N
N

N

HAL

open science

A Forensic Logging System for Siemens Programmable
Logic Controllers
Ken Yau, Kam-Pui Chow, Siu-Ming Yiu

» To cite this version:

Ken Yau, Kam-Pui Chow, Siu-Ming Yiu. A Forensic Logging System for Siemens Programmable
Logic Controllers. 14th IFIP International Conference on Digital Forensics (DigitalForensics), Jan

2018, New Delhi, India. pp.331-349, 10.1007/978-3-319-99277-8 18 . hal-01988850

HAL Id: hal-01988850
https://inria.hal.science/hal-01988850
Submitted on 22 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01988850
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Chapter 18

A FORENSIC LOGGING SYSTEM
FOR SIEMENS PROGRAMMABLE
LOGIC CONTROLLERS

Ken Yau, Kam-Pui Chow and Siu-Ming Yiu

Abstract Critical infrastructure assets are monitored and managed by industrial
control systems. In recent years, these systems have evolved to adopt
common networking standards that expose them to cyber attacks. Since
programmable logic controllers are core components of industrial con-
trol systems, forensic examinations of these devices are vital during re-
sponses to security incidents. However, programmable logic controller
forensics is a challenging task because of the lack of effective logging
systems.

This chapter describes the design and implementation of a novel pro-
grammable logic controller logging system. Several tools are available
for generating programmable logic controller audit logs; these tools mon-
itor and record the values of programmable logic controller memory
variables for diagnostic purposes. However, the logged information is
inadequate for forensic investigations. To address this limitation, the
logging system extracts data from Siemens S7 communications protocol
traffic for forensic purposes. The extracted data is saved in an audit
log file in an easy-to-read format that enables a forensic investigator to
efficiently examine the activity of a programmable logic controller.

Keywords: Programmable logic controllers, forensics, logging system

1. Introduction

Critical infrastructure assets such as electricity generation plants,
transportation systems and manufacturing facilities are monitored and
controlled by industrial control systems [4]. Historically, industrial con-
trol systems were operated as isolated, proprietary systems with no ex-
ternal network connections. Thus, these systems and the critical infras-
tructure assets they managed were primarily exposed to internal as op-

332 ADVANCES IN DIGITAL FORENSICS XIV

posed to external threats. However, for reasons of convenience, modern
industrial control systems use TCP/IP and wireless protocols that con-
nect to corporate networks, vendor networks and even the Internet [12].
Additionally, industrial control systems increasingly use common em-
bedded system platforms and commercial off-the-shelf software [4]. As
a result, modern industrial control systems and the infrastructures they
manage are exposed to numerous external threats, including over the
Internet. Digital forensics is an important component of incident investi-
gations involving industrial control systems. The forensic investigations
provide insights to the root causes of incidents, enable the identifica-
tion and prosecution of attackers, and help design appropriate security
controls.

Programmable logic controllers (PLCs), which are used to automate
industrial systems and processes, are important components of industrial
control systems. Modern programmable logic controllers have evolved
to utilize common networking standards such as IEEE 802.3 Ethernet
and IEEE 802.11 Wi-Fi [1]. As a result, communicating with a pro-
grammable logic controller is similar to communicating with a commod-
ity computer. In addition, communications suites such as libnodave
and Snap?7 for interfacing and exchanging data with Siemens S7 pro-
grammable logic controllers are readily available for download on the
Internet. The libnodave library provides the functions needed to con-
nect to and exchange data with Siemens S7 300/400 programmable logic
controllers (it partially supports Siemens S7 1200/1500 programmable
logic controllers) [5]. Snap 7 is an open source, 32/64 bit, multi-platform
Ethernet communications suite for interfacing natively with Siemens S7
programmable logic controllers [8].

The popular Shodan search engine has discovered numerous industrial
control systems around the world that can be accessed directly over the
Internet [6]. Such a tool enables an attacker to identify a vulnerable pro-
grammable logic controller, following which the attacker could directly
manipulate its logic code over the Internet. The attacker can then lever-
age the programmable logic controller to reach other control and network
devices [6]. The likelihood of such attacks on industrial control systems
makes digital forensic readiness of programmable logic controllers an im-
portant part of the security posture of critical infrastructure owners and
operators.

A key challenge is that the proprietary architectures, operating sys-
tems, filesystems and data formats of programmable logic controllers
make it difficult to apply traditional digital forensic tools and techniques
in investigations of industrial control system incidents. Additionally,

Yau, Chow & Yiu 333

® ® —
Industrial Network . Proposed PLC)
LS Logging Syst L WY
Corporate Network gging System ’
PLS
Internet ® (PLS) ®

Figure 1. Programmable logic controller logging system.

programmable logic controllers operate vital industrial processes and
systems that cannot be stopped for data collection and examination.

Another key challenge is inadequate logging. Several tools have been
developed for generating audit logs for programmable logic controllers,
but the logged information is often insufficient for forensic investigations.
In general, these tools (e.g., PLC Logger [9]) monitor and capture the
values of programmable logic controller memory variables, and also ac-
cess programmable logic controller memory regions to record changes of
memory values along with timestamps for diagnostic purposes such as
tracing faults in machinery and improving system efficiency [15]. How-
ever, they do not capture crucial forensic information such as the IP
address of the device that connected to a programmable logic controller,
the commands sent to the programmable logic controller and the dura-
tion of the connection to the programmable logic controller.

This chapter describes a novel programmable logic controller logging
system that captures information required for digital forensic investiga-
tions. Figure 1 shows a schematic diagram of the programmable logic
controller logging system. The logging system is a lightweight computer
installed with a network packet analyzer that captures network traffic
between a programmable logic controller and other network devices. The
logging system dissects network packets and extracts potential forensic
information, which it logs in the form of timestamped records. The log
provides documentary evidence of the sequence of activities related to
commands and data transmitted between the programmable logic con-
troller and other network devices.

