
HAL Id: hal-01988850
https://inria.hal.science/hal-01988850

Submitted on 22 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Forensic Logging System for Siemens Programmable
Logic Controllers

Ken Yau, Kam-Pui Chow, Siu-Ming Yiu

To cite this version:
Ken Yau, Kam-Pui Chow, Siu-Ming Yiu. A Forensic Logging System for Siemens Programmable
Logic Controllers. 14th IFIP International Conference on Digital Forensics (DigitalForensics), Jan
2018, New Delhi, India. pp.331-349, �10.1007/978-3-319-99277-8_18�. �hal-01988850�

https://inria.hal.science/hal-01988850
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Chapter 18

A FORENSIC LOGGING SYSTEM
FOR SIEMENS PROGRAMMABLE
LOGIC CONTROLLERS

Ken Yau, Kam-Pui Chow and Siu-Ming Yiu

Abstract Critical infrastructure assets are monitored and managed by industrial
control systems. In recent years, these systems have evolved to adopt
common networking standards that expose them to cyber attacks. Since
programmable logic controllers are core components of industrial con-
trol systems, forensic examinations of these devices are vital during re-
sponses to security incidents. However, programmable logic controller
forensics is a challenging task because of the lack of effective logging
systems.

This chapter describes the design and implementation of a novel pro-
grammable logic controller logging system. Several tools are available
for generating programmable logic controller audit logs; these tools mon-
itor and record the values of programmable logic controller memory
variables for diagnostic purposes. However, the logged information is
inadequate for forensic investigations. To address this limitation, the
logging system extracts data from Siemens S7 communications protocol
traffic for forensic purposes. The extracted data is saved in an audit
log file in an easy-to-read format that enables a forensic investigator to
efficiently examine the activity of a programmable logic controller.

Keywords: Programmable logic controllers, forensics, logging system

1. Introduction
Critical infrastructure assets such as electricity generation plants,

transportation systems and manufacturing facilities are monitored and
controlled by industrial control systems [4]. Historically, industrial con-
trol systems were operated as isolated, proprietary systems with no ex-
ternal network connections. Thus, these systems and the critical infras-
tructure assets they managed were primarily exposed to internal as op-



332 ADVANCES IN DIGITAL FORENSICS XIV

posed to external threats. However, for reasons of convenience, modern
industrial control systems use TCP/IP and wireless protocols that con-
nect to corporate networks, vendor networks and even the Internet [12].
Additionally, industrial control systems increasingly use common em-
bedded system platforms and commercial off-the-shelf software [4]. As
a result, modern industrial control systems and the infrastructures they
manage are exposed to numerous external threats, including over the
Internet. Digital forensics is an important component of incident investi-
gations involving industrial control systems. The forensic investigations
provide insights to the root causes of incidents, enable the identifica-
tion and prosecution of attackers, and help design appropriate security
controls.

Programmable logic controllers (PLCs), which are used to automate
industrial systems and processes, are important components of industrial
control systems. Modern programmable logic controllers have evolved
to utilize common networking standards such as IEEE 802.3 Ethernet
and IEEE 802.11 Wi-Fi [1]. As a result, communicating with a pro-
grammable logic controller is similar to communicating with a commod-
ity computer. In addition, communications suites such as libnodave
and Snap7 for interfacing and exchanging data with Siemens S7 pro-
grammable logic controllers are readily available for download on the
Internet. The libnodave library provides the functions needed to con-
nect to and exchange data with Siemens S7 300/400 programmable logic
controllers (it partially supports Siemens S7 1200/1500 programmable
logic controllers) [5]. Snap 7 is an open source, 32/64 bit, multi-platform
Ethernet communications suite for interfacing natively with Siemens S7
programmable logic controllers [8].

The popular Shodan search engine has discovered numerous industrial
control systems around the world that can be accessed directly over the
Internet [6]. Such a tool enables an attacker to identify a vulnerable pro-
grammable logic controller, following which the attacker could directly
manipulate its logic code over the Internet. The attacker can then lever-
age the programmable logic controller to reach other control and network
devices [6]. The likelihood of such attacks on industrial control systems
makes digital forensic readiness of programmable logic controllers an im-
portant part of the security posture of critical infrastructure owners and
operators.

