise to increase a classification error.
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Noise Filtering Defense and Generated image sizes: Generally, pre-
filtering can be an effective defense mechanism as proven in other research [9].
However, it is not in our case. We applied both Gaussian (linear) and Median
(non-linear) filters to remove added noise from GA, where these filters have been
a successful defense shown from other research [9]. In our case, noise filtering can-
not prevent from generating adversarial examples for both Amazon and Naver,
but generated adversarial images need slightly more noise than the non-filtered
case. Also, we find that our approach effectively generates adversarial examples
for any size of input celebrity images in our dataset, ranging from 200×300 to
2,100×2,800 in pixels. Hence, we demonstrate that our GA can generate almost
size-invariant adversarial images without loss of any performance.

6 Transfer Learning for Attacks

We performed the transfer learning capability of our proposed method. If our
algorithm can deceive one classifier, we hypothesize we can deceive another API.
Hence, attackers can use this transfer learning for an attack, where adversarial
features (noise matrices) learned from one DNNs (e.g. Naver) can be used to
create an adversarial image for another classifier (e.g. Amazon), and vice versa.
Among all 119 celebrity images, we obtained ten adversarial samples that suc-
cessfully fool only one of the APIs, as shown in Table 2. In our attack, we query
both Naver and Amazon APIs simultaneously, and calculate fitness as follows
by extending the fitness function for the single API in Eq. 5:

f = PAmazon
o − PAmazon

d + PNaver
o − PNaver

d + γ × L1, (6)

where PAmazon
o and PNaver

o are the predicted probability for original label
from Amazon and Naver, and PAmazon

d are PNaver
d are the predicted probability

for other label produced from Amazon and Naver similar to Eq. 5. When opti-
mizing α in Eq. 2, we only consider the adversarial image generation success rate
of the target API, which was originally unsuccessful. For example, if we want
to find adversarial examples for the Amazon API with the help from the Naver
API, we optimize α based on the success rate of the Amazon API.

We performed the transfer learning attack experiment for all available 10 test
cases. Overall, 7 out of 10 transfer learning attack were successful, improving the
most of UNKR (originally failed attacks by the single API) to other celebrities.
Among those, where Amazon API fails to recognize 8 of celebrities initially, our
algorithm successfully fools Amazon API with the help from Naver API.

As shown in Table 2, six of (Before) ‘UNKR’ were successfully classified to
(After) other celebrities. However, creating adversarial images for Kate Maria,
and Kim Yuna were unsuccessful, even using Naver API. On the other two
cases, where our algorithm successfully attacked Amazon API but not Naver
API initially, we performed the transfer learning attack on Naver with the help
from Amazon. Naver was originally correct for “Sohee” but Amazon led Naver
to misclassify the correct label “Sohee” to “Park Soo-jin” (the same adversarial
label in Amazon, as shown in blue). Hence, this shows that targeted attack is
possible via transfer learning, making other celebrity to a specific victim label



12 Keeyoung Kim and Simon S. Woo

(e.g. Park Soo-jin). Also, Naver successfully launched the targeted attack for
“Sooyoung” to be “Solji” (shown in blue) in the same way. This demonstrates
that the same fake label can be exactly transferred from one classifier to another
classifier. Hence, noise generated from our algorithm is transferable between
classifiers for generating adversarial examples. Hence, attackers can practically
leverage transfer learning to improve his attacks against DNNs.

Table 2: Transfer Learning Attack, where one API assists in deceiving another API, which was
originally unsuccessful
Initial Correct Label Succ. Naver Adversarial Label (Before) =⇒ (After):

Fooling Amazon with Naver
Park Tae-hwan Song Chang-hwan UNKR =⇒ Julio Cesar Ceodillo
Hyun-jin Ryu Kim Dong-ju UNKR =⇒ Niarn
Sooyoung Solji UNKR =⇒ Solji
Kwon Yuri Lee Eun-jeong UNKR =⇒ Yoo Ara
Im Yoon-ah Im Seong-eon UNKR =⇒ Lee Jin
Taeyeon Shihono Ryo UNKR =⇒ Jin Se-yeon
Kate Mara Gemma Atkinson UNKR =⇒ UNKR
Kim Yuna Choi Ja-hye UNKR =⇒ UNKR

Initial Correct Label Succ. Amazon Adversarial Label (Before) =⇒ (After):
Fooling Naver with Amazon

Sohee Park Soo-jin Sohee =⇒ Park Soo-jin
Alicia Keys Cindy Bruna Alicia =⇒ Alicia

7 Discussions, and Limitations

Robust DNNs and conservative reporting: One possible defense approach
is to make DNNs more robust against noise via adversarial training with GA [7].
Also, it is better to be more conservative in reporting an output label, when
a confidence value is low. For example, if the confidence value is below 70%,
APIs can generate ’UNKR’. In this way, APIs do not provide any feedback to
attackers, and adversarial example generation cannot be proceeded. Instead of
attempting to make the best guess always, it is important to know “when APIs
do not know.” From the defense perspective, it is better to be conservative and
even not to report any results when confused. However, clear trade-offs among
customers’ service needs, performance, and security requirements have to be
considered to better design the overall defense mechanisms.

Network Level Rate Limiting and Noise Filtering: In order to cre-
ate adversarial examples, several queries need to be made to obtain returned
output labels and confidence values. The large number of API queries per sec.
for the same or similar images can be a suspicious adversarial attack activity.
Hence, various rate limiting techniques such as CAPTCHAs and network defense
mechanisms can be employed. However, this cannot be effective for distributed
GenAttack querying over multiple IPs or with slower rates. Also, we need a
more sophisticated pre-filtering strategy to learn noise patterns generated from
our GA, and remove those more effectively. Currently, we are investigating im-
proved noise filtering techniques.

Limitations and future work: Even though GA searches for an optimum
noise value, it is not guaranteed to find a global optimum noise. GA can resort
on the local optimum, because of the nature of the evolutionary algorithm. Also,
finding an optimum noise without access to DNN parameters is a challenging
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task. Further empirical experiments and theoretical analysis are needed to con-
trol different GA parameters to fine-tune the noise. For future work, we plan to
compare GenAttack with other attack and defense mechanisms[7, 12, 14, 24].

8 Conclusion

We introduce a simple yet powerful method, GenAttack, to generate adversarial
images, which does not require any knowledge about DNNs or use GPU re-
sources. GenAttack optimizes noise using a iterative approach and can provide
significant benefits over other complex gradient based estimation attacks. Fur-
ther, we show that GenAttack is highly practical, and is transferable to attack
other classifiers.
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