
HAL Id: hal-02001936
https://inria.hal.science/hal-02001936

Submitted on 31 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Software Engineering in a British Defence Project in
1970

Ian Pyle

To cite this version:
Ian Pyle. Software Engineering in a British Defence Project in 1970. 13th IFIP International Confer-
ence on Human Choice and Computers (HCC13), Sep 2018, Poznan, Poland. pp.16-30, �10.1007/978-
3-319-99605-9_2�. �hal-02001936�

https://inria.hal.science/hal-02001936
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Software Engineering in a British defence project in 1970

Ian Pyle[0000-0003-2156-4561]

formerly of AERE Harwell

ian.pyle@cantab.net

Abstract. This software development project took five years from 1968, and engaged 50, rising

to 130, people. They were programmers from a commercial company, together with scientists

from a government laboratory. In the infancy of software engineering, completely new tech-

niques were established to carry out the task, based on system theory, which are described here.

The project was completed in 1973

Keywords: Historical, Multi-computer, Radar, Linesman.

1 Introduction

Linesman was the UK's Air Defence System for the 1970s. After all the hardware had

been installed, including all the radars and about 10 specially-designed computers at

the building called L1 at West Drayton (near Heathrow airport), it was found in about

1967 that the contractor could not make the software for the computers, called the

Radar Data Processing System (RDPS). This is the story of how that software was

developed. It explains the software engineering approach and techniques used to

design and produce the software for the RDPS.

A team from Harwell was assigned to assist the contractor, and subsequently (after

a major review) to lead the software development. Stimulated by the dramatic public-

ation of the report [1] of the NATO conference at Garmisch,“Software Engineering”,

we decided to apply the principles of systems engineering to the development of the

software for the RDPS.

1.1 Classification

Because it was essentially military, all work on the project was subject to the United

Kingdom's Official Secrets Act, which meant that everything about it had to be treated

carefully to prevent disclosure. Some of the rules were ridiculous (for example, the

order code of the computers used was classified!) and the general limitation of in-

formation made it extremely difficult at the beginning to find out what the project was

about and what the problems were. When there was a public crisis about it, we dis-

covered more from the daily newspapers that we had from the internal documents.

Specifically, the Software Engineering approach and techniques had to be classified

(“Restricted”), and the present paper, over thirty years after the documents were writ-

ten, is probably the first public exposure of the details. (Earlier publications [2,3]

about techniques used had to be guardedly disguised to avoid disclosure.)

1.2 Contractual relationships

In common with most British Defence Procurement projects at the time, Linesman

was carried out as a “cost-plus” contract, involving two principal parties: the Design

2

Authority (a private company, in this case The Plessey Company) who had to develop

and install the equipment, and the R&D Authority (a government laboratory, in the

case the Royal Radar Establishment: RRE, Malvern) who had to monitor the technical

work being done by the Design Authority, and confirm that it was appropriate for the

situation. In addition, the prospective end-user (a military body, in this case the Royal

Air Force) was involved in negotiations, particularly for training and eventual hand-

over.

Harwell only became involved at a late stage in the project, initially in support of

RRE, and with increasing despair as we discovered the inadequacy of the monitoring

and software engineering, in spite of increasing the numbers of people involved.

After a full review of the project, it was decided that Harwell should also take a lead-

ing part in the work of the Design Authority, as well as continuing to support the

R&D Authority. The present paper is about the approach we took within the Design

Authority to achieve the required behaviour of the RDPS.

2 Background

Previous attempts to make the software for the RDPS had been overwhelmed by the

complexity of the requirements. In evidence to a parliamentary enquiry [4], a repres-

entative of Plessey said “The software task involves the writing of more than a quarter

of a million 48-bit words and there existed nowhere any previous experience of the

programming of so large and complex an on-line real time system for air defence pur-

poses.” The company specialised in electronics and telephone exchanges, and they

recruited programmers who were only familiar with sequential programming. There

were no system programmers.

“An unsuccessful attempt was made by the Company in 1967 to obtain assistance

from software houses, but experience relevant to the Linesman task did not exist any-

where. It was only from AERE that it was found possible to obtain a substantial ele-

ment of high grade programming effort.” Staff from A.E.R.E. Harwell (particularly

nuclear physicists, but initially from the computing group) were well experienced in

using computers for data gathering and control of experimental apparatus with extens-

ive electronics. A small team was allocated to the project in 1968, and we proposed a

novel approach, which was strongly influenced by the NATO Software Engineering

report; the style was essentially what was later described as the V-model.