A key challenge is that the proprietary architectures, operating sys-
tems, filesystems and data formats of programmable logic controllers
make it difficult to apply traditional digital forensic tools and techniques
in investigations of industrial control system incidents. Additionally,



Yau, Chow & Yiu 333

Industrial Network

Corporate Network

Internet

PLC

Proposed PLC

Logging System

(PLS)

Figure 1. Programmable logic controller logging system.

programmable logic controllers operate vital industrial processes and
systems that cannot be stopped for data collection and examination.

Another key challenge is inadequate logging. Several tools have been
developed for generating audit logs for programmable logic controllers,
but the logged information is often insufficient for forensic investigations.
In general, these tools (e.g., PLC Logger [9]) monitor and capture the
values of programmable logic controller memory variables, and also ac-
cess programmable logic controller memory regions to record changes of
memory values along with timestamps for diagnostic purposes such as
tracing faults in machinery and improving system efficiency [15]. How-
ever, they do not capture crucial forensic information such as the IP
address of the device that connected to a programmable logic controller,
the commands sent to the programmable logic controller and the dura-
tion of the connection to the programmable logic controller.

This chapter describes a novel programmable logic controller logging
system that captures information required for digital forensic investiga-
tions. Figure 1 shows a schematic diagram of the programmable logic
controller logging system. The logging system is a lightweight computer
installed with a network packet analyzer that captures network traffic
between a programmable logic controller and other network devices. The
logging system dissects network packets and extracts potential forensic
information, which it logs in the form of timestamped records. The log
provides documentary evidence of the sequence of activities related to
commands and data transmitted between the programmable logic con-
troller and other network devices.

A case study involving a Siemens Simatic S7-1212C programmable
logic controller is presented. The decision to focus on a Siemens Simatic
S7 programmable logic controller was motivated by their widespread use
around the world [1] and the fact that they were targeted successfully
by the powerful and insidious Stuxnet malware. The case study uses the
Siemens programmable logic controller to create two simulated control
systems, a traffic light control system and a liquid mixing control sys-
tem. The case study demonstrates that the analysis of packet details in



334 ADVANCES IN DIGITAL FORENSICS XIV

the log file based on the characteristics of S7 communications protocol
yields valuable information about an attack, including the attacker’s IP
address, the specific actions undertaken by the attacker and the timeline.

2. Related Work
In the aftermath of the Stuxnet attack, researchers have significantly

increased their efforts to discover and mitigate the vulnerabilities ex-
isting in programmable logic controllers. However, limited research has
been conducted in the area of programmable logic controller forensics.
An example is the work of Chan et al. [2], which focuses on the logging
mechanisms of a Siemens programmable logic controller, specifically the
Siemens Total Integrated Automation Portal V13 (Siemens TIA Portal).
Chan and colleagues demonstrated that the Siemens logging system pro-
vides detailed information about event activities for forensic investiga-
tions. However, the system only works under two conditions. First, the
incidents must be created by the workstation that runs Siemens TIA
Portal. Second, the workstation with Siemens TIA Portal must not be
compromised; otherwise, the logging system cannot be trusted.

Wu and Nance [15] have shown that attacks on programmable logic
controllers can be determined by monitoring the memory addresses of
user control programs. In particular, they identified the memory ad-
dresses used by program code, and monitored and logged the memory
values to capture normal programmable logic controller behavior. The
logged behavior was used to determine whether the programmable logic
controller was running normally or was under attack.

Yau et al. [16] have proposed forensic solutions for programmable
logic controllers. One solution involves control program logic change
detection that employs user-defined rules to detect and record anomalous
programmable logic controller operations. Another solution captures
the values of relevant memory addresses used by a programmable logic
controller in a log file [2, 13]. Machine learning techniques were applied
to the logged file to identify anomalous programmable logic controller
behavior.

Wu and Nance [15] and Yau et al. [16] have demonstrated that it is
possible to detect anomalous programmable logic controller behavior.
However, they do not capture forensic information such as the IP ad-
dress of a device that connected to a programmable logic controller, the
commands sent to the programmable logic controller and the duration
of the connection to the programmable logic controller. The logging
system described in this chapter captures vital information that enable



Yau, Chow & Yiu 335

Q 0.5

Q 0.6

Q 0.7
Q 0.0

Q 0.1

I 0.0

I 0.1

Figure 2. Input/output connections for the traffic light control system.

forensic investigators to reconstruct events and identify anomalous pro-
grammable logic controller behavior.

