
HAL Id: hal-02023739
https://inria.hal.science/hal-02023739

Submitted on 21 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Follow the WhiteRabbit: Towards Consolidation of
On-the-Fly Virtualization and Virtual Machine

Introspection
Sergej Proskurin, Julian Kirsch, Apostolis Zarras

To cite this version:
Sergej Proskurin, Julian Kirsch, Apostolis Zarras. Follow the WhiteRabbit: Towards Consolidation
of On-the-Fly Virtualization and Virtual Machine Introspection. 33th IFIP International Conference
on ICT Systems Security and Privacy Protection (SEC), Sep 2018, Poznan, Poland. pp.263-277,
�10.1007/978-3-319-99828-2_19�. �hal-02023739�

https://inria.hal.science/hal-02023739
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Follow the WhiteRabbit: Towards Consolidation
of On-the-Fly Virtualization and Virtual

Machine Introspection

Sergej Proskurin1, Julian Kirsch1, and Apostolis Zarras2

1 Technical University of Munich
{proskurin,kirschju}@sec.in.tum.de

2 Maastricht University
apostolis.zarras@maastrichtuniversity.nl

Abstract The growing complexity of modern malware drives security
applications to leverage Virtual Machine Introspection (VMI), which pro-
vides a complete and untainted view over the Virtual Machine state. To
benefit from this ability, a VMI-aware Virtual Machine Monitor (VMM)
must be set up in advance underneath the target system; a constraint for
the massive application of VMI. In this paper, we present WhiteRabbit ,
a VMI framework comprising a microkernel-based VMM that transpar-
ently virtualizes a running Operating System, on-the-fly, for the pur-
pose of forensic analysis. As a result, the systems to be analyzed do not
have to be explicitly set up for VMI a priori. After its deployment, our
framework exposes VMI services for remote applications: WhiteRabbit
implements a LibVMI interface that enables it to be engaged by popular
VMI applications remotely. Our prototype employs Intel as well as ARM
virtualization extensions to take over control of a running Linux system.
WhiteRabbit ’s on-the-fly capability and limited virtualization overhead
constitute an effective solution for malware detection and analysis.

1 Introduction

Malware can be executed with the same privileges as sensitive parts of the Op-
erating System (OS). Once installed, it can hide itself from the OS and security
applications. To tackle this, researchers moved security applications into a highly
privileged environment realized through virtualization [1]. In essence, virtualiza-
tion adds a software layer, the Virtual Machine Monitor (VMM), that imple-
ments a virtual hardware interface. This interface, the Virtual Machine (VM),
manages an execution environment for guest OSes. A VMM has a complete view
over the entire VM state and provides isolation from guest VMs. This forbids
malware inside a VM to deceive applications executing as part of the VMM.

Security applications use virtualization for different purposes, including mal-
ware detection and analysis [1,2,3,4,5,6] as well as system integrity validation [7,8].
To examine the state of a guest OS Virtual Machine Introspection (VMI) must
be applied [2]. The state of a guest comprises a vast amount of binary infor-
mation that needs interpretation. Thus, every VMI application uses additional



semantic knowledge to map the binary information, e.g., to high-level OS kernel
data structures; widely-known as the semantic gap [1]. Yet, conventional ap-
proaches require the systems to have a VMI-aware VMM before operation. This
increases the administrative overhead and constraints the employment of VMI.

In this paper, we combine VMI along with on-the-fly virtualization concepts
to address the previously stated limitations. We design and implement White-
Rabbit , a framework for forensic analysis that can be transparently deployed on
general purpose systems by moving the live OS into a dynamically initialized vir-
tual environment. First, we develop a VMM that is capable of seamlessly taking
over control of a running OS on-the-fly. Next, we outline VMI mechanisms that
enable forensic analysis from outside of the virtualized OS. To provide even more
flexibility, we incorporate essential VMI functionality that can be used through
a LibVMI interface. After its deployment, our prototype acts as a vehicle pro-
viding VMI services to remote applications. Contrary to existing VMI solutions,
our system does not require the target OS to be set up for VMI in advance.
Instead, we deploy WhiteRabbit spontaneously on general purpose systems. As
a result, the target systems are transformed into monitored environments that
can be remotely controlled by custom or existing VMI tools.

In summary, we make the following main contributions:
– We elaborate the design and architecture of the WhiteRabbit VMI frame-

work, a microkernel-based VMM that transparently shifts a live OS into a
VM on-the-fly without leaving any traces.

– We implement a prototype that is able to virtualize Linux OSes on-the-fly
by leveraging virtualization extensions of Intel as well as ARM architectures.

– We develop a LibVMI interface to facilitate remote VMI through existing
LibVMI applications.

2 Virtualization Technology

Intel Virtualization Technology. Intel VT-x contains a set of Virtual Ma-
chine Extensions (VMX) that simplifies the process of virtualization. These intro-
duce two additional modes: VMX root and VMX non-root. Intel VT-x duplicates
the four privilege levels (protection rings, numbered from 0 to 3), to provide full
compatibility for systems running in both the VMX root and VMX non-root.
Typically, a VMM operates in the high-privileged VMX root and the guest op-
erates in the less-privileged VMX non-root. Before the guest can be initiated,
the VMM must allocate and initialize a hardware defined data structure called
Virtual Machine Control Structure (VMCS): it manages transitions between the
VMM and a particular guest. This is done by holding the guest virtual CPU
state that is loaded on VM entries and the host CPU state that is restored on
VM exits. If the guest requires multiple CPUs, the VMM must maintain one
VMCS for each virtual CPU. The VMCS also holds execution control fields that
determine the guest’s behavior. By configuring these fields, the VMM defines the
set of events that will trap into the VMM. Further organization of the VMCS
comprises control fields determining the behavior during VM entries and exits.



