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Abstract—In this paper, we focus on Bluetooth Low Energy
(BLE) and in particular on its use for ranging, starting from
the observation that data on RSSI in BLE comes nearly for
free. The SDK typically provides to developers an easy way
to extract this data and use it to implement their algorithms.
However, RSSI based localization techniques have known limits.
An alternative information to be used in ranging for localization
purposes is Time-of-Flight (ToF). Still, this data is not provided
by the BLE API, therefore we propose a practical approach
for ToF extraction on top of BLE to be used as alternative
to or in combination with RSSI. Furthermore, with the paper,
we release the sources of the library used to perform the ToF
measurement on BLE, that can be used per se or as input for a
localization algorithm. We tested the measurements indoor and
outdoor at different distances, both considering Line-of-Sight
free or occluded by user body. We conclude evaluating ranging
performance, test repeatability and comparing the obtained
results with the popular RSSI based approach.

Index Terms—Localization, Ranging, Bluetooth, Time of
Flight, ToF, RSSI.

I. INTRODUCTION

Since its launch in 2010, Bluetooth Low Energy (BLE),
or Bluetooth 4.0, an emerging protocol that enables low-
power wireless connectivity, has pervasively reached con-
sumer devices such as smartphones, tablets, wearables and
laptops. This protocol has established itself not only for
communication purposes but also for additional functionalities
such as localization and beaconing.

One of the primary aims of fixed Bluetooth beacons is to
provide location (or proximity) based services to users in the
neighbors of the beacon itself. In fact, since the transmission
range is limited (from few meters up to hundred, depending
on settings), if a user receives the beacon’s packets it means
that he/she is in the proximity of the beacon and then he/she
may have the access for a specific service in that place. This
functionality has been also used at commercial level to find
things, by attaching a beacon to keys, wallets, bicycles, etc.

A more complex service that is commonly provided using
beacons is indoor localization [1, 2, 3], which aims at replac-
ing the service provided by GPS for indoor environments,
where the GPS signal cannot be received. This is frequently
based on the Received Signal Strength Indicator or RSSI,
from which distance between two beacons can be derived.
Unfortunately, RSSI has known limits mainly due to RF signal

propagation effects such as reflections, absorption, degradation
of measurements accuracy with distance, etc. Anyhow, on
top of RSSI several localization approach can be built, e.g.
based on triangulation (requiring at least 3 fixed beacons)
or fingerprinting. These techniques typically require either
complex filtering on measurements to improve accuracy or a
preceding off-line phase of data collection to be compared in
the on-line phase or for training a machine learning algorithm
[4, 5].

Distance between two BLE nodes can be extracted not
only from RSSI but also from Time-of-Flight (ToF). However,
in existing BLE implementations the ToF measure is not
provided and therefore a custom solution must be developed.
Being based on a different physical phenomenon with respect
to RSSI, it can be an alternative or a companion to RSSI
as input for a localization algorithm. Measuring ToF can be
challenging due to the clock resolution that would be required.
In this work, we describe how to extract this information
from a BLE module without changing the standard stack. To
partially overcome the issue with clock resolution, we propose
to oversample the signal and reconstruct it with advanced
filtering. We therefore provide a general method and the
corresponding open source library to be used on the nordic
nRF52 platform.

Therefore, the contribution of this paper is manifold: we
first show how to measure ToF using a commercial out-
of-the-box BLE hardware and how to embed this measure-
ment without interfering with the existing BLE stack. Then,
we collect and present measurements performed with both
ToF and RSSI approach for ranging in various scenarios
(i.e. indoor/outdoor and in line-of-sight/non-line-of-sight). We
evaluate performance and repeatability of measurements. In
section VI, we outline in particular the different behaviors
of RSSI and ToF when line of sight (LoS) is occluded by
the body carrying the BLE node. Moreover, it is part of this
contribution the open source software module for measuring
the ToF on BLE using the Nordic NRF52 platform.