A case study involving a Siemens Simatic S7-1212C programmable
logic controller is presented. The decision to focus on a Siemens Simatic
S7 programmable logic controller was motivated by their widespread use
around the world [1] and the fact that they were targeted successfully
by the powerful and insidious Stuxnet malware. The case study uses the
Siemens programmable logic controller to create two simulated control
systems, a traffic light control system and a liquid mixing control sys-
tem. The case study demonstrates that the analysis of packet details in

334 ADVANCES IN DIGITAL FORENSICS XIV

the log file based on the characteristics of S7 communications protocol
yields valuable information about an attack, including the attacker’s 1P
address, the specific actions undertaken by the attacker and the timeline.

2. Related Work

In the aftermath of the Stuxnet attack, researchers have significantly
increased their efforts to discover and mitigate the vulnerabilities ex-
isting in programmable logic controllers. However, limited research has
been conducted in the area of programmable logic controller forensics.
An example is the work of Chan et al. [2], which focuses on the logging
mechanisms of a Siemens programmable logic controller, specifically the
Siemens Total Integrated Automation Portal V13 (Siemens TIA Portal).
Chan and colleagues demonstrated that the Siemens logging system pro-
vides detailed information about event activities for forensic investiga-
tions. However, the system only works under two conditions. First, the
incidents must be created by the workstation that runs Siemens TIA
Portal. Second, the workstation with Siemens TIA Portal must not be
compromised; otherwise, the logging system cannot be trusted.

Wu and Nance [15] have shown that attacks on programmable logic
controllers can be determined by monitoring the memory addresses of
user control programs. In particular, they identified the memory ad-
dresses used by program code, and monitored and logged the memory
values to capture normal programmable logic controller behavior. The
logged behavior was used to determine whether the programmable logic
controller was running normally or was under attack.

Yau et al. [16] have proposed forensic solutions for programmable
logic controllers. One solution involves control program logic change
detection that employs user-defined rules to detect and record anomalous
programmable logic controller operations. Another solution captures
the values of relevant memory addresses used by a programmable logic
controller in a log file [2, 13]. Machine learning techniques were applied
to the logged file to identify anomalous programmable logic controller
behavior.

Wu and Nance [15] and Yau et al. [16] have demonstrated that it is
possible to detect anomalous programmable logic controller behavior.
However, they do not capture forensic information such as the IP ad-
dress of a device that connected to a programmable logic controller, the
commands sent to the programmable logic controller and the duration
of the connection to the programmable logic controller. The logging
system described in this chapter captures vital information that enable

Yau, Chow & Yiu 335

Qo.0
Qo.1
10.0

A

10.1

A

i \

Figure 2. Input/output connections for the traffic light control system.

forensic investigators to reconstruct events and identify anomalous pro-
grammable logic controller behavior.

3. PLC Architecture and Programming

A programmable logic controller is a solid state industrial control
computer with a central processor unit (CPU), memory, input/output
interface and programming functionality. It can be programmed to im-
plement functions such as control logic, sequencing, timing, arithmetic
data manipulations and counting in order to monitor and control ma-
chines and processes. It accepts data and status information from de-
vices such as switches and temperature sensors, and executes a control
program stored in its memory to provide appropriate commands to de-
vices such as valves, lights and motors [3].

Two simulated control systems, a traffic light control system [10] and
a liquid mixing control system [11], were set up to demonstrate the
proposed programmable logic controller logging system.

The traffic light control system controls vehicular and pedestrian traf-
fic at an intersection. In order to simulate the hardware configuration of
the traffic light control system, the Siemens Simatic S7 programmable
logic controller inputs 10.0 and 10.1 were connected to switches and the
programmable logic controller outputs Q0.0, QO0.1, Q0.5, Q0.6 and Q0.7
were connected to LEDs (Figure 2).

The liquid mixing control system mixes two ingredients, such differ-
ent colored paints. Two pipes at the top of the mixing tank supply the

336 ADVANCES IN DIGITAL FORENSICS XIV

Pump 1 Controls Pump 1 Pump 2 Pump 2 Controls
Q0.0 Q0.1

(® N1 o= (@

S start_1 ® Start 2
o|lo I0-0 I‘M'_‘ _ g 2b:)xo.l
@ @ Stop_2

Stop_1 High Level
clo 10.2 go_ e oloro.3

_03 Steam Valve
Low Level —
10.5 ,S E,

Mixer Motor Q0.2
/ Q0.3
1 I [7 (5_‘%
Drain Vvalve >‘-< Drain Pump
Q0.4 Q0.5

Figure 8. Input/output connections for the liquid mixing control system [11].

two ingredients. A single pipe at the bottom of the tank drains the
mixture. In order to simulate the hardware configuration of the system,
the Siemens Simatic S7 programmable logic controller inputs were con-
nected to switches for the pumps and liquid level sensors. The outputs
were connected to LEDs corresponding to the motor, steam/drain valves
and pumps (Figure 3).

Table 1 presents the program instructions (inputs, outputs and mem-
ory bits) used by the Siemens Simatic S7 control programs for the traffic
light and liquid mixing control systems.

4. Proposed Logging System

The proposed programmable logic controller logging system is imple-
mented as a transparent proxy between an Ethernet network and the
programmable logic controller. The transparency ensures that the exist-
ing network configurations are maintained. The logging system forwards
all traffic except for S7 communications traffic [7].