ARM Virtualization Technology. ARM distributes software execution across
different privilege levels on ARMv7, which are called exception levels on ARMv8.
In this paper, we use the term exception levels (ELs) over privilege levels. Differ-
ent ELs restrict access to privileged resources. Similar to x86, the execution of
OSes is distributed across two exception levels: EL0 and EL1. User applications
execute in the less privileged EL0 and the OS kernel in the higher privileged EL1.
Systems with hardware virtualization extensions introduce EL2 that is dedicated
for VMMs with the highest privileges. Guest VMs in EL0 and EL1 trap into the
higher privileged VMM in EL2 (e.g., on privileged instruction fetches).

3 Threat Model

We assume an adversary with root privileges, who can fully control the OS and
all security-relevant parts of the kernel. Thus, she can inspect the OS for agents
in form of processes or kernel modules. Yet, she cannot perform Direct Kernel
Structure Manipulation attacks by exploiting the semantic gap to evade VMI.
While the attacker is not concerned about virtualized systems, she will abort her
attack on disclosure of an analysis framework. Thus, she can employ techniques
that reveal the presence of virtualization-based analysis frameworks—while she
can carve the guest’s memory, she cannot use Direct Memory Access (DMA)
or operate with higher privileges than WhiteRabbit . Also, she disregards side
channel attacks against VMMs, especially those that are based upon a flawed
CPU architecture [9,10]. Further, the attacker has access to the system’s registers
and can search the file system for indications of an analysis framework.

Even though WhiteRabbit provides a stealthy environment, VMI applications
that are built upon it may employ services detectable by the adversary. For in-
stance, WhiteRabbit does not provide any means to cloak in-guest instrumenta-
tion. For this, WhiteRabbit could be extended to support multiple guest-physical
memory views to satisfy integrity checks as it has been shown by work based
on the Xen altp2m subsystem [6,11] or similar techniques [12] employing Second
Level Address Translation to coordinate access to guest-physical memory.

4 The WhiteRabbit VMM

WhiteRabbit is a microkernel-based VMM designed for on-the-fly virtualization
of live OSes. For this, we leverage Intel and ARM virtualization extensions. The
Xen Project and Linux KVM VMMs could be adapted for on-the-fly virtualiza-
tion. Yet, both would entail a considerable amount of functionality that would re-
main unused if applied for our purpose. Figure 1 summarizes our architecture for
x86-64 and ARM. WhiteRabbit comprises custom subsystems and supplies VMI
capabilities to remote parties. To tackle potential exposures, WhiteRabbit hides
from the virtualized OS by using Second Level Address Translation (SLAT).
It implements a LibVMI interface for access by remote parties enabling intro-
spection of the virtualized OS. As a result, WhiteRabbit facilitates the use of
prevalent LibVMI tools on systems that have not been set up for VMI.



Core Services

V
M
X

n
o
n
-
r
o
o
t

WhiteRabbit

V
M
X

r
o
o
t

r
i
n
g
0

VM
0

r
i
n
g
0
r
i
n
g
3

Applications

VMI

r
i
n
g
3

I/O Mem Mgt

Hardware

OS

VMI app LibVMI

Device
driver

Secure 
channel

VMI app

Hardware (ARM)

WhiteRabbitE
L
2

VM
0

OS Device
 driver 

ApplicationsVMI

E
L
1

I/O Mem MgtE
L
0

OS Device
 driver 

Hardware (x86-64)

Figure 1: A remote host (left) analyses the on-the-fly virtualized system in the
middle (x86-64) and right (ARM). Shaded components are involved in VMI.

The microkernel character of WhiteRabbit reduces the size and complexity of
the VMM: we implement only essential VM-maintenance functionality inside the
high-privileged protection ring 0 on Intel and across EL1 and EL2 on ARM. We
move additional components required for memory management, remote commu-
nication, and VMI into the user space in ring 3 on Intel and EL0 on ARM. This
architectural choice isolates user space components from the guest and hardens
the system; user space component crashes do not affect the entire system.

WhiteRabbit provides a memory management system that cuts off depen-
dencies to the virtualized OS. Therefore, WhiteRabbit is not bound to the OS
memory management which could be observed and controlled by adversaries.
During initialization, WhiteRabbit must allocate memory required for its opera-
tion by means of the buddy allocator of the OS or by adjusting the system’s page
tables. Either way, since the VMM hiding technique utilizes SLAT, the allocated
memory blocks become invisible for the guest OS. Besides, WhiteRabbit uses
only custom provided functionality without the need for any guest OS services.
Thus, (assuming OS-independent deployment) it could subvert different OSes.

To remotely access the VMI functionality, WhiteRabbit maintains I/O drivers
that manage a secure communication channel, whose operation is either entirely
cut off or must be multiplexed with the guest. To isolate the communication
channel, it should be realized through unused I/O devices or by hardware mul-
tiplexing of I/O resources, e.g., through Intel VT-d or VT-c and ARM SMMU.