II. BACKGROUND

As mentioned in the introduction, Bluetooth has been
exploited both commercially [3] and in research as a suitable
technology for localization.ISBN 978-3-903176-03-4 2018 IFIP



One frequent approach is based on proximity, which re-
quires the presence of several beacon in the surrounding.
To this purpose, a building (e.g. the Gatwick airport in
London in [6]) can be equipped with a number of Bluetooth
beacons, which periodically broadcast their IDs and some
other information about their status (battery level, sensor data).
A smartphone application can exploit the beacons signals by
activating the Bluetooth scanner; in this way, it will receive
the packets sent by all the beacons that are in the proximity of
the user. The packets are then decoded and used, for example,
to grant the access to a location-based service to the user.
The proximity is typically based on the RSSI, which can be
easly recovered through the BLE API. It is measured in dBm
and represents the amount of power detected by the receiver
during the reception of the packet. Since the power density
decreases with a known law (namely the Friis equation [7])
as the distance from the transmitter increases, it is possible to
estimate if the smartphone is close to the beacon or far, just
by knowing the RSSI value [8]. Therefore, by knowing the
beacons’ location, also the user’s location can be estimated.
This technique is usually known as model-based-localization.
Under ideal conditions (line of sight, absence of reflections,
accurate RSSI sampling) the RSSI-model-based-localization
provides in general good results. However, in indoor environ-
ments the radio propagation is strongly affected by reflections
on walls, ceiling and furnitures. This leads to achieve poor
distance estimation performance [8, 9, 10] when one tries to
predict the distance between the smartphone and the beacon
relying only on the RSSI data and using the physical models.
Moreover, since the model has a logarithmic nature, all kinds
of noise/error that affect the RSSI value are reflected in the
estimation error that grows linearly as the distance between
devices increases.

To overcome the effects of reflections and the non-idealities
of indoor propagation, data-based (or RSSI-fingerprinting-
based) techniques can be applied [3, 11, 12, 13]. Instead of
using a physical model for converting the RSSI to a distance
and then estimate the location, these techniques rely on an
off-line phase, where a number of RSSI values are collected
at known positions using a scanning device (i.e. the device to
be localized). Once the labeled data is collected, a machine
learning algorithm is trained to output the most probable
position given the previously acquired RSSI readings which
acts as a fingerprint for the propagation in the environment
under observation. One positive aspect of this strategy is that
the reference nodes (i.e. the beacons) do not need to be at
known position since the machine learning based model just
requires the measure to be deterministic. Therefore the only
constraints on the beacon is that it must be at fixed position.
This technique is more precise with respect to the use of
a propagation model, since the trained algorithm inherently
takes into account the effects of reflections that rarely are
modeled in the physical models.

Coupled with this, there are also tracking algorithms
that exploit models representing physical constraint (i.e. a
human target cannot jump from one side of the room to the
other in few millisecond) for filtering out bad estimations or
compensate for artifacts based on the history of the positions
[14, 15].

Even if the RSSI fingerprinting is widely used also in
commercial products [3, 16] there are some drawbacks that
limit its applicability and reliability:

• The RSSI values are strongly affected by the antenna ra-
diation, which is potentially different on each smartphone
model, and also by non-line-of-sight conditions [9]

• The off-line phase for collecting RSSI at known positions
requires time and is ad hoc for that place

• The off-line phase needs to be repeated if the building
structure is changed (furniture, mobile walls) because
also reflections change

• It cannot be applied to the class of application that rely
on mobile networks [17]

• Sometime large and hard to predict errors can rise [18].

On the other side there are techniques to measure the
distance traveled by a radio signal by means of the propagation
time between the sender and the receiver. They are called
Time-of-Fight (ToF) techniques [19].
Since radio signals travel at a known speed (i.e. the speed
of light, approximatively 30 cm every 1 ns) it is possible
to calculate the traveled distance having the travel time. As
a drawback, making a time measurement in the nanosecond
scale is a critical task; moreover, the clock drifts on the two
sides of the link impose additional limits. For these and other
reasons the main technology that is used to perform these
measurements is the Ultra Wide Band (UWB) radio.