The logging system has two processes. The first process is initi-
ated when the logging system detects a connection request to the pro-
grammable logic controller on TCP port 102. The process captures the
communications and filters potential forensic information such as IP ad-
dresses, commands and timestamps. The second process then translates
and stores the information in an audit log file that is easily read and
understood for forensic investigators. Table 2 shows a sample log file.

Yau, Chow & Yiu

337

Table 1. Program instructions for the traffic light and liquid mixing control systems.
Digital Traffic Light Liquid Mixing
Input Control System Control System
Address
10.0 Switch on right-hand side Start switch for paint ingredient 1
of street
10.1 Switch on left-hand side Start switch for paint ingredient 2
of street
10.2 N/A Stop switch for paint ingredient 1
10.3 N/A Stop switch for paint ingredient 2
10.4 N/A Limit switch for maximum level
10.5 N/A Limit switch for minimum level
Digital Traffic Light Liquid Mixing
Output Control System Control System
Address
Q0.0 Pedestrian red light Pump for paint ingredient 1
Q0.1 Pedestrian green light Pump for paint ingredient 2
Q0.2 N/A Motor for mixing paint ingredients
Q0.3 N/A Steam for heating mixture in tank
Q0.4 N/A Valve for draining mixture out of tank
Q0.5 Vehicle red light Pump for draining mixture out of tank
Q0.6 Vehicle yellow light N/A
Q0.7 Vehicle green light N/A
Memory Traffic Light Liquid Mixing
Bit Control System Control System
MO0.0 Memory bit for switching Memory bit for high level reached

signal after green light
request from pedestrian

The logging system must be trusted because it is used for evidence

collection. It is vital that the system is not hacked and the data log is
not altered. Therefore, the logging system should be made hacker-proof
and tamper-resistant to the extent possible.

5. S7 Communications Protocol

The S7 communications protocol (S7comm) is a proprietary proto-
col used by the Siemens S7-300/400 family of programmable logic con-
trollers [13]. The protocol is also partially supported by the Siemens
S7-1200/1500 family of programmable logic controllers [8]. It is used for
programmable logic controller programming, data exchange with pro-
grammable logic controllers, programmable logic controller data access
by SCADA systems and diagnostics [13].

338 ADVANCES IN DIGITAL FORENSICS XIV

Table 2. Log file structure.

Date/Time Source IP Protocol PLC PLC Memory
Address Command Value Change

01 Jan 2017 192.168.0.10 TCP Establish N/A

10:05pm connection

01 Jan 2017 192.168.0.10 S7comm WRITE Set Output Q0.7

10:10pm to TRUE from FALSE

01 Jan 2017 192.168.0.10 S7comm CPU STOP N/A

11:00pm

01 Jan 2017 192.168.0.10 TCP Close N/A

11:30pm connection

Table 3. STcomm commands.

Z
e

Command

Data Read/Write

Cyclic Data Read/Write
Directory Information
System Information
Block Move

PLC Control

Date and Time

Security

Programming

© 00 3O Ui Wi

The Ethernet implementation of S7comm is based on ISO TCP (RFC
1006), which is block-oriented. Each block is called a protocol data unit
(PDU). The S7comm protocol is function-oriented or command-oriented,
i.e., each transmission contains a command or a reply to a command. If
a command or reply does not fit inside a single protocol data unit, it is
split across multiple protocol data units [8].

Table 3 shows the nine categories of STcomm commands. Each com-
mand has four components: (i) header; (i) parameters; (iii) parameter
data; and (iv) data block.

The first two components of an S7comm command (header and pa-
rameters) are mandatory; the other components are optional. Figure 4
presents the protocol encapsulation structure followed by S7 Telegram,
ISO on TCP and TCP/IP.

S7comm data is inserted in the payloads of connection-oriented trans-
port protocol (COTP) packets. As shown in Figure 5, the first byte is
always 0x32, which corresponds to the protocol identifier [13].

Yau, Chow & Yiu 339

S7 Command

S7 Telegram bata
A v
ISO on TCP TPKT | coTP S7 PDU
A v
TCPIP [Header ISO TCP Telegram

Figure 4. Protocol encapsulation [8].

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am @ RBE QAes=T 4= =EQAQAE

(WTapply a display fiiter ... <Ctrl-

No. Time Source Destination Protocol Length Info
13 9.000013 192.168.0.103 192.168.0.1 COoTP 76 CR TPDU src-ref: |
14 ©.006280 192.168.0.1 192.168.0.103 COTP 76 CC TPDU src-ref: |
15 ©.000070 192.168.0.103 192.168.0.1 S7COMM 79 ROSCTR: [JOb]
16 ©.003629 192.168.0.1 192.168.0.103 S7COMM 81 ROSCTR: [Ack_Data]

— 17 ©.209542 192.168.0.103 192.168.0.1 TCP 54 49245102 [ACK] S
18 ©.312054 Apple_4af:fa:28 LLDP_Multicast LLDP 152 NoS = ken-pc Port

TPKT, Version: 3, Length: 25
ISO 8073/X.224 COTP Connection-Oriented Transport Protocol

4 S7 Communication
Header: (Job) Payload of COTP data packet (0x32)
- Parameter: (Setup communITatIOm) I
v 5
00 1c 06 00 ea 7f 84 38 35 4f fa 28 08 09f45 0@ 8 50.(..E.
0010 00 41 06 22 40 00 80 06 72 dc coO a8 00 67 co a8 Ae"@s v s Pasaafas
020 00 01 ¢ 5d 00 66 cc d9 ©7 53 00 03 ob 1W 50 18 P P P -

0030 fa da 40 eb 00 00 03 00 ©0 19 02 O 80 EPIUEIL[cslion s v sees
G o0 ff ff 00 08 00 00 fO0 ©0 00 01 00 01 03 cO
Figure 5. Data packets.