3. PLC Architecture and Programming
A programmable logic controller is a solid state industrial control

computer with a central processor unit (CPU), memory, input/output
interface and programming functionality. It can be programmed to im-
plement functions such as control logic, sequencing, timing, arithmetic
data manipulations and counting in order to monitor and control ma-
chines and processes. It accepts data and status information from de-
vices such as switches and temperature sensors, and executes a control
program stored in its memory to provide appropriate commands to de-
vices such as valves, lights and motors [3].

Two simulated control systems, a traffic light control system [10] and
a liquid mixing control system [11], were set up to demonstrate the
proposed programmable logic controller logging system.

The traffic light control system controls vehicular and pedestrian traf-
fic at an intersection. In order to simulate the hardware configuration of
the traffic light control system, the Siemens Simatic S7 programmable
logic controller inputs I0.0 and I0.1 were connected to switches and the
programmable logic controller outputs Q0.0, Q0.1, Q0.5, Q0.6 and Q0.7
were connected to LEDs (Figure 2).

The liquid mixing control system mixes two ingredients, such differ-
ent colored paints. Two pipes at the top of the mixing tank supply the



336 ADVANCES IN DIGITAL FORENSICS XIV

Figure 3. Input/output connections for the liquid mixing control system [11].

two ingredients. A single pipe at the bottom of the tank drains the
mixture. In order to simulate the hardware configuration of the system,
the Siemens Simatic S7 programmable logic controller inputs were con-
nected to switches for the pumps and liquid level sensors. The outputs
were connected to LEDs corresponding to the motor, steam/drain valves
and pumps (Figure 3).

Table 1 presents the program instructions (inputs, outputs and mem-
ory bits) used by the Siemens Simatic S7 control programs for the traffic
light and liquid mixing control systems.

4. Proposed Logging System
The proposed programmable logic controller logging system is imple-

mented as a transparent proxy between an Ethernet network and the
programmable logic controller. The transparency ensures that the exist-
ing network configurations are maintained. The logging system forwards
all traffic except for S7 communications traffic [7].

The logging system has two processes. The first process is initi-
ated when the logging system detects a connection request to the pro-
grammable logic controller on TCP port 102. The process captures the
communications and filters potential forensic information such as IP ad-
dresses, commands and timestamps. The second process then translates
and stores the information in an audit log file that is easily read and
understood for forensic investigators. Table 2 shows a sample log file.



Yau, Chow & Yiu 337

Table 1. Program instructions for the traffic light and liquid mixing control systems.

Digital Traffic Light Liquid Mixing
Input Control System Control System
Address

I0.0 Switch on right-hand side Start switch for paint ingredient 1
of street

I0.1 Switch on left-hand side Start switch for paint ingredient 2
of street

I0.2 N/A Stop switch for paint ingredient 1
I0.3 N/A Stop switch for paint ingredient 2
I0.4 N/A Limit switch for maximum level
I0.5 N/A Limit switch for minimum level

Digital Traffic Light Liquid Mixing
Output Control System Control System
Address

Q0.0 Pedestrian red light Pump for paint ingredient 1
Q0.1 Pedestrian green light Pump for paint ingredient 2
Q0.2 N/A Motor for mixing paint ingredients
Q0.3 N/A Steam for heating mixture in tank
Q0.4 N/A Valve for draining mixture out of tank
Q0.5 Vehicle red light Pump for draining mixture out of tank
Q0.6 Vehicle yellow light N/A
Q0.7 Vehicle green light N/A

Memory Traffic Light Liquid Mixing
Bit Control System Control System

M0.0 Memory bit for switching Memory bit for high level reached
signal after green light
request from pedestrian

The logging system must be trusted because it is used for evidence
collection. It is vital that the system is not hacked and the data log is
not altered. Therefore, the logging system should be made hacker-proof
and tamper-resistant to the extent possible.

5. S7 Communications Protocol
The S7 communications protocol (S7comm) is a proprietary proto-

col used by the Siemens S7-300/400 family of programmable logic con-
trollers [13]. The protocol is also partially supported by the Siemens
S7-1200/1500 family of programmable logic controllers [8]. It is used for
programmable logic controller programming, data exchange with pro-
grammable logic controllers, programmable logic controller data access
by SCADA systems and diagnostics [13].