5 On-the-Fly Virtualization

WhiteRabbit must be deployed on the target system to dynamically virtualize a
running OS. We distinguish between OS-dependent and OS-independent deploy-
ment strategies. Both can be performed locally or remotely. The OS-dependent
strategy requires a kernel module to set up WhiteRabbit underneath the target
OS. The kernel module can comprise either (i) the entire WhiteRabbit imple-
mentation or (ii) act as a means for transportation. The former approach imple-
ments the WhiteRabbit functionality as part of the kernel module. This strategy
must be regarded critically as it allows WhiteRabbit to use target OS services:
employed services might reveal the presence of WhiteRabbit or provide false in-
formation controlled by malware. The latter uses the kernel module as a loader
to deploy WhiteRabbit in form of an OS-independent binary into memory. While
the loader requires OS services, WhiteRabbit must not be OS-agnostic.



The OS-independent strategy uses a DMA channel. By taking the role of the
bus master, hardware devices can initiate communication and hence arbitrary
access (assuming deactivated IOMMU) to other node’s memory. Thus, DMA
capable interfaces (e.g., FireWire and Thunderbolt) can be abused to transpar-
ently load WhiteRabbit into the system’s memory. Yet, after the code injection,
the system requires additional means to execute the payload. One idea is to use
Intel Active Management Technology (AMT) to remotely launch WhiteRabbit .

The tasks of WhiteRabbit are best described according to the taxonomy of
Popek and Goldberg: a VMM is a modular control program, whose modules be-
long to three groups comprising an allocator, a dispatcher, and an interpreter [13].
We distribute the tasks of WhiteRabbit across these groups. For simplicity, we
assume in the following WhiteRabbit is deployed as a kernel module.

Allocator. The allocator places a running OS into a virtual environment with-
out letting the target OS understand the change. The allocator leverages hard-
ware virtualization extensions to provide the guest with the illusion of having
unrestricted access to all system’s resources. This process is strongly hardware-
dependent. As such, we discuss the necessary steps for Intel and ARM.
Intel: The allocator records the system’s state (i.e., before OS virtualization) in
the VMCS guest-state area that holds control registers determining the guest’s
behavior. Also, it sets up the host’s state and registers the entry point of the
VMM that will be executed at every VM exit3 in VMX root. WhiteRabbit grants
direct hardware access to the VM and does not emulate any hardware resources.
ARM: While ARM’s virtualization support closely resembles its x86-64 counter-
part, it entails peculiarities. For instance, ARM cannot initialize EL2 from a
less-privileged exception level: in case the system has not set up EL2 exception
vectors at system boot, there is no way to retrospectively place these vectors.
That is, to enable virtualization the boot loader launches the OS kernel in EL2
before entering EL1. There, the OS installs a general purpose hypervisor stub
(the lowvisor) initializing the aforementioned exception vectors [14]. This lowvi-
sor allows Linux subsystems in EL1 (e.g., Linux KVM) to reinitialize the excep-
tion vectors through a hypercall and take control over EL2. Thus, after ensuring
that the lowvisor has not been occupied, the allocator takes control of EL2.

In both cases, the allocator enforces events of interest to trap into the VMM
for analysis. These comprise hardware events, execution of certain instructions,
and access to critical system registers. Besides, the allocator sets up subsystems
(e.g., memory management and device drivers) to manage the system’s hardware.
This way, WhiteRabbit becomes independent from the virtualized OS. To provide
stealth, the allocator hides WhiteRabbit from the guest by using SLAT.

Dispatcher. The dispatcher is triggered on every VM exit and can be regarded
as a scheduler. The dispatcher analyzes the VM exit reason, based on which
it decides which operation to perform. It is the interpreter (described in the
following) that is responsible to perform tasks on behalf of the dispatcher.

3 The terms VM entry and VM exit refer to Intel’s terminology describing transitions
from the VMM into the guest and reverse. In this paper, we use these terms to
describe transitions on the ARM architecture as well.



Interpreter. Hardware virtualization extensions define a class of uncondition-
ally and conditionally trapped instructions. The former class comprises privileged
instructions that always trigger VM exits. The latter class of instructions trigger
VM exits only if the allocator has configured them to trap. The same applies
to hardware events. The interpreter simulates guest instructions and hardware
events that trap into the VMM and appropriately updates the guest’s state.
Apart from that, as the interpreter is capable of manipulating the guest’s state,
it is used as our framework’s VMI subsystem. For this, the interpreter leverages
memory and device management services that have been set up by the allocator.

6 Bridging the Semantic Gap

WhiteRabbit allows remote hosts to analyze the virtualized OS (Figure 1). For
this, VMI tools have to interpret the vast amount of binary information (i.e., the
guest’s state). To bridge this semantic gap, WhiteRabbit offers (i) in-band and
(ii) out-of-band delivery as well as (iii) derivative view generation patterns [15].

In-band delivery. This pattern involves the guest OS to collect semantic infor-
mation. For this, WhiteRabbit allows remote VMI tools to inject kernel modules
into the guest. Similar to X-TIER [5], once WhiteRabbit receives a kernel mod-
ule, the VMI component (Figure 1) will process the module to provide a generic
and OS-agnostic module representation before injecting it into the guest. To
simplify the VMI component, these steps could be prepared by the remote host.