The fully structured software system design applied System Theory to this prob-

lem, by insisting on well defined components and interactions between them, at each

element in a hierarchy. This brought out the importance of documentation for the pro-

ject, and led to the specification of a documentation structure to describe the software,

from design through implementation and testing to handover. A document called the

Software Standard [5], was written to define the rules of operation for the software

development, including comprehensive authorisation and change control. There were

no software tools to support the development, so all the documentation was produced

in a form that could be properly checked by human readers. Essentially, all the in-

3

formation needed to ensure consistency on each item was included in a single docu-

ment. Between one document and another, relevant sections of text were identical.

3 Systems

From the totality of the RDPS, down to individual software modules, everything was

treated as a "system" having two aspects: (a) the whole, with specific behaviour and

specific allocated resources; and (b) a set of components, each of which could be a

smaller system, which interacted to provide the behaviour of the whole.

The Software Standard introduced nomenclature for the significant kinds of soft-

ware items in this project: "suites" for software involving several computers, con-

cerned with a particular function; "packages" for software within a single computer

dealing with a particular function; and "modules" as software components that are ac-

tually compiled. Completed working software (as it became produced, and on which

other software would be built), was called a “presystem”.

The review of the system requirements identified three major areas: primary (relat-

ing to the maintenance of a recognised air picture of the UK air space), secondary (re-

lating to maintaining the computer system and intercommunication between its phys-

ical components in the presence of all possible failures), and tertiary (providing facil-

ities for program production and maintenance). The software staff were accordingly

divided into three departments to cover these areas.

The standard recognised that that the requirements could not be stated in full be-

fore the design of the system began; the design had to be undertaken with the assump-

tion that the requirements (particularly the primary requirements) would change in de-

tail, although the secondary and tertiary requirements would be more stable.

4 Structure and Content of the Software Standard

Because the intended users of the software standard were experienced programmers

with little knowledge of higher level software design or software engineering, the

standard was written with great detail specific to the Linesman Radar Data Processing

System. There were seven parts, covering different aspects of the process of software

development (see Appendix A for the list of contents, showing the sizes of each sec-

tion, and the date when the version was issued). The introduction explained the pur-

pose of the standard, specifically identifying the particular objectives, as

(a) to assist individual programmers to produce programs which properly inter-

face with others to make a coherent working whole;

(b) to provide tangible output for other designers and management before imple-

mentation;

(c) to become the reference basis for the final implementation;

(d) to provide the information needed for debugging and testing, and for training

the eventual users about the total design of the system; and

(e) to accumulate information about effort for future estimation.

4

For the three main parts (Requirements, Design, Implementation) there are a number

of sections, in each of which the standard explains the scope of the section, the activit-

ies to be done, the products that would result, the criteria for completion, and the pos-

sible need for repetition.

4.1 Requirements

Originally, the requirements for the RDPS had been expressed from the point of view

of the operators, with detailed descriptions of their consoles, the messages they might

receive, and the responses they might give to them.

Following the appointment of Harwell staff to oversee the project, the point of

view was shifted to the computer system, and the requirements were re-cast in terms

of the data that had to be held, and the processes that were to be applied to these data.

Specifically, the standard called for detailed specification of the observed objects

(which we called the “World Model”), historical background to be taken into account,

the monitoring, assessment and control procedures, outline specification of the com-

puting system, specification of operational events, and specification of transactions.

For each of these, the standard explained the scope of the particular requirement, the

activities to be carried out to write the relevant text, the document to be produced (and

by whom it was to be checked), the criterion for completion of the work, and condi-

tions under which some repetition of the work may have been necessary.

4.2 Design

The design of the RDPS software was explained in a sequence of sections, descending

top-down in detail from the overall software system design, through presystems,

suites and packages, to individual modules. For each level, the standard gave the is-

sues to be taken into account, the decisions to be made, and the outputs to be pro -

duced. A co-ordinator had to be appointed to take continuing responsibility for the

design through all the development. For example, for suite design, the design team

had to decide how to distribute the suite's functionality between packages in different

computers, and what communication was needed between these. They had to decide

how the resources allocated for the suite were to be distributed among its constituent

packages. At the bottom level, the module designer had to give identifiers for the

module parameters, define the data structures needed, prepare a module algorithm in-

cluding debug points, and prepare an outline test plan.