A programmable logic controller connection had to be established
in order to collect S7Tcomm protocol traffic. The following steps were
involved in establishing a connection to the S7 programmable logic con-
troller [13]:

m A connection was established to the programmable logic controller
using its IP address and TCP port 102.

» A connection was established at the ISO layer (COTP connect re-
quest). The destination transport services activity point (TSAP)
data has two bytes. The first byte of the destination TSAP data
specifies the communications type (1 = PG (programming con-
sole); 2 = OP (Siemens HMI panel)). The second byte specifies
the slot and rack numbers (position of the programmable logic

340 ADVANCES IN DIGITAL FORENSICS XIV

M libnodave_conn.pcapng - > . = | &
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
(= ® RE] SEZFIZIEQQAQH
(f ¥ | Expression + Filter
No. Time Source Destination Protocol Length Info 2
6 0.000095 192.168.0.103 239.255.255.250 SSDP 165 M-SEARCH * HTTP/..
7 2.152409 192.168.0.103 192.168.0.1 HiGR 66 492455102 [SYN] ..
sep 1 |192.168.0.1 192.168.0.103 TCP 60 10249245 [SYN, I
1972, 168.0. 103 192.168.0.1 TCP 57 292455102 [ACK] .. -
10 ©0.000187 192.168.0.103 192.168.0.1 TCP 66 492465102 [SYN] ..
11 ©.003825 192.168.0.1 192.168.0.103 TCP 60 10249246 [SYN, ..
12 0.000025 192.168.0.103 192.168.0.1 TCP 54 492465102 [ACK] ..
sep 2 1192.168.0.103 192.168.0.1 COTP 76 CR TPDU src-ref:..
192.168.0.1 192.168.0.103 coTP 76 CC TPDU sr‘c—r‘ef:l.
1192.168.0.103 192.168.0.1 S7COMM 79 ROSCTR:[Job
Step3 [i57.168.0.1 192.168.0.103 _ S7COMM 81 ROSCTR: [ACK_Data}.
17 v.z09>42 192.168.0.103 192.168.0.1 TCP 54 492455102 [ACK] ..
18 0.312054 Apple_4f:fa:28 LLDP_Multicast LLDP 152 NoS = ken-pc Por..
19 0.311954 fe80::456:1ff.. ffo2::c SSDP 179 M-SEARCH * HTTP/.. -
' Parameter code: dst-tsap (@xc2)

Parameter length: 2
Destination TSAP: 0100
Parameter code: tpdu-size (0xc®)

Figure 6. Establishing the S7 programmable logic controller connection.

controller). The slot number is coded in bits 0-4 while the rack
number is coded in bits 5-7.

» A connection was established at the S7Tcomm layer (s7comm.param.
func = 0xf0; setup communications). Details regarding the S7-
comm protocol (e.g., protocol data unit size) were negotiated.

Figure 6 shows a Wireshark capture of the S7 programmable logic
controller connection steps.

6. Creating Audit Log Records

To demonstrate the data logging methodology, a Siemens Simatic S7
1212C programmable logic controller was used to set up two simulated
control systems. A computer was installed with the Snap7 software to
create anomalous programmable logic controller behavior. Another com-
puter was installed with Wireshark and the S7comm Wireshark dissector
plugin [14] to capture programmable logic controller activities. Figure 7
shows the experimental setup.

The experiments involved two parts. In the first part, the traffic light
control system was connected to a wireless access point. In the second

Yau, Chow & Yiu 341

Traffic
Lights/Switches

——]

Liquid Mixing
Device

Figure 7. Experimental setup.

part, the traffic light control system was replaced with the liquid mixing
control system. Four common programmable logic controller requests
were employed: (i) CPU START; (ii) CPU STOP; (iii) READ; and (iv)
WRITE.

6.1 Traffic Light Control System

The following steps were involved in sending CPU STOP/START
requests to the programmable logic controller:

m Wireshark was started to capture network packets.

m Snap7 established a connection to the programmable logic con-
troller.

m Snap7 sent the CPU STOP request to the programmable logic
controller.

m Snap7 sent the CPU START request to the programmable logic
controller.

m Snap7 closed its connection to the programmable logic controller.

m Wireshark was stopped and the captured packets were saved in a
log file.

342 ADVANCES IN DIGITAL FORENSICS XIV

s N N —

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

am 0@ RERRes»EZFTIS EQRAQAAQAHE
(W Tip.src==192.168.0. 1 or ip.dst== 192.168.0.1 £
No. Time Source. Destnaton Protocol Length Info

12 2016-09-18 192.168.0.103 192.168.0.1 1P 82 Echo (ping) request id=0x0@81, seq=3/768, ttl=255 (reply in 13)

13 2016-09-18 192.168.0.1 192.168.0.103 ICMP 82 Echo (ping) repl; id=0x0001, seq=3/768, ttl=30 (reguest in 12

192.168.0.103 66 58715 ~ 102 [SYN] Seq=0

16 2016-09- 192.168.0.103 192.168.0.1 TP 54 58715 + 102 [ACK] Seq=1 Ack=1 Win=64240 Len=0
17 2016-09-18 192.168.0.103 192.168.0.1 cotp 76 CR TPDU src-ref: @x0001 dst- 1 9x0000
18 2016-09-18 192.168.0.1 192.163.0.103 COTP 76 CC TPDU src-ref: 0x000b dst-ref: 0x0001