First, the VMI component allocates memory to rearrange the module’s sec-
tions. WhiteRabbit cannot just add physical memory to the VM, as the guest’s
memory management system has tracked all of the available physical memory. In-
stead, it obtains the memory from the local memory pool that has been extracted
from the guest beforehand (Section 4). Then, the VMI component incorporates
code required to communicate with WhiteRabbit . This code comprises wrappers
responsible for relaying calls to external functions and announcing the end of the
module’s execution through hypercalls. Finally, WhiteRabbit adjusts the page ta-
bles of the interrupted guest process, temporarily uncovers the module’s memory
via SLAT, and adjusts the guest’s instruction and stack pointer. To prevent the
module from being interrupted and thus potentially revealed, WhiteRabbit must
deactivate the timer interrupt and intercept external interrupts.

Out-of-band delivery. WhiteRabbit implements an interface for LibVMI; a
library to dynamically extract and control the VM’s state. To bridge the semantic
gap, LibVMI uses out-of-band kernel symbol information that is delivered ahead-
of-time. Also, LibVMI offers an API for Volatility tools. This way, WhiteRabbit
offers analysis via custom and prevalent LibVMI and Volatility forensics tools.

Derivation. Derivative view generation benefits from the fact that critical static
in-guest data structures are rooted in hardware [16]. E.g., one can build a chain
of references between the syscall dispatcher and an immutable, hardware anchor
(the IDTR or fast system call MSR registers on Intel). It is difficult to identify and
utilize such hardware anchors. Yet, through LibVMI, WhiteRabbit facilitates



Host PT Guest PTHost VA Guest VA

HVA → HPA HPA ← GPA GPA ← GVA

module

Phys Mem

module'

 

EPT

module'

module

Figure 2: Hiding WhiteRabbit through relocation and the SLAT mechanism.

remote tools to derive a view of the guest. Besides, critical guest data structures
are evasion-evident if they are rooted in hardware [16]. WhiteRabbit can observe
changes to such data structures. By additionally protecting all elements along
the chain from the hardware anchor to the data structure, the data structure
becomes evasion-resistant : any modification along this chain can be detected by
matching the integrity of the system’s configuration with a known value.

7 Hiding Techniques

Split-personality malware behaves differently if it believes it is being moni-
tored [17]. Given that perfect VM transparency (ability of being indistinguish-
able with real hardware) is not feasible [18], WhiteRabbit hardens disclosure of
its presence. We associate the memory footprint of WhiteRabbit with the execu-
tion environment and kernel module traces with the hardware category of the
anti-virtualization taxonomy [19]; WhiteRabbit uses SLAT to sidestep both.

Execution environment. A malicious guest application with sufficient privi-
leges can carve the physical memory, e.g., for signatures that reveal the presence
of a VMM. To prevent an exposure in memory, we utilize the system’s SLAT
tables such that the physical memory holding WhiteRabbit becomes invisible to
the guest: access to this memory is intercepted and redirected to an empty page.

A problem arises if we deploy WhiteRabbit as a kernel module: the first
instruction of the guest will be one of the last instructions of the kernel module
that has virtualized the OS: the module (inside the VM) needs to return to the
Linux kernel. At this point, the kernel initializes remaining entries of the struct
module that resides in the module’s memory. Also, the kernel frees the memory
that has been used for the initialization of the kernel module and is not part of
its core sections. Therefore, the kernel must access the memory previously made
invisible to the guest OS. We discuss the solution of this issue in the following.

Hardware. WhiteRabbit must not leave any traces inside of the guest if it was
deployed as a kernel module. As we have shown, the utilization of SLAT alone
leads to an issue during module initialization. To solve this, we force the guest to
free the memory and data structures linked to WhiteRabbit but simultaneously
continue its execution under cover of SLAT (Figure 2). WhiteRabbit must relo-
cate its memory to another location. The relocated module is shown as module’
in the figure. To avoid address relocations, we map module’ to the same vir-
tual address space as the original module. The setup comprises the guest’s page



tables and SLAT mapping the module’s guest-virtual-addresses (GVAs) to the
original host-physical-addresses (HPAs) and the host’s page tables mapping the
host-virtual-addresses (HVAs) to the relocated HPAs. This way, the host can use
the original virtual addresses to address module’ (HVAs correspond to GVAs).

Finally, the module returns a negative value at the end of its init routine,
as soon as the OS has been virtualized. Alternatively, the module can initialize a
work-queue that initiates a clean module destruction without making the kernel
suspicious. In both cases, the guest OS deallocates all data structures associated
with WhiteRabbit . To ensure that the contents of these data structures cannot
be reconstructed from memory, we zero them out from outside of the VM.

8 Evaluation

We evaluated WhiteRabbit by first analyzing its effectiveness in regard to anti-
debugging and anti-virtualization techniques. Second, to demonstrate White-
Rabbit ’s practicality, we investigated the induced virtualization overhead and
compared it with the popular Xen Project hypervisor and Linux KVM.

8.1 Effectiveness

We have virtualized a Linux and were able to single-step and extract analysis-
sensitive processes. Therefore, we employed state-of-the-art anti-debugging and
anti-virtualization techniques that impede dynamic analysis and stop execution
as soon as they believe they reside in a sandbox. The following summarizes these
techniques and shows that they are rendered ineffective against WhiteRabbit .