The UWB radios send information using very short burst
(called chip) of electromagnetic perturbation. Because of the
short duration of these chips, the reflections on walls or ceiling
are received as echoes, and not as a reverberation overlaid to
the direct signal, making it possible to increase the reliability
of the localization through echo cancellation techniques [20].

The drawback is the need of dedicated UWB hardware
that is unavailable on today’s smartphones, and since market
forecasts envision the Bluetooth technology to become even
more pervasive than now [21] in few years, it is worth
investigating the use of ToF approach as an alternative or in
conjunction with RSSI methods.

It is worth to highlight that, in this paper, our aim is
not to provide a final solution for indoor localization. We
are instead focusing on ranging between two BLE standard
nodes, measured with the approach of ToF. Today’s indoor
localization systems, based on BLE are in fact ignoring ToF
as input to determine proximity, loosing a powerful source
of data for localization. This data is of course affected by
noise, anyway it still provides consistent information because



the environment impacts in a different manner on ToF with
respect to what usually experienced with RSSI.

III. TIME OF FLIGHT ON BLE

In general the Time-of-Flight technique can be applied to
localization because the time taken by the electromagnetic
wave to propagate from the transmitter to the receiver is
proportional to the distance between them. In a localization
scenario, once the distance between the target node and at least
three reference nodes (anchors) is known, the target node can
be localized with respect to the anchors on a two dimensional
plane. If the target needs to be localized in a three dimensional
space one additional anchor is necessary [22].

One of the main challenge of measuring the Time-of-Flight
is the needed time resolution; in fact, the propagation speed
of RF signals is approximately 300000 km/s. This means
that, in the ideal case, to achieve 30 cm of accuracy in a
single measurement, the BLE radio and the timer employed
for measuring the ToF should be clocked at 1 GHz, which
is almost two orders of magnitude more that what available
on the typical BLE SoC. Moreover, to correctly measure
the propagation time, a common clock reference should be
shared between the transmitter and the receiver, otherwise at
the receiver side the trigger for starting the timer would be
missing. The synchronization via wireless of a common clock
reference in the GHz range is unfeasible on todays low cost
SoC. Moreover, the need of being compliant with the BLE
further complicates it.

To face these constraints we applied two techniques:
• Averaging: A distance estimation is obtained by means

of averaging N consecutive ToF measurements. This
helps in increasing the accuracy even if the reference
timer used for measurement is clocked well below the
GHz

• Two-Way ToF: We will focus on the Two-Way propaga-
tion time. It implies a bidirectional communication and it
represents the time taken by the signal to propagate from
node A to node B, plus the processing time on node B,
plus the propagating time in the opposite direction, from
B to A.

The first technique does not require a sophisticated analysis,
it only needs a buffer on the SoC memory able to store N
timer values. Once the values are collected they are averaged
and then the distance is calculated based on the mean value.

Instead, the Two-Way Time-of-Flight measurement implies
to have a deep look into how BLE standard works. As per
specification, every time two BLE devices communicate over
the same RF channel, the radio activity of the two nodes is
coordinated to leave a non-overlapping interval of 150 us
between the transmission phases of the two radios. This
interval is called Inter Frame Space (IFS or TIFS) [23]1

and it applies to all the Bluetooth versions starting from 4.0.

1Vol6.B.4.1

Fig. 1: Connection event representation. The One-Way propagation time
tOW ToF is exaggerated to highlight the details of the measurement. Figure
not to scale.

Since this IFS is fixed by the specification, by measuring the
delay between the end of transmission to the actual start of
reception, it is possible to extract the information regarding
the Two-Way ToF (Fig. 1). By halving it we calculate the
One-Way ToF, which is denoted with tOW ToF in Fig. 1.

The IFS has to be respected every time the communication
is bidirectional and coordinated by a central device. In the
BLE world there are two main cases where this sort of
coordinated communication takes place:

• at every connection event after two devices have estab-
lished a BLE connection

• when a scanner device sends a scan request to an
advertiser (or a beacon).