19 2016-09-18 192.168.0.103 192.168.0.1 s7com 79 ROSCTR:[Job] Function: [Setup communication]
20 2016-09-18 192.168.0.1 192.168.0.103 S7COMM 81 ROSCTR: [Ack_Data] Function:[Setup communication]
21 2016-09-18 192.165.0.103 192.168.0.1 s7com 87 ROSCTR: [Userdata] Function: [Request] -> [CPU functions] -> [Read SZL] ID=0x0@11 Index=0x0000
22 2016-09-18 192.168.0.1 192.165.0.103 S7COMM 179 ROSCTR: [Userdata] Function: [Response] -> [CPU functions] -> [Read SZL] ID=0x0011 Index=0x0000
23 2016-09-18 192.168.0.103 192.168.0.1 s7com 87 ROSCTR: [Userdata] Function: [Request] -> [CPU functions] -> [Read SZL] ID=0x001c Index=0x0000
25 2016-09-18 192.168.0.1 192.168.0.103 S7COMM 87 ROSCTR: [Userdata] Function:[Response] -> [CPU functions] -> [Read SZL]
62 2016-09-18 111.999891 192.168.0.103 192.168.0.1 s7com 87 ROSCTR: [Userdata] Function:[Request] -> [CPU functions] -> [Read SZL] ID=0x0424 Index=0x0000
63 2016-09-18 12.006321 192.168.0.1 192.168.0.103 S7COMM 115 ROSCTR: [Userdata] Function: [Response] -> [CPU functions] -> [Read SZL] ID=0x0424 Index=0x0000
g6 201c-00-12 12100366 2922680903 J92.0¢2.0. I 4 58205 > 102 [ACK] Sege510 Ack=060 [in=c328] lcn=0
67 2016-09-1 12.483631 192.168.0.103 192.168.0.1 S7cOM 87 ROSCTR: [Job_] Function: [PLC Stop)
2) e 206001 12506541 192.168.0.1 192.168.0.103 _ S7COM! 73 ROSCTR: [Ack]
T T T O TS O I L IO T o L ey B L i M e ooy B o R
| 70 2016-09-18 10:07:12.511642 192.168.0.1 192.168.0.103 S7COMM 115 ROSCTR:[Userdata] Function: [Response] -> [CPU functions] -> [Read SZL] ID=0x0424 Index=0x0000
191 2016-09-18 10:07:24 869350 2021680003 102.0¢8.0.0 I 4 58705 - 202 [AcK] Seg=143a Ack=2542 1iin=63203 Len=0
192 2016-09-18 25.035446_192.168.0.103 192.168.0.1 S7c0M 93 ROSCTR:[Job__] Function:[PLC Control]
3 Jiss 2016-09-15 10:07:25. 000877 192.165.0.1 192.165.0.103 s7com 73 ROSCTR: [Ack
T IO I IO S IO TOT T IO IOT eS0T O TOSC TR Uzer e es | T URCETORTIREqUest T S TP U TOmerTons] = [Resd S70T T0-0X07eT,
249 2016-09-18 192.168.0.103 192.168.0.1 Tch 54 58715 » 102 [ACK] Seq=2112 Ack=336 Win=63569 Len=0
EiE LR TR 01 T F = TR=3535 WIn-eItes Len=d |
T T T O T T T T SSTTS KT ST Te T R 2T I Tue ey
192.168.0.1 192.163.0.103 TCP 60 102 » 58715 [FIN, ACK] Seq=3636 Ack=2113 Win=4096 Len=0
253 2016-09- 192.168.0.103 192.168.0.1 e 54 58715 » 102 [ACK] Seqs2113 Ack=3637 Win=63569 Len=0

Figure 8. Programmable logic controller STOP and START requests.

m The packets with the programmable logic controller IP address
[192.168.0.1] were filtered for analysis.

Figure 8 shows the captured log file associated with the programmable
logic controller STOP and START requests. Analysis of the log file yields
the following reconstruction of programmable logic controller activities:

m 10:07:02am, 18 Sep 2016: A computer [192.168.0.103] es-
tablished a connection to the programmable logic controller [192.
168.0.1].

m 10:07:12am, 18 Sep 2016: The computer sent a CPU STOP
request to the programmable logic controller to stop the traffic
light system.

m 10:07:25am, 18 Sep 2016: The computer sent a CPU START
request to the programmable logic controller to re-start the traffic
light system.

m 12:07:46pm, 18 Sep 2016: The computer closed its connection
to the programmable logic controller.

Based on the data in Table 1, the memory values of the programmable
logic controller outputs at 12:07:46pm, 18 Sep 2016 indicate that all
the pedestrian and vehicle lights were turned on. The programmable

Yau, Chow & Yiu 343

logic controller operation appears to be anomalous because an attempt
was made to turn on all the traffic lights at the same time.

The following steps were involved in sending READ and WRITE re-
quests to the programmable logic controller:

Wireshark was started to capture network packets.

Snap7 established a connection to the programmable logic con-
troller.

Snap7 read the values of inputs (I0.0 to 10.7), outputs (Q0.0 to
Q0.7) and memory bits (M0.0 to M0.7) from the programmable
logic controller.

Snap7 wrote the value 1 to inputs (10.0 to 107), outputs (00.0 to
0.7) and memory bits (M0.0 to M0.7) of the programmable logic
controller.

Snap7 closed its connection to the programmable logic controller.

Wireshark was stopped and the captured packets were saved in a
log file.

The packets with the programmable logic controller IP address
[192.168.0.1] were filtered for analysis.

Figure 9 shows the captured log file associated with the programmable
logic controller READ and WRITE requests. The following controller
activities can be reconstructed in time sequence upon analyzing the log

file:

12:07:28pm, 18 Sep 2016: A computer [192.168.0.103] es-
tablished a connection to the programmable logic controller [192.
168.0.1].