Anti-debugging. Linux bares an API via the ptrace system call to allow
debugging of user space processes. This API utilizes hardware-based memory
watchpoints and single-stepping capabilities, as well as the ability to access for-
eign address spaces. However, ptrace entails that any tracee can be traced by
exactly one process. This property is abused for anti-debugging: hostile machine
code can use ptrace to trace itself. Consequently, if ptrace fails, the caller is
aware of a tracing application; if it succeeds, no other tracer will be able to attach
itself to this process. While this situation can be side-stepped by intercepting
calls to ptrace and adjusting the return values, the idea can be extended to
multiple malicious processes tracing each other to completely hinder debugging.

Besides, debuggers (e.g., gdb and lldb) leave environment artifacts that can
reveal debuggers. These artifacts include (i) address space layout randomization
allocating the text, data, and vDSO pages at unusual addresses, (ii) environ-
ment variables, (iii) the parent process’ name containing the debugger’s name,
and (iv) software breakpoints non-transparently placed into the tracee’s address
space. We have open sourced a debugger detection tool implementing the above. 4

WhiteRabbit does not make use of any of the above techniques. In fact,
WhiteRabbit does not leave in-guest user space artifacts and thus cannot be
detected by these and similar anti-debugging mechanisms.

4 https://github.com/kirschju/debugmenot

https://github.com/kirschju/debugmenot


Anti-virtualization. We have armed the virtualized system with custom and
publicly available sandbox-detection tools including paranoid fish, al-khaser, and
virt-what. These tools use (i) static heuristics, (ii) low-level system properties,
and (iii) user behavior artifacts to disclose sandboxed environments. Except for
different timing behavior (Section 9) none of these tools detected WhiteRabbit .

Static heuristics target virtualization artifacts (e.g., drivers, execution envi-
ronment and hardware configuration, vendor information as well as memory and
file system artifacts) that are specific for virtual environments. WhiteRabbit aims
at having as little discrepancies to the physical machine as possible: it does not
adjust any system configuration and leaves no guest-visible artifacts (Section 7).

Hardware artifacts are timing properties and effects of imperfect instruction
and device emulation. WhiteRabbit permits the guest to directly access the hard-
ware without emulating any hardware devices. Thus, it does not expose itself
through such indicators. On the other hand, timing can reveal the VMM; we
exposed WhiteRabbit by comparing the time of unconditionally trapped instruc-
tions with reference values. However, with today’s omnipresent virtualization
technology, it is insufficient to reveal the virtual environment alone (Section 9).

User behavior artifacts target the system’s credibility by observing its state
and configuration, including mouse cursor activity or an unusually small size of
the hard drive or memory. Sophisticated systems check wear-and-tear relics, e.g.,
log files, browser history, and network behavior [20]. Such artifacts lose relevance,
as WhiteRabbit virtualizes production systems with realistic wear-and-tear relics.

Careless VMI tools that are built upon WhiteRabbit might implement less-
stealthy techniques. To address this, WhiteRabbit provides the necessary means
to intercept critical events. Thus, VMI tools must handle such events and return
inconspicuous register values to cloak analysis.

8.2 Performance

It is crucial that both the VMM and VMI tools affect the system’s performance
as little as possible. Because we highlight WhiteRabbit as a vehicle for generic
VMI tools, our performance evaluation focuses on the virtualization overhead ;
it does not consider VMI tools built upon WhiteRabbit . We deem the overhead
of VMI tools out of scope, as the performance highly depends on their purpose.

We applied our prototype to the Linux kernel v4.13 on top of an Intel Skylake
microarchitecture based host with an Intel Core i7-6700 CPU (3400 MHz) and
one active core (a limitation of our prototype). We configured the performance
CPU frequency scaling governor to avoid performance drops, e.g., due to power
consumption oriented configurations. To estimate the virtualization overhead,
we carried out three experiments including a set of CPU- and memory-intensive
macro- and micro-benchmarks. The results are mean values over three runs.

First, we compared the virtualization overhead of WhiteRabbit with Xen
v4.11 and Linux KVM. To simulate a comparable load, we have granted only
one core to all VMMs (i.e., we pinned the VMM and guest to the same physical
core). Interestingly, with active Intel Turbo Boost technology, Xen outperformed
the bare metal host. As such, we deactivated Turbo Boost to avoid different



Table 1: Virtualization overhead (OHD) of WhiteRabbit , Xen and KVM mea-
sured by the Phoronix Test Suite v7.6.0 on x86-64.
Benchmark (unit) w/o KVM (OHD) Xen (OHD) WhiteRabbit (OHD)

Blake2 (Cycles/Byte) 5.94 5.94 (0.00%) 5.94 (0.00%) 5.94 (0.00%)
C-Ray (s) 107.08 108.56 (1.38%) 107.67 (0.55%) 107.09 (0.00%)
Gzip Compression (s) 11.50 12.06 (4.86%) 11.98 (4.17%) 11.74 (2.08%)
John-the-Ripper DES (Real C/s) 5,419,000 5,340,000 (1.45%) 5,394,000 (0.46%) 5,417,667 (0.02%)
John-the-Ripper MD5 (Real C/s) 16,844 16,583 (1.54%) 16,748 (0.56%) 16,822 (0.13%)
N-queens (s) 216.70 220.94 (1.95%) 217.77 (0.49%) 216.80 (0.04%)
OpenSSL (Signs/s) 145 141.83 (2.18%) 142.53 (1.70%) 144.70 (0.20%)
7-Zip Compression (MIPS) 4,603 3,736 (18.83%) 3,988 (13.36%) 4,443 (3.47%)

RAMspeed Integer (MB/s) 17,370.73 16,630.25 (4.26%) 16,942.71 (2.46%) 17,016.09 (2.04%)
RAMspeed Floating Point (MB/s) 17,734.84 16,744.56 (5.58%) 16,875.53 (4.84%) 16,861.26 (4.92%)

Table 2: SPEC CPU2017, in sec.