338 ADVANCES IN DIGITAL FORENSICS XIV

Table 2. Log file structure.

Date/Time Source IP Protocol PLC PLC Memory
Address Command Value Change

01 Jan 2017 192.168.0.10 TCP Establish N/A
10:05pm connection

01 Jan 2017 192.168.0.10 S7comm WRITE Set Output Q0.7

10:10pm to TRUE from FALSE

01 Jan 2017 192.168.0.10 S7comm CPU STOP N/A
11:00pm

01 Jan 2017 192.168.0.10 TCP Close N/A
11:30pm connection

Table 3. S7comm commands.

No. Command

1 Data Read/Write
2 Cyclic Data Read/Write
3 Directory Information
4 System Information
5 Block Move
6 PLC Control
7 Date and Time
8 Security
9 Programming

The Ethernet implementation of S7comm is based on ISO TCP (RFC
1006), which is block-oriented. Each block is called a protocol data unit
(PDU). The S7comm protocol is function-oriented or command-oriented,
i.e., each transmission contains a command or a reply to a command. If
a command or reply does not fit inside a single protocol data unit, it is
split across multiple protocol data units [8].

Table 3 shows the nine categories of S7comm commands. Each com-
mand has four components: (i) header; (ii) parameters; (iii) parameter
data; and (iv) data block.

The first two components of an S7comm command (header and pa-
rameters) are mandatory; the other components are optional. Figure 4
presents the protocol encapsulation structure followed by S7 Telegram,
ISO on TCP and TCP/IP.

S7comm data is inserted in the payloads of connection-oriented trans-
port protocol (COTP) packets. As shown in Figure 5, the first byte is
always 0x32, which corresponds to the protocol identifier [13].



Yau, Chow & Yiu 339

Header Params Pardata Data

TPKT COTP S7 PDU

Header ISO TCP Telegram

S7 Telegram

ISO on TCP

TCP/IP

S7 Command

Figure 4. Protocol encapsulation [8].

Payload of COTP data packet (0x32)

Figure 5. Data packets.

A programmable logic controller connection had to be established
in order to collect S7comm protocol traffic. The following steps were
involved in establishing a connection to the S7 programmable logic con-
troller [13]:

A connection was established to the programmable logic controller
using its IP address and TCP port 102.

A connection was established at the ISO layer (COTP connect re-
quest). The destination transport services activity point (TSAP)
data has two bytes. The first byte of the destination TSAP data
specifies the communications type (1 = PG (programming con-
sole); 2 = OP (Siemens HMI panel)). The second byte specifies
the slot and rack numbers (position of the programmable logic



340 ADVANCES IN DIGITAL FORENSICS XIV

Step 3

Step 1

Step 2

Figure 6. Establishing the S7 programmable logic controller connection.

controller). The slot number is coded in bits 0-4 while the rack
number is coded in bits 5-7.

A connection was established at the S7comm layer (s7comm.param.
func = 0xf0; setup communications). Details regarding the S7-
comm protocol (e.g., protocol data unit size) were negotiated.

Figure 6 shows a Wireshark capture of the S7 programmable logic
controller connection steps.

6. Creating Audit Log Records
To demonstrate the data logging methodology, a Siemens Simatic S7

1212C programmable logic controller was used to set up two simulated
control systems. A computer was installed with the Snap7 software to
create anomalous programmable logic controller behavior. Another com-
puter was installed with Wireshark and the S7comm Wireshark dissector
plugin [14] to capture programmable logic controller activities. Figure 7
shows the experimental setup.

The experiments involved two parts. In the first part, the traffic light
control system was connected to a wireless access point. In the second



Yau, Chow & Yiu 341

1. Traffic Light Control

PLC

Traffic
Lights/Switches

Wireless AP

Snap 7 Wireshark

Liquid Mixing
Device

2. Liquid Mixing Control

PLC

Figure 7. Experimental setup.

part, the traffic light control system was replaced with the liquid mixing
control system. Four common programmable logic controller requests
were employed: (i) CPU START; (ii) CPU STOP; (iii) READ; and (iv)
WRITE.

6.1 Traffic Light Control System
The following steps were involved in sending CPU STOP/START

requests to the programmable logic controller:

Wireshark was started to capture network packets.