12:07:31pm, 18 Sep 2016: The log reveals that the computer
read memory values from the programmable logic controller (shown
in Figure 9):

— 10.7 to 10.0: 0x03 [0000 0011]

— Q0.7 to Q0.0: 0x03 [0000 0011]

— MO.7 to M0.0: 0x00 [0000 0000]
12:07:44pm, 18 Sep 2016: The log reveals that the programma-

ble logic controller memory values were altered as follows (shown
in Figure 9):

344

VM Read_write.pcapng

ADVANCES IN DIGITAL FORENSICS XIV

192.168.0.103

192.168.0.1

192.168.0.103
T

192.168.0.1

60 102 - 58363 [SYN,
C

File Edit View Go Capture Analyze ics Telephony Wireless Tools Help
an @® RE R« T8 QAT
W [ip.src== 192.163.0.1 or ip.dst== 192.168.0.1 [X]
o. Source Destnaton Protocol Length Info
- .964058 192.168.0.1 192.168.0.103 ICMP 82 Echo (ping) reply id=0x0@01, seq=18/4608, ttl=3@ (request in 3@)
192.168.0.103 _ 192.1: i 56 58368 - 102 [SYN] Seq=0 Win=8192 Len=p MSS=1460 WS=2 SACK PERM=1
192.168.0.1 TCP ACK] Seq=d Ack=1 Win=4096 Len=@ MSS=1460 |

54 58368 + 102 [ACK) Sex

ea-T AcK=T WIn-03220 Len=0

corp 76 CR TPDU src-ref: 0xe001 dst-ref: 0x0000
192.168.0.1 192.168.6.103 COTP 76 CC TPDU src-ref: Oxooeb dst-ref: 0x0001
192.168.0.103 192.168.0.1 s7com 79 ROSCTR:[Job] Function:[Setup communication]
0. s7com 81 ROSCTR: [Ack_Data] Function:[Setup communication]
£ ’ s7com 87 ROSCTR: [Userdata) Function:[Request] -> [CPU functions] -> [Read SZL] ID=0x0011 Index=0x0€
6.1 192.168.6.103 S7COMM 179 ROSCTR: [Userdata] Function:[Response] -> [CPU functions] -> [Read SZL] ID=0x0011 Index=axé
192.168.0.103 192.168.0.1 s7com 87 ROSCTR: [Userdata) Function:[Request] -> [CPU functions] -> [Read SZL] ID=8x0@lc Index=0x0€
192.168.0.1 192.168.0.103 S7COMM 87 ROSCTR: [Userdata] Function:[Response] -> [CPU functions] -> [Read SZL]
192.168.0.103 192.168.0.1 s7com 87 ROSCTR: [Userdata] Function:[Request] -> [CPU functions] -> [Read SZL] ID=x0131 Index-0x0€
192.168.0.103 S7COMM 135 ROSCTR: [Userdata] Function:[Response] -> [CPU functions] -> [Read SZL] ID=0x0131 Index=oxe

=147 Ack=289 Win=63952 Len=0

102.168.0.1

152.165.0.105

5 5 T NOSC T [Ack.Date] TuncEIon: [Nead Var] 1
_165.0. 54 58868 5 102 [ACK] Seq=226 Ack=378 Win=63863 Len=
1921650105 1650, |
T255716 165,06,
501572 192.168.0.103 192.168.0.1 h7e3 4 58868 > 102 [ACK] Seq=405 Ack=404 1in=63837 Len=0
.530866_192.168.0.103__192.165.0.1 54 58863 > 102 [FIN, ACK] Seq=d@5 Ack=404 Win=53837 Len=o]

Read Memory Values
4 |S7 Communication
Header: (Ack_Data)
Parameter: (Read Var)
4 Data
4 Item [1]: (Success)
Return code: Success (@xff)
Transport size: BYTE/WORD/DWORD (@x@4)
Length: 16

Alter Memory Values
4 S7 Communication

Header: (Job)

Parameter: (Write Var)

4 Data

4 Item [1]: (Reserved)

Return code: Reserved (0x00)
Transport size: BYTE/WORD/DWORD (0x84)
Length: 16

Data: ©:

Data: ffff ff FEFFFEFEFEEES]

4 YeEmTITT-TSUCTESET
Return code: Success (Oxff)
Transport size: BYTE/WORD/DWORD (0xe4)
Length: 16

T U
Return code: Reserved (@x00)
Transport size: BYTE/WORD/DWORD (@x04)
Length: 16

| oata: o3e

Data: FAFFFFTFTTTTTTTTTTTTTTTTTTTIiiee]

+ PemrTTTTCSTTTETYY
Return code: Success (Oxff)
Transport size: BYTE/WORD/DWORD (0xe4)
Length: 16

o U
Return code: Reserved (@x0@)
Transport size: BYTE/WORD/DWORD (@x@4)
Length: 16

| vata: cceeeeccccceeeccccececccceceocce

Data: FEFFFFFFFFFFFFFFFFFFFFFFFFFFFfee]

Figure 9. Programmable logic controller READ and WRITE requests.

— 10.7 to 10.0: Oxff [1111 1111]
— Q0.7 to Q0.0: Oxff [1111 1111]
— MO.7 to M0.0: Oxff [1111 1111]

12:07:46pm, 18 Sep 2016: The computer closed its connection
to the programmable logic controller.

Based on the data in Table 1, the memory values of the programmable
logic controller outputs at 12:07:44pm, 18 Sep 2016 indicate that all
the pedestrian and vehicle lights were turned on. The programmable
logic controller operation appears to be anomalous because an attempt
was made to turn on all the traffic lights at the same time.

6.2

The following steps were involved in sending CPU WRITE requests
to the programmable logic controller.

Liquid Mixing Control System

m Wireshark was started to capture network packets.

®m Snap?7 established a connection to the programmable logic con-
troller.