Benchmark w/a WhiteRabbit OHD

600.perlbench s 282 286 (1.41%)
602.gcc s 409 419 (2.44%)
605.mcf s 624 641 (2.72%)
620.omnetpp s 382 406 (6.28%)
623.xalancbmk s 283 294 (3.88%)
625.x264 s 378 378 (0.00%)
631.deepsjeng s 357 363 (1.68%)
641.leela s 460 460 (0.00%)
648.exchange2 s 264 265 (0.37%)
657.xz s 2220 2379 (7.16%)

Table 3: Lmbench 3.0, in µsec.

Benchmark w/a WhiteRabbit OHD

fork+execve 50.04 58.23 (16.36%)
fork+/bin/sh 254.36 289.84 (13.94%)
pipe 1.51 1.65 (9.27%)
protection fault 0.30 0.31 (3.33%)
read 0.09 0.09 (0.00%)
select 500 fd 2.46 2.52 (2.38%)
select 500 TCP fd 8.16 8.35 (2.32%)
signal handle 0.66 0.65 (1.51%)
sock 1.99 2.07 (4.02%)
write 0.05 0.06 (19.99%)

microcode decisions in regard to performance states. We executed a set of CPU-
and memory-intensive macro-benchmarks of the Phoronix Test Suite v7.6.0. The
results are shown in Table 1, which we divided into CPU- (upper part) and
memory-intensive (lower part) benchmarks. Overall, the results indicate only
a minor overhead for all candidates. Yet, WhiteRabbit outperforms Xen and
KVM. While KVM produces less than 4.02% CPU and 4.92% memory overhead
on average, the virtualization overhead of WhiteRabbit is kept to a minimum
at 0.74% for CPU and 3.48% for memory benchmarks on average. According
to our measurements, Xen outperforms KVM and approaches WhiteRabbit with
an averaged 2.66% CPU and 3.65% memory overhead. While we expected the
arithmetically heavy benchmarks Gzip and 7-Zip to induce a similar overhead
as the other CPU-intensive benchmarks, they are outliers for all candidates.

Performance measurements among VMMs can be unreliable as each VMM
might emulate and scale the guest’s clock source differently. As our prototype
does not emulate any clock sources, we can precisely determine the resulting
virtualization overhead. Therefore, we ran the SPECspeed Integer benchmarks
of the SPEC CPU2017 suite and summarized the results in Table 2.

Finally, we used lmbench 3.0 micro-benchmarks, to observe the performance
overhead on system software level (Table 3). The overall picture suggests that
the special-purpose design of WhiteRabbit is ideally suited as basis for VMI tools.



9 Limitations

Malware can evade analysis through anti-virtualization techniques [19]. These
consider side effects of emulated instructions, as certain instructions are not
sufficiently documented [21]. This can be addressed by trying to make the VM
indistinguishable from real hardware; the lack of hardware behavioral knowledge
can be met through massive testing [17]. Nevertheless, timing attacks present
the main issue: adversaries with access to external time sources can detect dis-
crepancies caused by virtualization. Consequently, a system that achieves perfect
VM transparency is infeasible in practice [18]. Yet, the trend toward system con-
solidation through virtualization renders the goal of VM transparency obsolete.
If a system is virtualized, it does not necessarily mean the malware is subject
to analysis. Thus, it is more affordable for attackers to target both physical and
virtual environments than exclusively focusing on physical machines.

Besides, the combination of in-band and out-of-band delivery with derivative
patterns establishes a solid ground for forensics analysis. Nonetheless, this com-
bination cannot detect every modification performed by VMI-aware malware.
Derivative approaches cannot reconstruct the entire state [15]. This is because
data structures that have been reconstructed through delivery patterns cannot
be bound to hardware. Consequently, unannounced structural modifications of
these data structures (e.g., through malicious relocation in memory) may remain
unnoticed. This is the result of the strong semantic gap [22]. As such, VMI tools
cannot rely on the guest’s integrity as long as every semantically relevant data
structure is not bound to hardware or its trustworthiness is not validated [22].

Another limitation is that DMA-capable devices have access to the system’s
physical memory. Through DMA, adversaries can locate WhiteRabbit in memory
despite SLAT. To approach this, WhiteRabbit could restrain DMA access by
engaging the system’s IOMMU (Intel VT-d or ARM System MMU).

Also, since WhiteRabbit is deployed on-the-fly, a VMI application may miss
the point of infection. That is, one-shot exploits can be injected to gather critical
information and unloaded before deploying WhiteRabbit . The same applies to
periodical system checks by regularly loading and unloading WhiteRabbit : con-
ducted attacks may slip through periodic system checks and leverage the seman-
tic gap to delude VMI applications [22]. These restrictions render WhiteRabbit
more suitable for detection and analysis of long-living, persistent malware.