Snap7 established a connection to the programmable logic con-
troller.

Snap7 sent the CPU STOP request to the programmable logic
controller.

Snap7 sent the CPU START request to the programmable logic
controller.

Snap7 closed its connection to the programmable logic controller.

Wireshark was stopped and the captured packets were saved in a
log file.



342 ADVANCES IN DIGITAL FORENSICS XIV

1

2

3

4

Figure 8. Programmable logic controller STOP and START requests.

The packets with the programmable logic controller IP address
[192.168.0.1] were filtered for analysis.

Figure 8 shows the captured log file associated with the programmable
logic controller STOP and START requests. Analysis of the log file yields
the following reconstruction of programmable logic controller activities:

10:07:02am, 18 Sep 2016: A computer [192.168.0.103] es-
tablished a connection to the programmable logic controller [192.
168.0.1].

10:07:12am, 18 Sep 2016: The computer sent a CPU STOP
request to the programmable logic controller to stop the traffic
light system.

10:07:25am, 18 Sep 2016: The computer sent a CPU START
request to the programmable logic controller to re-start the traffic
light system.

12:07:46pm, 18 Sep 2016: The computer closed its connection
to the programmable logic controller.

Based on the data in Table 1, the memory values of the programmable
logic controller outputs at 12:07:46pm, 18 Sep 2016 indicate that all
the pedestrian and vehicle lights were turned on. The programmable



Yau, Chow & Yiu 343

logic controller operation appears to be anomalous because an attempt
was made to turn on all the traffic lights at the same time.

The following steps were involved in sending READ and WRITE re-
quests to the programmable logic controller:

Wireshark was started to capture network packets.

Snap7 established a connection to the programmable logic con-
troller.

Snap7 read the values of inputs (I0.0 to I0.7), outputs (Q0.0 to
Q0.7) and memory bits (M0.0 to M0.7) from the programmable
logic controller.

Snap7 wrote the value 1 to inputs (I0.0 to I07), outputs (O0.0 to
0.7) and memory bits (M0.0 to M0.7) of the programmable logic
controller.

Snap7 closed its connection to the programmable logic controller.

Wireshark was stopped and the captured packets were saved in a
log file.

The packets with the programmable logic controller IP address
[192.168.0.1] were filtered for analysis.

Figure 9 shows the captured log file associated with the programmable
logic controller READ and WRITE requests. The following controller
activities can be reconstructed in time sequence upon analyzing the log
file:

12:07:28pm, 18 Sep 2016: A computer [192.168.0.103] es-
tablished a connection to the programmable logic controller [192.
168.0.1].

12:07:31pm, 18 Sep 2016: The log reveals that the computer
read memory values from the programmable logic controller (shown
in Figure 9):

– I0.7 to I0.0: 0x03 [0000 0011]

– Q0.7 to Q0.0: 0x03 [0000 0011]

– M0.7 to M0.0: 0x00 [0000 0000]

12:07:44pm, 18 Sep 2016: The log reveals that the programma-
ble logic controller memory values were altered as follows (shown
in Figure 9):



344 ADVANCES IN DIGITAL FORENSICS XIV

Read Memory Values Alter Memory Values

Figure 9. Programmable logic controller READ and WRITE requests.

– I0.7 to I0.0: 0xff [1111 1111]

– Q0.7 to Q0.0: 0xff [1111 1111]

– M0.7 to M0.0: 0xff [1111 1111]

12:07:46pm, 18 Sep 2016: The computer closed its connection
to the programmable logic controller.

Based on the data in Table 1, the memory values of the programmable
logic controller outputs at 12:07:44pm, 18 Sep 2016 indicate that all
the pedestrian and vehicle lights were turned on. The programmable
logic controller operation appears to be anomalous because an attempt
was made to turn on all the traffic lights at the same time.

6.2 Liquid Mixing Control System
The following steps were involved in sending CPU WRITE requests

to the programmable logic controller.

Wireshark was started to capture network packets.

Snap7 established a connection to the programmable logic con-
troller.



Yau, Chow & Yiu 345

Figure 10. Programmable logic controller WRITE requests.

Snap7 wrote the value 1 to outputs (O0.0 to 0.7) of the pro-
grammable logic controller.

Snap7 closed its connection to the programmable logic controller.

Wireshark was stopped and the captured packets were saved in a
log file.