Yau, Chow & Yiu 345

[Viing tankpeapn
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am 2@ RE_Re=2=F =B QaaH

(WTaoply a display fite

No. Time Source Destination Protocol Length Info
23 2017-08-19 ©8:50:25.633035 192.168.0.102 191.232.80.58 TLSv1.2 1483 Application Data
24 2017-08-19 08:50:25.706175 192.168.0.102 192.168.0.1 P 74 Echo (ping) request id=0x0001, seq=13/3328, ttl=255 (rej
25 2017-08-19 88:50: .709076 192.168.0.1 192.168.0.102 ICMP 74 Echo (ping) reply id=0xee01, seq=13/3328, ttl=3@ (req:
26 2017-68-19 08:50:25.710518 _192.163.0.102 192.168.0.1 IcP 56 63702 - 102 Min=8102 Len=0 MSS=1460 WS=4 SACI

27 2017-08-19 08:50:25.713744 192.168.0.1 192.168.0.102 TCP

60 102 > 63702 [SYN, ACK] Seq=0 Ack=1 Win=4896 Len=0 MsS=1

81 2017-08-19 08:50:34.981783 _192.168.0.102 192.168.0.1 S7coM 219 ROSCTR: [Job
80 ROSCIR: [ACK_Data] Function:[Write var]

82 2017-08-19 08:50:34.989865 _ 192.168.0.1 192.168.0.102 S7COMM

| 115 2017-08-19 08:50:42.891273 192.168.0.102 192.168.0.1 TCP 54 63702 > 102 [FIN, ACK] Seq=312 Ack=315 Win=63926 Len=0
110 2017-08- 15 TE92578 192.108.0.1 1921680 10; TeP BC 107 > 03707 [ACK] Seq=315 ACK=313 Win=2000 Len=0.
|| 117 2017-08-19 08:50:42.896685 192.168.0.1 192.168.0.102 TP 60 162 » 63702 [FIN, ACK] Seq=315 Ack=313 Win=4096 Len=0

57 Communication
Header: (Job)
4 Parameter: (Write Var)
Function: Write Var (0x5)
Item count: 5
Item [1]: (Q 0. BYTE 1)
Item [2]: (DB2.DBX 0.0 BYTE 16)
Item [3]: (DB3.DBX 0.0 BYTE 16)
Item [4]: (DB4.DBX 0.0 BYTE 16)
Item [5]: (DBS.DBX 0.0 BYTE 16)
4 pata
4 Item [1]: (Reserved)
Return code: Reserved (xee)
Transport size: BYTE/WORD/DWORD (8x04)
Length: 1
[Data: 33]
FII1 Dyte: 0x30
Item [2]: (Reserved)
Item [3]: (Reserved)

Figure 10. Programmable logic controller WRITE requests.

= Snap7 wrote the value 1 to outputs (00.0 to 0.7) of the pro-
grammable logic controller.

m Snap7 closed its connection to the programmable logic controller.

m Wireshark was stopped and the captured packets were saved in a
log file.

|

The packets with the programmable logic controller IP address
[192.168.0.1] were filtered for analysis.

Figure 10 shows the captured log file associated with the programmable
logic controller WRITE requests. The following controller activities can
be reconstructed in time sequence upon analyzing the log file:

m 08:50:25pm, 19 Aug 2017: A computer [192.168.0.102] es-
tablished a connection to the programmable logic controller [192.
168.0.1].

m 08:50:34pm, 19 Aug 2017: The log reveals that the programma-
ble logic controller memory values were altered as follows (shown
in Figure 10):

Q0.7 to Q0.0: 0x33 [0011 0011]

m 12:07:42pm, 19 Aug 2017: The computer closed its connection
to the programmable logic controller.

346 ADVANCES IN DIGITAL FORENSICS XIV

Based on the data in Table 1, the memory values of the programmable
logic controller at 08:50:34pm, 19 Aug 2017 indicate that the pump
for paint ingredient 1 and the pump for paint ingredient 2 were turned
on; meanwhile, the drain valve and drain pump were also turned on.
The programmable logic controller operation appears to be anomalous
because an attempt was made to turn on all the valves and pumps at
the same time.

7. Experimental Results and Discussion

In the experiments, four common programmable logic controller re-
quests, CPU START, CPU STOP, READ and WRITE were identified
by packet analysis using Wireshark with the S7 dissector plugin. The
sequences with timestamps related to programmable logic controller con-
nection establishments and requests were also captured in the log file.
Based on the log file and the programmable logic controller application,
an investigator could reconstruct the anomalous programmable logic
controller operations. In addition to the four programmable logic con-
troller requests, other programmable logic controller activities were also
be revealed via packet analysis, including programmable logic controller
program uploads and downloads. The upload and download commands
have the S7Tcomm function parameter (first parameter byte) of 0x14 [7].
The download commands provide valuable information about the time-
line of programmable logic controller program updates.

The experiments used Wireshark with the S7 dissector plugin to cap-
ture and analyze S7 packets for forensic purposes. However, due to the
large volume of packets, it is infeasible to capture all the information re-
lated to the packets for analysis. Therefore, the proposed programmable
logic controller logging system uses Wireshark with the S7 dissector plu-
gin and an add-on feature to capture packets selectively. When the
logging system detects a connection request sent to the programmable
logic controller on TCP port 102, it starts capturing the communications.
Likewise, when the logging system detects a disconnection request sent
to programmable logic controller on TCP port 102, it stops capturing
the communications.

Since the raw data capture is disorganized, a logging system process
converts the captured packet information to a human-readable format
that is stored in an audit file. Thus, a forensic investigator would only
have to examine the audit file. This reduces the effort required by the
investigator, who would not be expected to be a control system expert.