10 Countermeasures

WhiteRabbit is a powerful tool for forensic analysis that becomes a dangerous
weapon in hands of adversaries. To defeat intruders, we propose countermea-
sures. A proactive approach suggests to employ a native VMM, such as Xen,
that executes on bare metal and leverages the system’s virtualization extensions.
If an attacker initializes WhiteRabbit from a compromised VM, the underlying
VMM will intercept and discard any subversion attempt: on Intel, instructions
required to set up VMX root operation implicitly trap into the VMM; on ARM,



the VMM deflects attempts to reconfigure VBAR EL2. Even if the maliciously uti-
lized WhiteRabbit supported nested virtualization (enabling VMM hierarchies),
it would not be able to take control of the system’s virtualization extensions as
they would be occupied by the benign VMM. The same applies to hosted VMMs,
such as KVM: subversion attempts from a compromised VM would not be able
to take over control of the VMM. On the other hand, an adversary might subvert
the entire system before KVM controls the system’s virtualization extensions.

Assuming the underlying VMM supported nested virtualization, would it be
possible to subvert the compromised guest and execute as a nested VMM inside
VMX non-root? Although the native VMM would intercept every virtualization
attempt, without additional precautions and VMI analysis, it would not hinder
WhiteRabbit from subverting the guest (much like it would not hinder valid
second level virtualization), but rather forward all guest VM exits to the nested,
vicious VMM. This issue is an open question for our future work.

If the attacker succeeded to inject and execute WhiteRabbit in VMX root,
she could subvert the running VMM. Yet, a transparent execution of the VMs
would only be possible if the intruders managed to reveal and set up shadowed
copies of all VMCS data structures, as these represent the used virtual CPUs.
Further management of the system setup would require the support of nested
virtualization. Thus, a VMM does not prevent but rather hardens a subversion.

11 Related Work

PI [4] is an in-band delivery framework for injecting security applications into a
guest VM. Vogl et al. [5] extend this idea with X-TIER, a framework for malware
detection and removal. In contrast to PI, which hijacks user space processes,
X-TIER injects kernel modules into the guest. DRAKVUF [6] is a VMI-based,
dynamic malware analysis system using LibVMI and thus out-of-band delivery.

Nitro [16] introduces a VMI framework that uses its hardware architecture
knowledge to derive semantic information about the guest OS. Ether [3], on
the other hand, manipulates the hardware managed fast system call dispatcher
location and redirects guest system calls to a fixed, unpaged memory location
resulting in page-faults that are intercepted by the VMM. Another derivative
view generation approach is taken by Litty et al. [7]. They present Patagonix,
which is a hash-based memory validation framework on top of Xen. It employs
binding semantic knowledge related to the MMU and the paging mechanism for
malware detection. Similarly, Kittel et al. [8] present a Linux kernel validation
approach considering run-time code patching performed by the kernel.

SubVirt [23] introduces one of the first Virtual Machine based rootkits (VM-
BRs) that can be permanently installed as a VMM underneath existing Linux
and Windows OSes. In the meantime, VM-based rootkits are evolved to hardware-
assisted VM (HVM) rootkits. Rutkowska introduces Blue Pill [24], an HVM
rootkit being able to transparently move an executing OS instance into a virtual
environment controlled by a thin VMM. In parallel to Blue Pill, Vitriol [25]
present a mostly similar HVM rootkit to subvert Mac OS X on Intel. Later,



the New Blue Pill [26] was presented also supporting Intel VT-x technology. In
addition, Cloaker [27] and CacheKit [28] present hypervisor-assisted rootkits for
the ARM architecture. Further, Buhren et al. [29] demonstrate attack vectors
on ARM that allow to subvert a running Linux on-the-fly.

Similar to WhiteRabbit , HyperSleuth [30] is a small VMM that virtualizes a
running Windows XP on-the-fly on Intel. However, HyperSleuth does not uti-
lize the hardware-assisted SLAT mechanism and thus entails higher software
overhead. It also does not hide its in-guest artifacts. This exposes its presence to
in-guest malware and thus is not suited for analysis of split-personality malware.

12 Conclusion

In this paper, we presented WhiteRabbit , a microkernel-based architecture that
unifies VMI with on-the-fly virtualization. WhiteRabbit comprises a thin and
self-sufficient native VMM that can be deployed on-the-fly on Intel and ARM
architectures. By incorporating the system’s Second Level Address Translation,
WhiteRabbit is able to hide its presence in memory, expose a LibVMI-compatible
interface to enable the use of remote forensics applications, and allow to inject
custom security agents into the guest’s address space. We validated our kernel
module based prototype on Linux running on-top of Intel x86-64. Our results
demonstrate that the dynamic virtualization of a running OS is fast and further
system virtualization does not present a significant performance overhead.

References

1. P. M. Chen, B. D. Noble, When Virtual Is Better Than Real, in: USENIX Work-
shop on Hot Topics in Operating Systems (HotOS), 2001.

2. T. Garfinkel, M. Rosenblum, A Virtual Machine Introspection Based Architec-
ture for Intrusion Detection, in: ISOC Network and Distributed System Security
Symposium (NDSS), 2003.