When each design document had been written to part 3 (see “Planning and Pro-

gress measurement” below), and approved by the appropriate authority, the design

team had completed that stage of the work, and was assigned another item of work.

4.3 Implementation and testing

Implementation was bottom-up, with section dealing with ascending levels of com-

plexity, from modules to packages, suites, presystems and the whole system. For

each, the standard identified the focus of the work, as the element was assembled

from its constituents and tested to show that it conformed to its specification. For ex-

ample, for a package, the activities included deciding the sequence of modules to be

assembled, describing the test environment for off-line and on-line testing, labelling

of all test points with in the package, preparation of test data and expected trace

points; the results included corresponding output values, package execution times and

5

and module use counts, together with the overall package size. A log was produced re-

cording all significant activities.

Presystem implementation and testing formed a significant part of the overall

demonstration of progress of the development project.

4.4 Resources

The standard recognised that the utilisation of resources and maintenance of records

was vital for successful engineering, and defined the duties of a specific group that

had responsibility for this work; they were called the System Keepers. Their work in-

volved both clerical and analytical activities. Records were kept of the system, the

presystems, and the various computer roles, including lists and software logs. The

system keepers were also responsible for the preservation and maintenance of paper

tapes and magnetic tapes for the system.

They also monitored, analysed and assessed the utilisation of resources within the

system; specifically, for the use of core stores, CPUs, and the inter-computer commu-

nication highways. The system keepers had to liaise with coordinators for each ele-

ment of the design.

4.5 Approval of documents

Every document had to be approved in some way before it was considered to be satis-

factory. There were several levels of approval, depending on the kind of document.

Every document began as “Draft,” when its author could modify it arbitrarily. Other

levels were “Edition,” “Issue,” and “Certified,” following checking and approval by

appropriate bodies, including an Internal Approval Authority and an External Approv-

al Authority. The standard laid down the criteria (depending on the type of the docu-

ment) and corresponding approval authorities.

4.6 Appraisal and preparation for handover

In preparation for handover of the developed system to the intended users, particular

documents had to be prepared and checked, covering manuals and software details for

subsequent use and maintenance of the system. The standard specified what these

must contain, and how they were to be checked. For example, the final part (part 7)

of each document defining a software item had to be prepared by the System Keepers

based on material from periodic appraisals, including a summary of the usage of the

item, the faults attributed to it, details of amendments to it, together with an appraisal

of the item's effectiveness and notes on any foreseen modifications or extensions.

5 Results

The application of the software standard resulted in the production of a very large

number of documents, of which only a few can be mentioned here.

5.1 Requirements

The first and most significant challenge was to find a form of words which everyone

would agree was the purpose of the RDPS. What was agreed was very different from

anything written previously (although the words had been spoken). This was Part 1 of

the top-level design document [6]. The text is given in Appendix B. Notice that the

overall purpose was developed there into layers of facilities, called primary (Applica-

6

tion Software), secondary (System Foundation) and tertiary (Program Preparation).

By analysing the dependencies between these layers, it became clear that, in contrast

with earlier priorities, the development of the RDPS software had to focus first on

Program Preparation, then on the System Foundation, and, only after those had been

designed,on the Application Software. Until then, effort had been concentrated on the

sequence of primary facilities needed, and got nowhere.

5.2 Planning and progress measurement

The documentation structure identified in the Software Standard provided the basis

for planning the development, and for measuring progress, by the stages of parts of

the various documents.

For each item, whatever its size, the documentation was produced as a sequence of

parts, with time-gaps between the writing of specific stages. In general, Part 1 spe-

cified the behaviour of the item and the resources allocated for it. Part 2 specified the

constituents of the item, defining the behaviour and resources for each constituent.