In this paper, we focus on the first one, since it relies on
a BLE connection and, as a consequence, data collection
will be faster, more reliable and, since the connection data is
exchanged using channel hopping over 37 BLE channels, we
benefit of channel diversity. The second one, instead, exploits
the advertising mode of BLE, therefore it will happen only
on the 3 advertising channels [23]2. Its occurrence is less
frequent and less controllable, therefore the data collection
will be slower.

IV. SETUP

A. Requirements

First of all, we want to test off-the-shelf hardware with
its limitations. Since one of the aims of Bluetooth is to be
low cost, our solution cannot rely on high-end clocks nor
expensive hardware. We also want a solution that does not
require the redefinition of the specifications of Bluetooth,
therefore our measure will be performed on regular BLE
packets, without adding any kind of proprietary transmission.

B. Hardware

We will use two nodes, one will be referred as local the
other will be referred as remote. The local one will perform the
measurement and will estimate its distance from the remote

2Vol6.B.1.4



one, while the remote will not do anything else but behaving
like any BLE device (working as a BLE beacon). For the
Bluetooth terminology the local nodes will take the Central
role, while the remote nodes will take the Peripheral role.

As BLE radio we choose the nRF52840 by Nordic Semi-
conductor, which is a low cost Bluetooth compatible system
on chip (SoC). It includes the radio, the processing unit
(MCU) and all the typical peripherals of today’s microcon-
trollers (timer, ADC, UART, etc). Even if the hardware and
the libraries used are Bluetooth 5.0 compliant, for this paper,
we used only the features already available on the version 4.0
of the specifications.

C. Implementation

The local node will estimate its distance from the remote
one by exploiting the Inter Frame Space, as explained in
Sec. III. Therefore, it will measure the actual time interval
between the end of its transmission (denoted by in Fig. 1)
and the reception of the first symbol transmitted by the remote
node (denoted by in Fig. 1). The resulting time can be
described with:

tTW ToF BLE = TIFS + Tnbit + TD + 2 tOW ToF (1)

Where TW in tTW ToF BLE stands for Two-Way. The firsts
three terms of the sum are fixed and they are: TIFS = 150 µs,
TD = 47.65 µs, Tnbit = n µs, while 2 tOW ToF is the back
and forth propagation time. Tnbit is the on-air time for the first
n bits of the packet, and this fixed delay is due to the fact
that the actual reception can be detected by the hardware only
after some bit are received. Since Bluetooth 4.0 uses 1 Mbps
modulation, each bit is transmitted in 1 us. In our case, n = 40
because the MCU in use generates an event to stop the timer
only after the reception of the preamble and the access address
(40 bits in total). Instead, TD is a further delay, which is due
to the electronics, this value is retrieved from the datasheet
of the component. For details on the BLE packet format the
reader can refer to the specification document [23]3.

The time counting task is carried out using one of the
digital timers included in the SoC. This timer is configured to
increment the counter with a 16 MHz cadence and it is auto-
matically started and stopped by the radio peripheral without
the intervention of the MCU (this connection exploit the PPI
- Programmable Peripheral Interconnect of the nRF52840).
This ensures the minimum processing delay on the timer
management since the radio and the timer are connected by
hardware. The source code of the developed software module
used for measuring the ToF can be found in [24].

For the measurement we make use of one timer that is
active just for the time necessary for collecting one single ToF
measurement (tTW ToF BLE ≈ 200 µs). Since its maximum
current consumption is 120 µA and the maximum duty cycle
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is 0.0274, the measure adds, in the worst case, 3.2 µA to
the average current consumption. This value is comparable
with the current consumption of the SoC when it is in sleep
mode. Nevertheless, the measure can be carried out only
when the device is active and connected to another BLE
device: in this state the average current consumption of a
BLE central (again at the maximum duty cycle) is lower than
1 mA [25]. Therefore, ToF measure is negligible in terms of
consumption compared to the average current for maintaining
a BLE connection, being three orders of magnitude lower.