3. A. Dinaburg, P. Royal, M. Sharif, W. Lee, Ether: Malware Analysis via Hardware
Virtualization Extensions, in: ACM Conference on Computer and Communications
Security (CCS), 2008.

4. Z. Gu, Z. Deng, D. Xu, X. Jiang, Process Implanting: A New Active Introspection
Framework for Virtualization, in: Annual Information Security Symposium, 2012.

5. S. Vogl, F. Kilic, C. Schneider, C. Eckert, X-Tier: Kernel module injection, in:
International Conference on Network and System Security (NSS), 2013.

6. T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, A. Kiayias,
Scalability, Fidelity and Stealth in the DRAKVUF Dynamic Malware Analysis
System, in: Annual Computer Security Applications Conference (ACSAC), 2014.

7. L. Litty, H. A. Lagar-Cavilla, D. Lie, Hypervisor Support for Identifying Covertly
Executing Binaries, in: USENIX Security Symposium, 2008.

8. T. Kittel, S. Vogl, T. K. Lengyel, J. Pfoh, C. Eckert, Code Validation for Modern
OS Kernels, in: Workshop on Malware Memory Forensics (MMF), 2014.

9. P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, Y. Yarom, Spectre Attacks: Exploiting Speculative Exe-
cution, arXiv preprint arXiv:1801.01203.



10. M. Lipp, M. Schwarz, T. Gruss, Daniel Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, M. Hamburg, Meltdown, arXiv preprint arXiv:1801.01207.

11. M. Shockley, C. Maixner, R. Johnson, M. DeRidder, W. M. Petullo, Using Vi-
sorFlow to Control Information Flow without Modifying the Operating System
Kernel or its Userspace, in: International Workshop on Managing Insider Security
Threats, 2017.

12. Z. Deng, X. Zhang, D. Xu, SPIDER: Stealthy Binary Program Instrumentation
and Debugging via Hardware Virtualization, in: Annual Computer Security Appli-
cations Conference (ACSAC), 2013.

13. G. J. Popek, R. P. Goldberg, Formal Requirements for Virtualizable Third Gener-
ation Architectures, Communications of the ACM 17 (7) (1974) 412–421.

14. C. Dall, J. Nieh, KVM/ARM: The Design and Implementation of the Linux ARM
Hypervisor, in: International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2014.

15. J. Pfoh, C. Schneider, C. Eckert, A Formal Model for Virtual Machine Introspec-
tion, in: Workshop on Virtual Machine Security (VMSec), 2009.

16. J. Pfoh, C. Schneider, C. Eckert, Nitro: Hardware-Based System Call Tracing for
Virtual Machines, in: Advances in Information and Computer Security, 2011.

17. H. Shi, A. Alwabel, J. Mirkovic, Cardinal Pill Testing of System Virtual Machines,
in: USENIX Security Symposium, 2014.

18. T. Garfinkel, K. Adams, A. Warfield, J. Franklin, Compatibility Is Not Trans-
parency: VMM Detection Myths and Realities, in: USENIX Workshop on Hot
Topics in Operating Systems (HotOS), 2007.

19. X. Chen, J. Andersen, Z. M. Mao, M. Bailey, J. Nazario, Towards an Under-
standing of Anti-Virtualization and Anti-Debugging Behavior in Modern Malware,
in: IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2008.

20. N. Miramirkhani, M. P. Appini, N. Nikiforakis, M. Polychronakis, Spotless sand-
boxes: Evading malware analysis systems using wear-and-tear artifacts, in: IEEE
Symposium on Security and Privacy (S&P), 2017.

21. C. Domas, Breaking the x86 ISA, Black Hat, USA.
22. B. Jain, M. B. Baig, D. Zhang, D. E. Porter, R. Sion, SoK: Introspections on Trust

and the Semantic Gap, in: IEEE Symposium on Security and Privacy (S&P), 2014.
23. S. T. King, P. M. Chen, Y.-M. Wang, C. Verbowski, H. J. Wang, J. R. Lorch,

SubVirt: Implementing Malware With Virtual Machines, in: IEEE Symposium on
Security and Privacy (S&P), 2006.

24. J. Rutkowska, Subverting VistaTM Kernel for Fun and Profit, Black Hat, USA.
25. D. A. Dai Zovi, Hardware Virtualization Rootkits, Black Hat, USA.
26. J. Rutkowska, A. Tereshkin, IsGameOver () Anyone, Black Hat, USA.
27. F. M. David, E. M. Chan, J. C. Carlyle, R. H. Campbell, Cloaker: Hardware

Supported Rootkit Concealment, in: IEEE Symposium on Security and Privacy
(S&P), 2008.

28. N. Zhang, H. Sun, K. Sun, W. Lou, Y. T. Hou, CacheKit: Evading Memory Intro-
spection using Cache Incoherence, in: IEEE Symposium on Security and Privacy
(S&P), 2016.

29. R. Buhren, J. Vetter, J. Nordholz, The Threat of Virtualization: Hypervisor-Based
Rootkits on the ARM Architecture, in: International Conference on Information
and Communications Security (ICICS), 2016.

30. L. Martignoni, A. Fattori, R. Paleari, L. Cavallaro, Live and Trustworthy Foren-
sic Analysis of Commodity Production Systems, in: International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), 2010.


	Follow the WhiteRabbit: Towards Consolidation of On-the-Fly Virtualization and Virtual Machine Introspection