Part 3 described the interactions between the constituents, explaining how they jointly

produced the behaviour given in Part 1. On completion of Part 3, the document was

checked and then distributed for use as a basis for the design of the constituent sys-

tems. In parallel, Part 4 was written to specify the order of assembly of the constitu-

ents, with the rationale. Part 5 specified the tests to be carried out (after the constitu-

ents had been produced) which confirm that the interactions of Part 3, and the beha-

viour of Part 1, were achieved. When the constituents had been produced, Part 6 was

written to record the results of the tests identified in Part 4. Part 7 recorded the han-

dover of this item as a constituent of the next higher system.

A different principle was used for large-scale progress measurement, in terms of

demonstrated facilities on the computers; these were called “Presystems” (see below).

6 Presystems

Seven presystems were defined, mostly chronological, but for the infrastructure dis-

tinguishing between “basic” facilities need to progress, and “advanced” facilities to

give additional functionality.

6.1 Programming Support

Presystem 1 provided the Basic Programming Support, i.e. compilation and assembly

of modules, preparation of magnetic tapes for loading into on-line computers, on-line

debugging aids, and simple reporting from post mortem dumps. This used an XL4

computer with an operating system called OS090.

Presystem 2 provided additional power for the workload of developing the RDPS

software, as a computer bureau, using an additional computer, an ICL 1902A, with

disk files and fast input/output. The operating system was called XANOS.

6.2 Foundation

Presystem 3 was the Basic System Foundation, providing scheduling of tasks on the

on-line computers, communication between them, loading of software from magnetic

tapes, control of the allocation of computers to specific rôles, on-line debugging facil-

ities, peripheral handling and regular checking for faults.

7

Presystem 4 was for Advanced System Foundation, for responding to detected

faults and making appropriate changes to allocations, for reconstituting data after a re-

configuration, for diagnosing reported faults, and for driving special equipment to in-

vestigate faulty electronic units. Subsequently, Presystem 4 was split, because a major

hardware upgrade to the computers affected testing. The revised Presystem 4 con-

tained the facilities independent of the upgrade, and a further presystem,.called 4T,

was defined to contain the additional facilities dependent on the upgrade.

6.3 Applications

Presystem 5 handled the various kinds of buttons and lamps at operators' consoles, in-

cluding a command language interpreter for recognising operators' key sequences and

taking appropriate actions.

Presystem 6 dealt with autonomous processes (detecting relevant changes) and

maintaining the world model (both live and simulated).

Presystem 7 handled height finder equipment and secondary radar interactions.

7 Management

During the early period, before the design had made much progress, the management

were extremely uncomfortable, because there was no way of estimating the amount of

effort or time that would be required. However, once the structure in terms of presys -

tems and suites had been identified, an overall plan could be prepared, and priorities

identified for the allocation of staff and computer resources. Then as work on imple-

mentation progressed, confidence increased, although there were still problems of in-

teraction between the hardware changes found necessary and the availability of the

computers for debugging.

8 Quality

Surprisingly, the Software Standard did not mention quality: there was nothing about

Quality Control or Quality Assurance, and I been unable to find any occurrence of the

word “quality” in the document.

In retrospect, I think that the reason was that we considered quality to be intrinsic

to the structure and procedures in the standard, not an “add-on”: by having text copied

verbatim from one document to another, and by insisting that each document had a

clearly-defined focus, with well-structured contents and checking by all relevant

parties, we presumed that the quality would automatically be there.

In practice, we did set up a quality control unit (a good management decision!), but

its responsibilities were administrative rather than technical: they had to confirm that

each document had been written and checked in accordance with the rules set down in

the Software Standard, according to the type of the document.

8

9 Education

No-one in the project was a software engineer as we now understand the term. We

were working from first principles, and disseminating our experience and insights as

the project progressed.. Some of the ideas of software structure were unfamiliar to the

programmers, who were experienced mainly in a dialect of Coral 66 [7]: supposedly

for real-time programming, but with no features (such as multi-programming, or inter-

rupt handling) that are now known to be required for that field (see Jackson [8]). The

ideas of the software standard were spread by example and mentoring. (I ordered

fifty copies of the NATO Software Engineering report for distribution to staff and

management.)

9.1 Tasks

A particular problem was that most programmers did not understand the concept of a

task, or process, in a multiprogramming environment. (The seminal description by

Wirth [9] was still years ahead.) Only after the successful implementation of the

OLOS suite (On-Line Operating System) were most staff convinced that this was a vi-

able and essential feature of the software.