In other words, we are piggybacking the distance mea-
surement on a regular BLE communication, with very low
overhead. Of course, if no communication is taking place
between the BLE devices, the connection has to be established
first and some hundreds of packets has to be exchanged
before having some ToF result. The average current for his
procedure may consistently vary because, before establishing
the connection, the device is requested to go in scanning to
discover the remote node. Excluding extreme cases with very
unfavorable settings, the overall average consumption will be
below 1.5 mA, with a duration that depends on the number
of packets to be collected.

V. EXPERIMENTAL PROCEDURE

For each connection event, which includes one Tx phase
and one Rx phase happening on the same RF channel
(Fig. 1), we store the tTW ToF BLE , the RSSI and the carrier
frequency. In fact the Bluetooth frequency hopping scheme
requires a channel change (channel hop) at every connection
event.

During the tests the nodes where fixed on a stand at 40 cm
above the ground and the distance between the two nodes has
been varied to investigate how the ToF compares to RSSI
for estimating the distance. We collected data from 1000
connection events at: 20 cm, 50 cm, 1 m, 2 m and so on
with 1 m step up to 20 m.

The tests were repeated indoor and outdoor and, for both
environments, we tested the Line-of-Sight (LoS) and the
Non-Line-of-Sight (NLoS) conditions. The non-line-of-sight
condition is created interrupting the line-of-sight between the
two nodes using a man standing with its torso near (30 cm)
the local node. This is for simulating the situation where the
smartphone’s owner stands in between the smartphone itself
and the anchor.

Therefore, we collected a dataset that represents four cases:
Outdoor LoS, Indoor LoS, Outdoor NLoS, Indoor NLoS.
Moreover, the whole dataset has been collected twice, one
is for tuning the algorithm parameters (training set) and the
other is for testing the performance (test set).

Each test data, which consists of the triplet (ToF, RSSI,
Frequency), is collected for the same 1000 connection events.

4This value comes from: 200 µs
7.5 ms

, where 200 µs is the time the timer is
used and 7.5 ms is the minimum connection interval of the BLE standard
[23, Vol6.B.4.5.1].



If a connection events contains CRC errors, its triplet is
replaced by the following one. At the end of the test, data
is transferred to a PC as text file for further analysis.

VI. RESULTS & DISCUSSION

A. Physical Model

Once the data has been collected and stored in the PC,
we used Matlab for visualizing the results and numerically
compare ToF and RSSI performance.

First of all, we plotted the mean and the standard deviation
with respect to the distance (Fig. 2 shows the RSSI and ToF
data for the outdoor line-of-sight test). Then, we used the
mean values at each distance to estimate the range based on
the acquired data, therefore we trained two physical models
that are supposed to represent the behavior of the two quanti-
ties. The models are necessary if we want to compare test data
since the RSSI and ToF data is in two different measurement
units (respectively dBm and ns) then we cannot directly
compare the two results, thus we convert both in meters using
the aforementioned models. In this paper we do not want to
focus on the model itself, instead the purpose is to evaluate
the quality of the acquired data in a fair way (that is the reason
why we collected the RSSI and ToF for the same packets). In
fact, regardless the used technique (fingerprinting or model-
based), it is quite oblivious that the less noisy and more
repeatable is the algorithm’s input data, the more accurate
will be the localization.

We used a log-normal model for the RSSI and a linear
model for the ToF [8, 26, 27], which are described by the
two equations:

dRSSI = dRSSI
0 10

RSSI0−rssi
10αRSSI (2)

dToF = dToF
0 + cToF ∗ ToF (3)

Eq: 2 describes the mapping from the RSSI sample to
distance, and Eq: 3 equivalently from ToF data to distance.
The models parameters (dRSSI

0 , RSSI0, α for Eq: 2 and
cToF , dToF

0 for Eq: 3) are trained with linear regression on
the training set and the trained models are visible in Fig. 2 as
red traces. The objective of the training is to minimize the sum
of the squared error over the training set, therefore we will
carry on our analysis comparing results using the RMSE (Root
Mean Squared Error). In this regard we want to highlight that
the RMSE value tend to be larger than the mean error value.
In fact positive and negative errors will compensate each other
when the mean is calculated, while they won’t compensate in
the RMSE calculation. For this we believe the RMSE is more
relevant than mean error for evaluating ranging performance.