Since the ISO-TSAP packets that encapsulate the proprietary Siemens
S7comm protocol are sent in plaintext, it is relatively simple to reverse

Yau, Chow & Yiu 347

engineer them and make modifications as needed. This characteristic of
ISO-TSAP packets enables attackers to replicate operator activities in-
volving programming and management, including turning off the CPU,
disabling memory protection and uploading new project files to the pro-
grammable logic controller [1]. On one hand, attackers leverage ISO-
TSAP to monitor and interfere with programmable logic controller op-
erations. On the other hand, the proposed logging system leverages
ISO-TSAP to capture valuable information about attacker activities for
forensic investigations.

Several tools are available for creating audit logs for programmable
logic controllers, but the information they capture is insufficient in foren-
sics investigations. Specifically, the audit logs usually capture the val-
ues of relevant memory addresses used by programmable logic controller
programs to support debugging and troubleshooting. Crucial forensic in-
formation is always missing, including the IP address of the device that
connected to the programmable logic controller, the commands (e.g.,
READ data, WRITE data and DOWNLOAD program) sent to the pro-
grammable logic controller and the duration of the connection to the
programmable logic controller.

Finally, the logging system incorporate two processes in order to min-
imize its impact on programmable logic controller operations. The first
process is responsible for capturing packets. The second process an-
alyzes the captured packets and stores forensically-relevant data in a
human-readable format in the audit log file. Because this process is
time consuming, it is executed as a batch process instead of a real-time
process to enhance the efficiency of the logging system.

8. Conclusions

Current programmable logic controller logging tools provide insuffi-
cient information for digital forensic investigations. To address this lim-
itation, the logging system described in this chapter analyzes network
traffic between a Siemens Simatic S7 programmable logic controller and
network devices based on the Siemens S7 communications protocol to
record evidence of the sequence of activities related to commands and
data exchanged between the programmable logic controller and other
network devices. The log provides valuable information about attacks,
including the attacker IP addresses, specific actions and timelines. The
decision to focus on a Siemens Simatic S7 programmable logic controller
was motivated by their widespread use [1] and the fact that they were
targeted successfully by the insidious Stuxnet malware.

348

ADVANCES IN DIGITAL FORENSICS XIV

Future research will focus on developing a production logging system
for industrial control system environments. Attempts will also be made
to expand the logging capabilities to handle other popular industrial
control protocols such as Modbus and DNP3 for various programmable
logic controller models.

References

1]
2]

D. Beresford, Exploiting Siemens Simatic S7 PLCs, presented at
Black Hat USA, 2011.

R. Chan and K. Chow, Forensic analysis of a Siemens programmable
logic controller, in Critical Infrastructure Protection X, M. Rice and
S. Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 117-130, 2016.

T. Cruz, J. Barrigas, J. Proenca, A. Graziano, S. Panzieri, L. Lev
and P. Simoes, Improving network security monitoring for indus-
trial control systems, Proceedings of the IFIP/IEEE International
Symposium on Integrated Network Management, pp. 878-881, 2015.

European Union Agency for Network and Information Security,
Critical Infrastructures and Services, Heraklion, Greece (enisa.
europa.eu/topics/critical-information-infrastructures-

and-services), 2017.

T. Hergenhahn, libnodave (sourceforge.net/projects/libno
dave), 2014.

J. Klick, S. Lau, D. Marzin, J. Malchow and V. Roth, Internet-facing
PLCs — A new back orifice, presented at Blackhat USA, 2015.

J. Malchow, D. Marzin, J. Klick, R. Kovacs and V. Roth, PLC
Guard: A practical defense against attacks on cyber-physical sys-
tems, Proceedings of the IEEE Conference on Communications and
Network Security, pp. 326-334, 2015.

D. Nardella, Step 7 Open Source Ethernet Communications Suite,
Bari, Italy (snap7.sourceforge.net), 2016.

PLC-Logger Project, PLC-Logger and Analyzer (sourceforge.
net/projects/plclogger), 2014.

Siemens, SIMATIC S7-300 Programmable Controller Quick Start,
Primer, Preface, C79000-G7076-C500-01, Nuremberg, Germany,
1996.

Siemens, SIMATIC S7-200 Programmable Controller System Man-
ual, 6ES7298-8FA01-8BHO, Edition 08/2005, Nuremberg, Germany,
2005.

Yau, Chow & Yiu 349

[12]

T. Spyridopoulos, T. Tryfonas and J. May, Incident analysis and
digital forensics of SCADA and industrial control systems, Pro-
ceedings of the Eighth IET International System Safety Conference
Incorporating the Cyber Security Conference, 2013.

T. Wiens, S7 Communications (s7comm), Wireshark Wiki (wiki.
wireshark.org/S7comm), 2016.

T. Wiens, S7Tcomm Wireshark Dissector Plugin (sourceforge.net/
projects/s7commwireshark), 2017.

T. Wu and J. Nurse, Exploring the use of PLC debugging tools for
digital forensic investigations of SCADA systems, Journal of Digital
Forensics, Security and Law, vol. 10(4), pp. 79-96, 2015.

K. Yau and K. Chow, PLC forensics based on control program logic
change detection, Journal of Digital Forensics, Security and Law,
vol. 10(4), pp. 59-68, 2015.

K. Yau and K. Chow, Detecting anomalous programmable logic con-
troller events using machine learning, in Advances in Digital Foren-
sics XIII, G. Peterson and S. Shenoi (Eds.), Springer, Heidelberg,
Germany, pp. 81-94, 2017.

K. Yau, K. Chow, S. Yiu and C. Chan, Detecting anomalous behav-
ior of a PLC using semi-supervised machine learning, Proceedings
of the IEEE Conference on Communications and Network Security,

pp. 580585, 2017.