10 Handover

The RDPS was handed over to the Royal Air Force in July 1973, at a formal meeting

which reviewed all the software according to the structure and terminology of the

Software Standard. The R.A.F. gave a demonstration of the completed system to in-

vited guests on 18th December 1973.

11 Origin of Software Standard

The ideas behind the document were largely derived from experience in the design of

software at Harwell (e.g. the Fortran compiler for the Atlas computer, and the HUW

system(10)) and “systems” thinking, helped by the NATO report on Software Engin-

eering. However, for the context of the Linesman RDPS, it was recognized that prin-

ciples were not enough, and great care was needed to express the ideas in concrete

form for this project.

A group of three people: myself, J.R Taylor (Harwell), and D.M. England

(Plessey), spent about three months in the spring of 1970 carefully writing the docu-

ment, in preparation for the eventual decision to change the direction of the software

development to the method explained here. The edition of the document that I pre-

served is dated July – November 1970.

9

12 Conclusion

This was an innovative software engineering project, on a larger scale than had previ-

ously been encountered in the U.K. Over a hundred people were employed on the de-

velopment of software for a major defence requirement. The software engineering

principles used were simple (and, some said, boring!), without any particular “meth-

od” or silver bullet: just carefully-focussed well-structured writing, with extensive ap-

propriate checking. The constraints were severe, yet a system was produced which

was handed over and accepted by the military. Because of its military nature, little

has been published about it hitherto.

'This changed everything' because the work reported here established basic prin-

ciples for Software Engineering: in System Theory. The idea of a system as a set of

interacting components, whose properties exceeded those of the individual compon-

ents, was reified here to provide an effective method of developing software. The

success of the project was attributable to the many people involved in the develop-

ment of the ideas as well as in the actual software development. The pressure on us

all was immense, conscious of the political and military implications of the project.

This was a major team effort, and the experiences of those involved enabled them to

carry out subsequent (classified) projects with great success. The major failure was

the consequence of the Official Secrets Act: details about the method could not be

widely disseminated. The learning was passed on to other developments only by the

people who had been involved (from Harwell and Plessey, and, to a lesser extent, the

Royal Air Force). I recognised that that the resulting system would be unlikely to be

fully satisfactory, but hoped that this work would enable the commissioning authority

(i.e. the British Ministry of Defence) to do a better job next time. Unfortunately it did

not. After Linesman, the United Kingdom Air Defence Ground Environment

(UKADGE) was out-sourced to a different company which encountered problems that

were different but with no significant improvement in outcome. But Harwell contin-

ued to develop software systems for sensitive projects, with great success.

What had previously been a failing project, severely criticised in the press and the

subject of parliamentary questioning [12], dropped out of the news. It was working.

13 About this document

Although the work described here was carried out in the years around 1970, it could

not be published then. The present document was started in 2010, as a “memoir” re-

cording my recollections about the project. Because it referred to classified informa-

tion, it was submitted for security clearance in May 2017, and was cleared for public-

ation. Further details are available from the author at <ian.pyle@cantab.net>.