From Fig. 2 it is clear that the ToF measurements have a
large standard deviation; this was expected and it is because
the timer runs at 16 MHz, which means that for every clock
cycle the radio waves travels approximately for 18.8 m. Since
we are measuring the Two-Way ToF the distance to travel is
doubled (back and forth) then every timer tick represent 9.4m

of distance traveled by the radio waves. This 9.4 m is hence
the granularity of the distance estimation based on a single
ToF sample. Anyway, since the two devices are not clock-
cycle synchronized, the drift and the phase noise of the clocks
adds a measurement noise that can be considered uncorrelated
among different ToF samples. Therefore the clock noise act
as dithering noise, which permits to increase the resolution of
result over 9.4 m if multiple samples are averaged.

Another important observation is that the slope of linear
model used for ToF (red line in Fig. 2-(b)) should be the
inverse of the speed-of-light per definition, but actually it is
the inverse of a smaller value (approximately 180000 km

s ).
We still miss a satisfactory and complete explanation for this,
but we believe it is a second order effect of reflections.

B. Models performance

With the purpose of investigating how the training condition
impacts on the estimation error, we trained a different model
for each training set (indoor/outdoor, LoS/NLoS) and then
we tested them all on all test sets (note that the training and
test sets have been collected on different days). Moreover, we
created an outdoor generic model, which is trained with the
merge of the outdoor LoS and the outdoor NLoS datasets, and
we did the same also for the indoor condition. Recapping,
we trained six different models (outdoor LoS, indoor LoS,
outdoor NLoS, indoor NLoS, outdoor generic, indoor generic)
and we tested them in the four cases (outdoor LoS, indoor
LoS, outdoor NLoS, indoor NLoS). The resulting test error
are reported in Table I where the mean error and RMSE (Root
Mean Squared Error) is reported for all combinations of train
and test.

The error values in this paper must be considered in
the context of ranging and not of localization. In fact, for
localizing a target on a plane, the distances from at least three
known points are needed. It is clear that if the noise in the
three distance estimations is not correlated, the localization
error will be reduced with respect to the ranging error from
one single beacon.

There are some other important observations regarding
Table I:

• (almost) all models have their minimum error when the
test data has been collected in the same conditions of
train data; this was expected and it means that different
datasets collected with the same conditions are similar
(i.e. the experiment is repeatable)

• the RMS error obtained using ToF is always less than
the one obtained with RSSI. This is highlighted also by
the mean values (bottom line of Table I) that represent
how a specific model behaves in the general case

• the impact of the LoS or NLoS condition is more severe
on the RSSI data

• in some cases the RSSI error tends to diverge (almost up
to 60 m) while the ToF error remains under control



(a) RSSI data. (b) ToF data.

Fig. 2: Acquired data: RSSI values (a) and Time of flight (b), plotted with respect to nodes distance in the Outdoor LoS condition. The mean value over
1000 ToF samples is reported, error bars are one standard deviation high. The two colors depict the train and test dataset. The fitted model is in red.

TABLE I: Mean and RMSE (root mean squared error) values obtained training and testing the models with various combinations of the data sets. The
minimum Mean and RMSE of RSSI and ToF in each column is highlighted in bold. Unit is m.

C. Dependency on the number of packets

As already mentioned, the resolution is increased by the
means of averaging data over 1000 ToF samples, but this
implies that an application would have a response latency that
is at least the time needed to collect all the packets. Since we
collect one sample per connection event and since, as per
specification, the minimum time between connection events
is 7.5 ms, the minimum expected latency is 7.5 s, which
may be too high for some application. There are workarounds
for reducing the overall latency without violating the 7.5 ms.
Anyway it is important to analyze how the error changes as
the amount of samples for the average is reduced.