The packets with the programmable logic controller IP address
[192.168.0.1] were filtered for analysis.

Figure 10 shows the captured log file associated with the programmable
logic controller WRITE requests. The following controller activities can
be reconstructed in time sequence upon analyzing the log file:

08:50:25pm, 19 Aug 2017: A computer [192.168.0.102] es-
tablished a connection to the programmable logic controller [192.
168.0.1].

08:50:34pm, 19 Aug 2017: The log reveals that the programma-
ble logic controller memory values were altered as follows (shown
in Figure 10):

Q0.7 to Q0.0: 0x33 [0011 0011]

12:07:42pm, 19 Aug 2017: The computer closed its connection
to the programmable logic controller.



346 ADVANCES IN DIGITAL FORENSICS XIV

Based on the data in Table 1, the memory values of the programmable
logic controller at 08:50:34pm, 19 Aug 2017 indicate that the pump
for paint ingredient 1 and the pump for paint ingredient 2 were turned
on; meanwhile, the drain valve and drain pump were also turned on.
The programmable logic controller operation appears to be anomalous
because an attempt was made to turn on all the valves and pumps at
the same time.

7. Experimental Results and Discussion
In the experiments, four common programmable logic controller re-

quests, CPU START, CPU STOP, READ and WRITE were identified
by packet analysis using Wireshark with the S7 dissector plugin. The
sequences with timestamps related to programmable logic controller con-
nection establishments and requests were also captured in the log file.
Based on the log file and the programmable logic controller application,
an investigator could reconstruct the anomalous programmable logic
controller operations. In addition to the four programmable logic con-
troller requests, other programmable logic controller activities were also
be revealed via packet analysis, including programmable logic controller
program uploads and downloads. The upload and download commands
have the S7comm function parameter (first parameter byte) of 0x1A [7].
The download commands provide valuable information about the time-
line of programmable logic controller program updates.

The experiments used Wireshark with the S7 dissector plugin to cap-
ture and analyze S7 packets for forensic purposes. However, due to the
large volume of packets, it is infeasible to capture all the information re-
lated to the packets for analysis. Therefore, the proposed programmable
logic controller logging system uses Wireshark with the S7 dissector plu-
gin and an add-on feature to capture packets selectively. When the
logging system detects a connection request sent to the programmable
logic controller on TCP port 102, it starts capturing the communications.
Likewise, when the logging system detects a disconnection request sent
to programmable logic controller on TCP port 102, it stops capturing
the communications.

Since the raw data capture is disorganized, a logging system process
converts the captured packet information to a human-readable format
that is stored in an audit file. Thus, a forensic investigator would only
have to examine the audit file. This reduces the effort required by the
investigator, who would not be expected to be a control system expert.

Since the ISO-TSAP packets that encapsulate the proprietary Siemens
S7comm protocol are sent in plaintext, it is relatively simple to reverse



Yau, Chow & Yiu 347

engineer them and make modifications as needed. This characteristic of
ISO-TSAP packets enables attackers to replicate operator activities in-
volving programming and management, including turning off the CPU,
disabling memory protection and uploading new project files to the pro-
grammable logic controller [1]. On one hand, attackers leverage ISO-
TSAP to monitor and interfere with programmable logic controller op-
erations. On the other hand, the proposed logging system leverages
ISO-TSAP to capture valuable information about attacker activities for
forensic investigations.

Several tools are available for creating audit logs for programmable
logic controllers, but the information they capture is insufficient in foren-
sics investigations. Specifically, the audit logs usually capture the val-
ues of relevant memory addresses used by programmable logic controller
programs to support debugging and troubleshooting. Crucial forensic in-
formation is always missing, including the IP address of the device that
connected to the programmable logic controller, the commands (e.g.,
READ data, WRITE data and DOWNLOAD program) sent to the pro-
grammable logic controller and the duration of the connection to the
programmable logic controller.

Finally, the logging system incorporate two processes in order to min-
imize its impact on programmable logic controller operations. The first
process is responsible for capturing packets. The second process an-
alyzes the captured packets and stores forensically-relevant data in a
human-readable format in the audit log file. Because this process is
time consuming, it is executed as a batch process instead of a real-time
process to enhance the efficiency of the logging system.