mailto:ian.pyle@cantab.net

10

Appendix A – Contents of the Software Standard

Date Pages

1 INTRODUCTION 24.7.70 4 pp

1 Function of Document 1/1

2 Design Environment 1/1

3 Objectives of Documentation 1/1

4 Structure of the Standard 1/1

5 Designation and Approval of Docu-

ments

1/4

6 Status of Standard and Revision Pro-

cedures

1/4

2 SPECIFICATION OF OPERATIONAL REQUIREMENTS 26.10.70 10 pp

1 Introduction 2/1

2 Outline Requirements 2/1

3 Detailed Specification of Observed

Objects

2/2

4 Historical Assessment 2/3

5 Specification of Monitoring, As-

sessment and Control Procedures

2/3

6 Outline Specification of Computing

System

2/5

7 Specification of Operational Events 2/7

8 Specification of Transactions 2/8

3 DESIGN 24.7.70 14 pp

1 Introduction 3/1

2 Overall Software System Design 3/2

3 Presystem Design 3/5

4 Suite Design 3/6

5 Package Design 3/8

6 Module Design 3/13

4 IMPLEMENTATION AND TESTING 24.7.70 14 pp

1 Introduction 4/1

11

2 Module Implementation and Testing 4/1

3 Package Assembly and Testing 4/3

4 Suite Assembly and Testing 4/7

5 Presystem Assembly and Testing 4/9

6 System Assembly and Testing 4/12

5 UTILISATION OF SYSTEM RESOURCES AND MAINTEN-

ANCE OF RECORDS

26.10.70 10pp

1 Introduction 5/1

2 Maintenance of Records 5/2

3 Monitoring, Analysis, and Assessment

of Resource Utilisation

5/6

6 APPROVAL 0F DOCUMENTS 26.10.70 4 pp

1 Introduction 6/1

2 Levels of Approval 6/1

3 The Internal Approval Authority 6/3

4 Technical Editing 6/4

7 APPRAISAL AND PREPARATION FOR HANDOVER 27.11.70 5pp

1 Introduction 7/1

2 User Manuals and User Guides 7/1

3 Maintenance 7/3

4 Appraisal 7/4

12

 APPENDICES Date Pages

A DOCUMENT DESIGNATION, STATUS AND HANDLING 24.7.70 17 pp

 A1 Document Designation 11

 A2 Document Status and Handling 5

 A3 Integration of Existing Documents into

the Document Structure

 1

B DOCUMENT PREPARATION 24.7.70 40 pp

 B1 Document Style and Layout 11

 B2 Design Document Formats 29

C DIAGRAMMATIC AIDS 31.8.70 40 pp

 C1 Flowcharts 19

 C2 Decision Tables 2

 C3 Hierarchy Diagrams and Matrices 6

 C4 Communication Diagrams and Matrices 5

 C5 Data Structure Diagrams 3

 C6 Timing and Sequence Charts 2

 C7 Core Maps

D RECORD PREPARATION

 D1 Lists, Indexes, and Glossaries

 D2 Load Lists

 D3 Data Lists

 D4 Software Logs

E TECHNIQUES

 E1 Programming in Minicoral

 E2 Programming in XAL

 E3 Off-line Testing

 E4 On-line Testing and Field Trials

F REFERENCE MATERIAL

 F1 Glossary

 F2 Bibliography

13

Appendix B – The RDPS software system: overall requirements

The following is the text of Part 1, section 1, of SDA 000000/3, edition 5, which was

distributed for review, with the intent of raising its status to Issue 2 on 6 th September

1971
1. FUNCTION

The Radar Data Processing System (RDPS) provides the in-

formation for the central co-ordination and controlling element

of the Linesman U.K. Air Defence System. Its function is to

maintain and display representations of the airspace activity of

defence interest in the U.K. Air Defence Region and approaches

(both live and simulated) as a 'Recognised Air Picture', on the

basis of information received from radar, data links, operator

injections, and an environment simulator. The information is to

be displayed on equipment in the L1 building, and transmitted

over data links for use elsewhere, especially to Continental

Early Warning Stations.

1.1 PRIMARY FACILITIES

The facilities to be provided by the RDPS (Hardware and

Software) are defined in document SRA 000099. The following list

summarises the primary facilities that are required to fulfil

the function defined above.

Automatic input/output of information over data links from and to

equipments external to the RDPS, in locations outside the L1 build-

ing, with some checking of content.

● Input of information from operators by means of keys and rolling

balls at their consoles, using displays to assist the

construction of data fields and assist in checking prior to

injection.

● Output of information to operators by means of various displays:

Electronic Data Display (EDD), Marked Radar Display (MRD), Label

Plan Display (LPD), Higher Formation Display (HFD), General Situ-

ation Display (GSD) and Totes,

The information processing needed to provide these facilities

calls for:

 construction, maintenance and updating of a world model,

including transformation and vetting of inputs;

 periodic checks to determine whether significant or crit-

ical conditions have developed in the world model;

 messages played out by the system indicating condition

known to be of interest;

 routine playout of data from the world model for display or

transmission to another system;

 playout of specific data from the world model to console

operators on demand;

14

 computations performed on the world model on request from

console operators.

The software which provides these primary facilities is called Applica-

tions Software (or functional suites).