For doing this we repeated the model testing, using the
average of only the first N samples at each position for calcu-
lating the distance. We used this technique instead of random
sampling over the 1000 samples for obtaining coherent results,
since the frequency hopping pattern built in the BLE cannot
be randomized. We kept all the 1000 samples for the training
phase since it is supposed to be an off-line phase and the
latency for this is not considered critical. Two representative
results are reported in Fig. 3, which shows how the error
changes with respect to the number of averaged samples. Both
the errors for ToF and RSSI are reported; the data of the two
figures refers to Outdoor LoS and NLoS conditions.

(a) Outdoor LoS (b) Indoor LoS

Fig. 3: RMSE (Root mean squared error) in function of the number of packets
averaged for the outdoor LoS (a) and NLoS (b). Note that X axis is log scale.

We repeated this analysis for all the cases we collected
(the 24 combinations of training/testing in Table I) and the
behavior is not always the same. In the majority of the cases
(roughly 70 %) we obtained a benefit of at least 1 m on the
RMSE after averaging, anyway for some case like outdoor
NLoS condition reported in Fig. 3-(b), the RMSE is pretty
constant after the average, no matter how many packets are
considered. For the test cases where the average is effective we
did not have relevant decrease of the error over 100 samples
averaged, meaning that the time needed for collecting data can
be reduced down to 0.75s without sensibly worsen the perfor-
mance. Moreover the RSSI performance is almost unaffected



(a) RSSI (b) ToF

Fig. 4: Effect of channel hopping on raw (not averaged) RSSI and ToF data.
Each figure contains 1000 data points, then each circle may represent multiple
overlapped points.

by the amount of samples to average; this is explained by
the measurement granularity. As said the single measurement
of the ToF has a granularity of 1

16 MHz = 62.5 ns, which
is converted in 9.4 m. While the RSSI granularity is 1 dB;
this is less straight forward to convert to meters, but using
the model described by Eq.3, within the testing range (0.2 m-
20 m), the estimation granularity spans approximatively from
7.5 cm to 1.7 m. Now it is clear that, even in the worst case,
the single sample granularity of RSSI is smaller than ToF;
therefore adding samples to average is an effective technique
for ToF data, while it is less effective for the RSSI data. These
considerations can be taken into account when the localization
latency is a critical aspect of the application.

D. Dependency on the channel

The last observation we want to bring to the reader is the
effect of the channel hopping on the acquired data. In Fig. 4
the raw samples collected with the two nodes at 20 m of
distance in outdoor LoS conditions are plotted with respect to
the used channel. It is immediate to see (Fig. 4-(a)) that the
RSSI data is strongly affected by the channel. These results
where expected from the two-ray model of propagation [10,
28], since during the outdoor test we had the reflections of the
ground and also of a neighboring building. The reported figure
has been chosen as representative but at the other distances the
channel effect has a different behavior, which is dependent on
the surrounding environment. At the same time the ToF shows
more constant results (Fig. 4-(b)).

From this result, it is clear that using the RSSI for cal-
culating the distance between two nodes without considering
which channel each sample refers to is limiting. Modeling
the effects of reflections at different frequencies and in the
general case (without prior information on the environment)
is a complex task. In contrast, including the channel infor-
mation in a machine learning algorithm that automatically
takes it into account does not add a relevant overhead. In
particular, for the fingerprinting techniques giving more data
to the algorithm is likely to give better estimation result.
Unfortunately, the channel number information is not exposed
through the standard Bluetooth API of the most popular

mobile devices (Android/iOs smartphones) and also on many
embedded platforms, then it is much more challenging for the
developer to get that information.