8. Conclusions
Current programmable logic controller logging tools provide insuffi-

cient information for digital forensic investigations. To address this lim-
itation, the logging system described in this chapter analyzes network
traffic between a Siemens Simatic S7 programmable logic controller and
network devices based on the Siemens S7 communications protocol to
record evidence of the sequence of activities related to commands and
data exchanged between the programmable logic controller and other
network devices. The log provides valuable information about attacks,
including the attacker IP addresses, specific actions and timelines. The
decision to focus on a Siemens Simatic S7 programmable logic controller
was motivated by their widespread use [1] and the fact that they were
targeted successfully by the insidious Stuxnet malware.



348 ADVANCES IN DIGITAL FORENSICS XIV

Future research will focus on developing a production logging system
for industrial control system environments. Attempts will also be made
to expand the logging capabilities to handle other popular industrial
control protocols such as Modbus and DNP3 for various programmable
logic controller models.

References

[1] D. Beresford, Exploiting Siemens Simatic S7 PLCs, presented at
Black Hat USA, 2011.

[2] R. Chan and K. Chow, Forensic analysis of a Siemens programmable
logic controller, in Critical Infrastructure Protection X, M. Rice and
S. Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 117–130, 2016.

[3] T. Cruz, J. Barrigas, J. Proenca, A. Graziano, S. Panzieri, L. Lev
and P. Simoes, Improving network security monitoring for indus-
trial control systems, Proceedings of the IFIP/IEEE International
Symposium on Integrated Network Management, pp. 878–881, 2015.

[4] European Union Agency for Network and Information Security,
Critical Infrastructures and Services, Heraklion, Greece (enisa.
europa.eu/topics/critical-information-infrastructures-
and-services), 2017.

[5] T. Hergenhahn, libnodave (sourceforge.net/projects/libno
dave), 2014.

[6] J. Klick, S. Lau, D. Marzin, J. Malchow and V. Roth, Internet-facing
PLCs – A new back orifice, presented at Blackhat USA, 2015.

[7] J. Malchow, D. Marzin, J. Klick, R. Kovacs and V. Roth, PLC
Guard: A practical defense against attacks on cyber-physical sys-
tems, Proceedings of the IEEE Conference on Communications and
Network Security, pp. 326–334, 2015.

[8] D. Nardella, Step 7 Open Source Ethernet Communications Suite,
Bari, Italy (snap7.sourceforge.net), 2016.

[9] PLC-Logger Project, PLC-Logger and Analyzer (sourceforge.
net/projects/plclogger), 2014.

[10] Siemens, SIMATIC S7-300 Programmable Controller Quick Start,
Primer, Preface, C79000-G7076-C500-01, Nuremberg, Germany,
1996.

[11] Siemens, SIMATIC S7-200 Programmable Controller System Man-
ual, 6ES7298-8FA01-8BH0, Edition 08/2005, Nuremberg, Germany,
2005.



Yau, Chow & Yiu 349

[12] T. Spyridopoulos, T. Tryfonas and J. May, Incident analysis and
digital forensics of SCADA and industrial control systems, Pro-
ceedings of the Eighth IET International System Safety Conference
Incorporating the Cyber Security Conference, 2013.

[13] T. Wiens, S7 Communications (s7comm), Wireshark Wiki (wiki.
wireshark.org/S7comm), 2016.

[14] T. Wiens, S7comm Wireshark Dissector Plugin (sourceforge.net/
projects/s7commwireshark), 2017.

[15] T. Wu and J. Nurse, Exploring the use of PLC debugging tools for
digital forensic investigations of SCADA systems, Journal of Digital
Forensics, Security and Law, vol. 10(4), pp. 79–96, 2015.

[16] K. Yau and K. Chow, PLC forensics based on control program logic
change detection, Journal of Digital Forensics, Security and Law,
vol. 10(4), pp. 59–68, 2015.

[17] K. Yau and K. Chow, Detecting anomalous programmable logic con-
troller events using machine learning, in Advances in Digital Foren-
sics XIII, G. Peterson and S. Shenoi (Eds.), Springer, Heidelberg,
Germany, pp. 81–94, 2017.

[18] K. Yau, K. Chow, S. Yiu and C. Chan, Detecting anomalous behav-
ior of a PLC using semi-supervised machine learning, Proceedings
of the IEEE Conference on Communications and Network Security,
pp. 580–585, 2017.