1.2 SECONDARY FACILITIES

In order that the primary facilities of the RDPS may be

fulfilled, there is a secondary function, namely to enable the

RDPS to operate continuously; giving service in the face of the

inevitable faults (or other anomalous occurrences) to hardware

and software, informing the system controller when any malfunc-

tion is suspected, and taking such automatic recovery procedures

as are possible.

A discussion of the availability to be expected is given in

Part 3. The secondary facilities therefore are:

(a) detecting and reporting suspected faults,

(b) degrading gracefully and recovering rapidly in the event

of a fault occurring,

(c) assisting engineers in the investigation and cure of

faults,

(d) reacting to instructions from the system controller con-

cerning the hardware of the RDPS.

The information processing needed to provide these secondary

facilities calls for:

 construction, maintenance and updating of system

records of the hardware state and the roles occupied;

 reloading of programs into computers when needed;

 reconstitution of data for programs between loading and

use;

 using a healthy computer to obtain information for diagnosis of

hardware faults;

 checking hardware for presence and correct functioning;

 communication with system controller about suspicious events;

 providing an on-line debugging environment.

The software which provides these secondary facilities is called

Foundation Software (or system foundation).

1.3 TERTIARY FUNCTION AND FACILITIES

The tertiary function needed is to prepare information to

be transferred into the main system, and post process informa-

tion transferred out of it. During the development stages, the

tertiary function is very important, as it calls for program

preparation facilities. The same facilities are also needed dur-

ing the operational use of the RDPS, in order to repair software

errors and make enhancements, although the level of activity

will be lower. This function calls for a general sequential job

execution facility, which is defined in Appendix D.

15

1.4 OTHER FUNCTIONS AND FACILITIES

Finally there are number of administrative and documenta-

tion tasks which will be processed by computer in the interests

of accuracy and efficiency. These include planning and maintain-

ing:.resource utilisation records, document numbering schemes,

and indexes.

References

1. P. Naur and B. Randell, eds: 1968 NATO Conference, “Software Engineering”, Report on

a conference sponsored by the NATO SCIENCE COMMITTEE, Garmisch, Germany, 7-11 Oc-

tober 1968. Scientific Affairs Division NATO, Brussels, Belgium. Also available at

http:/homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

2. I.C. Pyle: “Some Techniques in Multi-Computer System Software Design” Software –

Practice and Experience, vol 2, pp43-54 (1972)

3. J. Stenson: “Reconfiguration of computers in critical systems” in Computing with Real

Time Systems: Proc. First European Seminar on Real-Time Programming, A.E.R.E. Harwell,

April 5-7 1971 . Transcripta Books (1972)

4. Fourth report from the Select Committee on Science and Technology, Session 1970-71:

The prospects for the United Kingdom Computer Industry in the 1970's, Volume III: Appendix

42: The Linesman and Mediator Projects (Plessey). HMSO 621-III (1971)

5. Plessey document (“Restricted”): “Software Standard”, reference number SSJ

000001 of 27.11.70 , later changed to MSJ 000001, (1970).

6. Plessey document (“Restricted”): “The RDPS Software System” reference num-

ber SDA 000000, (1971)

7. Woodward, P.M.: “Official Definition of CORAL 66”. HMSO.

(ISBN 0114702217). November 1970.

8. K. Jackson: “Adding real-time features to CORAL 66 via the operating system”

in Computing with Real Time Systems: Proc. First European Seminar on Real-Time

Programming, A.E.R.E. Harwell, April 5-7 1971 . Transcripta Books (1972)

9. N. Wirth: “Toward a discipline of real-time programming” Communications of

the ACM (ISSN:0001-0782) Volume 20 , Issue 8 Pages: 577 – 583 (August 1977)

10. R. C. F. McLatchie: “HUW, an interactive computer system on IBM System

360/65”, SEAS XIV. Conference, Grenoble, 1969.
11. I.C. Pyle: “Hierarchies: An Ordered Approach to Software Design” Infotech State of the

Art lecture 15 June 1971, in Infotech State of the Art report, Software Engineering pp 255-268

(1972).

12. Select committee on Science and Technology (Subcommittee A) Minutes of evidence:

Wednesday 31st March 1971; Annex E: Question 5. Military/Civilian systems for Air Defence

and Air Traffic Control (Linesman./Mediator).

file:///C:/Users/wiki/International_Standard_Book_Number