E. Repeatability of the test

Although it is clear from the results that the collected ToF
data, even if noisy, can be used as an indicator of distance even
for narrow band protocols such as BLE, its usefulness may
be questionable if the measure isn’t repeatable over different
beacon models or over different specimens of the same bea-
con. With this regard we did a preliminary evaluation testing
both the nRF52840 and the nRF52832 with two different SDK
(respectively softdevice 140 v5.0.0-2alpha and softdevice 132
v5.0.0) and also another SoC (Texas Instruments cc2650, with
BLE stack v2.2) used as BLE beacon, the test has been
repeated on multiple specimens of the selected SoC.

What we found is that choosing a different BLE SoC
manufacturer has potentially the same impact to changing the
SDK, and the effect is a small change in the offset of the
measure. This offset should be nominally TIFS + Tnbit +
TD = 199.65 us which equals to Eq:1 when the distance
between the two devices is zero. As visible from the figures,
obtained results are slightly different (the measured offset is
few hundreds of nanosecond longer) and we justify this with
the hardware/software implementation of the BLE stack. In
fact we are dealing with time resolutions which are in the same
order of magnitude of clock interval of the SoC, therefore the
hardware/software architecture plays a fundamental role for
this kind of measure. Unfortunately this can hardly be calcu-
lated analytically since most of the BLE SoC manufacturers
give part of the SDK as pre-compiled binaries, then source
code cannot be analyzed. Nevertheless the results are stable
among specimens of the same device/SDK configuration, then
it is reasonable to speculate that the offset can be a constant
value statically associated with a specific configuration of
SDK-SoC model and broadcasted as part of advertising packet
payload, similarly to what already happen for the calibrated
Tx power field in the Eddystone UID packet [29].

This evaluation is preliminary and is only qualitative, any-
way it has been useful to verify that the experiment can be
brought in the real world outside the small, controlled and
homogeneous testbed we used.

VII. CONCLUSION

In this work, we investigated if RSSI is the only indicator
that can be used for localization based on Bluetooth Low
Energy or if ToF can be a viable additional one. Using low-
cost off-the-self hardware, we have shown that with BLE
the ToF can be measured if a sufficient amount of packets
is averaged. We calculated the energy overhead due to the
ToF measurement finding that in case the BLE connection is
already established (e.g. for data transfer) the overhead for
measuring the ToF is negligible. While, if the connection has
to be established for the purpose of localization the average



current consumption is higher (1 mA to 1.5 mA), which
corresponds to the consumption of a BLE central device
sending and receiving empty packets.

Experiments showed that ToF and RSSI have comparable
performance for distance estimation in the range 0 − 20 m;
however, ToF is slightly better in terms of RMSE. ToF per-
formance starts to degrade when the average is calculated on
windows below 100 samples. While for RSSI, averaging over
multiple samples does not have a particular effect, making it
a good choice when the latency is a key point.

As expected, LoS/NLoS condition had an impact on dis-
tance estimation with RSSI; this should be taken into account
when the device estimating its position is a Smartphone. In
such case, the possible proximity to owner’s body makes
difficult to predict if beacons and smartphone are in LoS. At
the same time, the LoS/NLoS has a lighter effect on distance
estimation when the ToF is used for ranging.

Another kind of data that is often discarded for the RSSI
based localization is the channel (or the career frequency).
The Bluetooth standard is based on channel hopping for
mitigating the effects of interference and fading, and in
this work we have shown the high impact of channels on
raw RSSI values. Therefore, to increase algorithms accuracy
RSSI data should be always coupled with the channel where
available. This observation may be considered by Bluetooth
radio manufacturers or by Bluetooth SIG when defining APIs
used for controlling the radio.

Results reported in this paper show that ToF alone is not
fully reliable for localization; however, it furnishes valuable
data at low price, useful to increase the accuracy of a model-
based or fingerprint-based algorithm.

Recently, the new version of Bluetooth specification has
been released. Version 5.0 includes some interesting features,
such as the long range support (up to 1 km in LoS), which is
achieved using coded modulations. With such a kind of long
range wireless communication, the RSSI based localization
will lose reliability because of the logarithmic nature of the
Log-normal model of propagation, therefore we expect ToF
measurement on Bluetooth 5.0 to gain interest soon.
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